메뉴 건너뛰기




Volumn 138, Issue , 2018, Pages 47-56

Open and scalable analytics of large Earth observation datasets: From scenes to multidimensional arrays using SciDB and GDAL

Author keywords

Big data; Database systems; Earth observation; Open science; Scalable analytics; Spatial information science

Indexed keywords

CLIMATE CHANGE; INFORMATION MANAGEMENT; LAND USE; LARGE DATASET; OBSERVATORIES; OPEN SOURCE SOFTWARE; OPEN SYSTEMS; ORTHOGONAL FUNCTIONS; SATELLITE IMAGERY; TIME SERIES;

EID: 85042181249     PISSN: 09242716     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.isprsjprs.2018.01.014     Document Type: Article
Times cited : (44)

References (56)
  • 1
    • 85167309954 scopus 로고    scopus 로고
    • Scalable Earth-observation analytics for geoscientists: spacetime extensions to the array database SciDB. In: EGU General Assembly Conference Abstracts. Vol. 18.
    • Appel, M., Lahn, F., Pebesma, E., Buytaert, W., Moulds, S., 2016. Scalable Earth-observation analytics for geoscientists: spacetime extensions to the array database SciDB. In: EGU General Assembly Conference Abstracts. Vol. 18.
    • (2016)
    • Appel, M.1    Lahn, F.2    Pebesma, E.3    Buytaert, W.4    Moulds, S.5
  • 7
    • 85017152027 scopus 로고    scopus 로고
    • Remote sensing image scene classification: benchmark and state of the art
    • Oct
    • Cheng, G., Han, J., Lu, X., Remote sensing image scene classification: benchmark and state of the art. Proc. IEEE 105:10 (2017), 1865–1883 Oct.
    • (2017) Proc. IEEE , vol.105 , Issue.10 , pp. 1865-1883
    • Cheng, G.1    Han, J.2    Lu, X.3
  • 9
    • 79953127706 scopus 로고    scopus 로고
    • Statistics for spatio-temporal data
    • John Wiley & Sons
    • Cressie, N., Wikle, C.K., Statistics for spatio-temporal data. 2015, John Wiley & Sons.
    • (2015)
    • Cressie, N.1    Wikle, C.K.2
  • 10
    • 37549003336 scopus 로고    scopus 로고
    • MapReduce: simplified data processing on large clusters
    • Dean, J., Ghemawat, S., MapReduce: simplified data processing on large clusters. Commun. ACM 51:1 (2008), 107–113.
    • (2008) Commun. ACM , vol.51 , Issue.1 , pp. 107-113
    • Dean, J.1    Ghemawat, S.2
  • 11
    • 84930035155 scopus 로고    scopus 로고
    • Robust monitoring of small-scale forest disturbances in a tropical montane forest using Landsat time series
    • DeVries, B., Verbesselt, J., Kooistra, L., Herold, M., Robust monitoring of small-scale forest disturbances in a tropical montane forest using Landsat time series. Remote Sens. Environ. 161 (2015), 107–121.
    • (2015) Remote Sens. Environ. , vol.161 , pp. 107-121
    • DeVries, B.1    Verbesselt, J.2    Kooistra, L.3    Herold, M.4
  • 12
    • 85167319798 scopus 로고    scopus 로고
    • Sentinel-2 MSI user guide. (accessed: 2016–11–29).
    • European Space Agency, 2016. Sentinel-2 MSI user guide. https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi/data-formats (accessed: 2016–11–29).
    • (2016)
  • 13
    • 84971573152 scopus 로고    scopus 로고
    • Overview of the coupled model intercomparison Project Phase 6 (CMIP6) experimental design and organization
    • Eyring, V., Bony, S., Meehl, G.A., Senior, C.A., Stevens, B., Stouffer, R.J., Taylor, K.E., Overview of the coupled model intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Dev. 9:5 (2016), 1937–1958.
    • (2016) Geoscientific Model Dev. , vol.9 , Issue.5 , pp. 1937-1958
    • Eyring, V.1    Bony, S.2    Meehl, G.A.3    Senior, C.A.4    Stevens, B.5    Stouffer, R.J.6    Taylor, K.E.7
  • 14
    • 0031080306 scopus 로고    scopus 로고
    • The pixel: a snare and a delusion
    • Fisher, P.F., The pixel: a snare and a delusion. Int. J. Remote Sens. 18:3 (1997), 679–685.
    • (1997) Int. J. Remote Sens. , vol.18 , Issue.3 , pp. 679-685
    • Fisher, P.F.1
  • 15
    • 85167266720 scopus 로고    scopus 로고
    • Proba-V Mission Exploitation Platform. In: EGU General Assembly Conference Abstracts. Vol. 19.
    • Goor, E., Dries, J., 2017. Proba-V Mission Exploitation Platform. In: EGU General Assembly Conference Abstracts. Vol. 19.
    • (2017)
    • Goor, E.1    Dries, J.2
  • 16
    • 85021781951 scopus 로고    scopus 로고
    • Google Earth engine: planetary-scale geospatial analysis for everyone
    • Big Remotely Sensed Data: tools, applications and experiences
    • Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., Moore, R., Google Earth engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202 (2017), 18–27 Big Remotely Sensed Data: tools, applications and experiences http://www.sciencedirect.com/science/article/pii/S0034425717302900.
    • (2017) Remote Sens. Environ. , vol.202 , pp. 18-27
    • Gorelick, N.1    Hancher, M.2    Dixon, M.3    Ilyushchenko, S.4    Thau, D.5    Moore, R.6
  • 17
    • 34447617023 scopus 로고    scopus 로고
    • Empirical orthogonal functions and related techniques in atmospheric science: a review
    • Hannachi, A., Jolliffe, I., Stephenson, D., Empirical orthogonal functions and related techniques in atmospheric science: a review. Int. J. Climatol. 27:9 (2007), 1119–1152.
    • (2007) Int. J. Climatol. , vol.27 , Issue.9 , pp. 1119-1152
    • Hannachi, A.1    Jolliffe, I.2    Stephenson, D.3
  • 19
    • 85021111617 scopus 로고    scopus 로고
    • Terra Populus architecture for integrated big geospatial services
    • Haynes, D., Manson, S., Shook, E., Terra Populus architecture for integrated big geospatial services. Trans. GIS 21:3 (2017), 546–559, 10.1111/tgis.12286.
    • (2017) Trans. GIS , vol.21 , Issue.3 , pp. 546-559
    • Haynes, D.1    Manson, S.2    Shook, E.3
  • 20
    • 85021769073 scopus 로고    scopus 로고
    • xarray: N-D labeled Arrays and Datasets in Python
    • Hoyer, S., Hamman, J., xarray: N-D labeled Arrays and Datasets in Python. J. Open Res. Software, 5(1), 2017.
    • (2017) J. Open Res. Software , vol.5 , Issue.1
    • Hoyer, S.1    Hamman, J.2
  • 21
    • 33947356755 scopus 로고    scopus 로고
    • The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales
    • Huffman, G.J., Bolvin, D.T., Nelkin, E.J., Wolff, D.B., Adler, R.F., Gu, G., Hong, Y., Bowman, K.P., Stocker, E.F., The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol. 8:1 (2007), 38–55.
    • (2007) J. Hydrometeorol. , vol.8 , Issue.1 , pp. 38-55
    • Huffman, G.J.1    Bolvin, D.T.2    Nelkin, E.J.3    Wolff, D.B.4    Adler, R.F.5    Gu, G.6    Hong, Y.7    Bowman, K.P.8    Stocker, E.F.9
  • 22
    • 85167297229 scopus 로고    scopus 로고
    • Is Google Earth Engine Evil? (accessed: 2016–11–29).
    • Inglada, J., 2016. Is Google Earth Engine Evil? http://jordiinglada.net/wp/2016/05/12/is-google-earth-engine-evil-2 (accessed: 2016–11–29).
    • (2016)
    • Inglada, J.1
  • 23
    • 85167262971 scopus 로고    scopus 로고
    • Geotrellis: Adding Geospatial Capabilities to Spark. Spark Summit.
    • Kini, A., Emanuele, R., 2014. Geotrellis: Adding Geospatial Capabilities to Spark. Spark Summit.
    • (2014)
    • Kini, A.1    Emanuele, R.2
  • 25
    • 85167319467 scopus 로고    scopus 로고
    • Comparing NetCDF and a multidimensional array database on managing and querying large hydrologic datasets: a case study of SciDB. Master's thesis. TU Delft, Delft University of Technology.
    • Liu, H., 2014. Comparing NetCDF and a multidimensional array database on managing and querying large hydrologic datasets: a case study of SciDB. Master's thesis. TU Delft, Delft University of Technology.
    • (2014)
    • Liu, H.1
  • 26
    • 84962135831 scopus 로고    scopus 로고
    • Spatio-temporal change detection from multidimensional arrays: detecting deforestation from MODIS time series
    • Lu, M., Pebesma, E., Sanchez, A., Verbesselt, J., Spatio-temporal change detection from multidimensional arrays: detecting deforestation from MODIS time series. ISPRS J. Photogramm. Remote Sens. 117 (2016), 227–236.
    • (2016) ISPRS J. Photogramm. Remote Sens. , vol.117 , pp. 227-236
    • Lu, M.1    Pebesma, E.2    Sanchez, A.3    Verbesselt, J.4
  • 27
    • 84947567797 scopus 로고    scopus 로고
    • Temporal downscaling of TRMM rain-rate images using principal component analysis during heavy tropical thunderstorm seasons
    • Mahmud, M.R., Matsuyama, H., Hosaka, T., Numata, S., Hashim, M., Temporal downscaling of TRMM rain-rate images using principal component analysis during heavy tropical thunderstorm seasons. J. Hydrometeorol. 16:5 (2015), 2264–2275.
    • (2015) J. Hydrometeorol. , vol.16 , Issue.5 , pp. 2264-2275
    • Mahmud, M.R.1    Matsuyama, H.2    Hosaka, T.3    Numata, S.4    Hashim, M.5
  • 29
    • 85167273706 scopus 로고    scopus 로고
    • NEX Global Daily Downscaled Climate Projections. (accessed: 2016–11–29).
    • NASA, 2014. NEX Global Daily Downscaled Climate Projections. https://nex.nasa.gov/nex/projects/1356/ (accessed: 2016–11–29).
    • (2014)
  • 30
    • 85167286244 scopus 로고    scopus 로고
    • Product Description: TRMM_3B42_daily. (accessed: 2016–11–29).
    • NASA, 2015. Product Description: TRMM_3B42_daily. http://mirador.gsfc.nasa.gov/collections/TRMM_3B42_daily__007.shtml (accessed: 2016–11–29).
    • (2015)
  • 31
    • 85089746642 scopus 로고    scopus 로고
    • A view-based model of data-cube to support big earth data systems interoperability
    • Nativi, S., Mazzetti, P., Craglia, M., A view-based model of data-cube to support big earth data systems interoperability. Big Earth Data 1:1-2 (2017), 75–99, 10.1080/20964471.2017.1404232.
    • (2017) Big Earth Data , vol.1 , Issue.1-2 , pp. 75-99
    • Nativi, S.1    Mazzetti, P.2    Craglia, M.3
  • 32
    • 85167260259 scopus 로고    scopus 로고
    • a. Run R programs within SciDB queries. (accessed: 2016–11–29).
    • Paradigm4, Inc., 2016a. Run R programs within SciDB queries. https://github.com/Paradigm4/r_exec (accessed: 2016–11–29).
    • (2016)
  • 33
    • 85167327015 scopus 로고    scopus 로고
    • b. Very simple HTTP service for SciDB. (accessed: 2016–11–29).
    • Paradigm4, Inc., 2016b. Very simple HTTP service for SciDB. https://github.com/Paradigm4/shim (accessed: 2016–11–29).
    • (2016)
  • 36
    • 0025454878 scopus 로고
    • NetCDF: an interface for scientific data access
    • Rew, R., Davis, G., NetCDF: an interface for scientific data access. IEEE computer graphics and applications 10:4 (1990), 76–82.
    • (1990) IEEE computer graphics and applications , vol.10 , Issue.4 , pp. 76-82
    • Rew, R.1    Davis, G.2
  • 37
    • 85015244546 scopus 로고    scopus 로고
    • Dask: Parallel Computation with Blocked algorithms and Task Scheduling. In: Huff, K., Bergstra, J. (Eds.), Proceedings of the 14th Python in Science Conference.
    • Rocklin, M., 2015. Dask: Parallel Computation with Blocked algorithms and Task Scheduling. In: Huff, K., Bergstra, J. (Eds.), Proceedings of the 14th Python in Science Conference. pp. 130–136.
    • (2015) , pp. 130-136
    • Rocklin, M.1
  • 39
    • 84961217790 scopus 로고    scopus 로고
    • Modeling spatiotemporal information generation
    • Scheider, S., Gräler, B., Pebesma, E., Stasch, C., Modeling spatiotemporal information generation. Int. J. Geogr. Inform. Sci. 30:10 (2016), 1980–2008, 10.1080/13658816.2016.1151520.
    • (2016) Int. J. Geogr. Inform. Sci. , vol.30 , Issue.10 , pp. 1980-2008
    • Scheider, S.1    Gräler, B.2    Pebesma, E.3    Stasch, C.4
  • 40
    • 84913553639 scopus 로고    scopus 로고
    • Multi-resolution time series imagery for forest disturbance and regrowth monitoring in Queensland, Australia
    • Schmidt, M., Lucas, R., Bunting, P., Verbesselt, J., Armston, J., Multi-resolution time series imagery for forest disturbance and regrowth monitoring in Queensland, Australia. Remote Sens. Environ. 158 (2015), 156–168.
    • (2015) Remote Sens. Environ. , vol.158 , pp. 156-168
    • Schmidt, M.1    Lucas, R.2    Bunting, P.3    Verbesselt, J.4    Armston, J.5
  • 42
    • 85167265731 scopus 로고    scopus 로고
    • The Blue Marble Next Generation-A true color earth dataset including seasonal dynamics from MODIS. Published by the NASA Earth Observatory.
    • Stöckli, R., Vermote, E., Saleous, N., Simmon, R., Herring, D., 2005. The Blue Marble Next Generation-A true color earth dataset including seasonal dynamics from MODIS. Published by the NASA Earth Observatory.
    • (2005)
    • Stöckli, R.1    Vermote, E.2    Saleous, N.3    Simmon, R.4    Herring, D.5
  • 43
    • 84880515345 scopus 로고    scopus 로고
    • SciDB: a database management system for applications with complex analytics
    • Stonebraker, M., Brown, P., Zhang, D., Becla, J., SciDB: a database management system for applications with complex analytics. Comput. Sci. Eng. 15:3 (2013), 54–62 http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6461866.
    • (2013) Comput. Sci. Eng. , vol.15 , Issue.3 , pp. 54-62
    • Stonebraker, M.1    Brown, P.2    Zhang, D.3    Becla, J.4
  • 45
    • 85026362794 scopus 로고    scopus 로고
    • An array database approach for earth observation data management and processing
    • Tan, Z., Yue, P., Gong, J., An array database approach for earth observation data management and processing. ISPRS Int. J. Geo-Information, 6(7), 2017 http://www.mdpi.com/2220-9964/6/7/220.
    • (2017) ISPRS Int. J. Geo-Information , vol.6 , Issue.7
    • Tan, Z.1    Yue, P.2    Gong, J.3
  • 47
    • 70350061503 scopus 로고    scopus 로고
    • Detecting trend and seasonal changes in satellite image time series
    • Verbesselt, J., Hyndman, R., Newnham, G., Culvenor, D., Detecting trend and seasonal changes in satellite image time series. Remote Sens. Environ. 114:1 (2010), 106–115.
    • (2010) Remote Sens. Environ. , vol.114 , Issue.1 , pp. 106-115
    • Verbesselt, J.1    Hyndman, R.2    Newnham, G.3    Culvenor, D.4
  • 48
    • 84859643212 scopus 로고    scopus 로고
    • Near real-time disturbance detection using satellite image time series
    • Verbesselt, J., Zeileis, A., Herold, M., Near real-time disturbance detection using satellite image time series. Remote Sens. Environ. 123 (2012), 98–108.
    • (2012) Remote Sens. Environ. , vol.123 , pp. 98-108
    • Verbesselt, J.1    Zeileis, A.2    Herold, M.3
  • 49
    • 85167319115 scopus 로고    scopus 로고
    • Big Data Infrastructures for Processing Sentinel Data. Photogrammetric Week, 2015
    • Wagner, W., 2015. Big Data Infrastructures for Processing Sentinel Data. Photogrammetric Week 2015, pp. 93–104. http://www.ifp.uni-stuttgart.de/publications/phowo15/110Wagner.pdf.
    • (2015) , pp. 93-104
    • Wagner, W.1
  • 51
    • 85167296849 scopus 로고    scopus 로고
    • GDAL Utilities. (accessed: 2016–11–29).
    • Warmerdam, F., 2016. GDAL Utilities. http://gdal.org/gdal_utilities.html (accessed: 2016–11–29).
    • (2016)
    • Warmerdam, F.1
  • 52
    • 84925433492 scopus 로고    scopus 로고
    • Effectiveness of the BFAST algorithm for detecting vegetation response patterns in a semi-arid region
    • Watts, L.M., Laffan, S.W., Effectiveness of the BFAST algorithm for detecting vegetation response patterns in a semi-arid region. Remote Sens. Environ. 154 (2014), 234–245 http://www.sciencedirect.com/science/article/pii/S0034425714003204.
    • (2014) Remote Sens. Environ. , vol.154 , pp. 234-245
    • Watts, L.M.1    Laffan, S.W.2
  • 53
    • 85167308900 scopus 로고    scopus 로고
    • Versioning for CMIP6 in the Earth System Grid Federation. In: EGU General Assembly Conference Abstracts. Vol. 17.
    • Weigel, T., Kindermann, S., Lautenschlager, M., 2015. Versioning for CMIP6 in the Earth System Grid Federation. In: EGU General Assembly Conference Abstracts. Vol. 17.
    • (2015)
    • Weigel, T.1    Kindermann, S.2    Lautenschlager, M.3
  • 54
    • 85018642692 scopus 로고    scopus 로고
    • AID: A Benchmark Data Set for Performance Evaluation of Aerial Scene Classification
    • July
    • Xia, G.S., Hu, J., Hu, F., Shi, B., Bai, X., Zhong, Y., Zhang, L., Lu, X., AID: A Benchmark Data Set for Performance Evaluation of Aerial Scene Classification. IEEE Trans. Geosci. Remote Sens. 55:7 (2017), 3965–3981 July.
    • (2017) IEEE Trans. Geosci. Remote Sens. , vol.55 , Issue.7 , pp. 3965-3981
    • Xia, G.S.1    Hu, J.2    Hu, F.3    Shi, B.4    Bai, X.5    Zhong, Y.6    Zhang, L.7    Lu, X.8


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.