메뉴 건너뛰기




Volumn 10, Issue 10, 2018, Pages

Hyperspectral and LiDAR fusion using deep three-stream convolutional neural networks

Author keywords

Composite kernels; Convolutional neural networks (CNN); Data fusion; Extinction profiles (EPs); Feature extraction (FE)

Indexed keywords

CONVOLUTION; DATA FUSION; LEARNING SYSTEMS; LITHIUM COMPOUNDS; NEURAL NETWORKS; OPTICAL RADAR; REMOTE SENSING; RURAL AREAS; SENSOR DATA FUSION; SPECTROSCOPY;

EID: 85055410919     PISSN: None     EISSN: 20724292     Source Type: Journal    
DOI: 10.3390/rs10101649     Document Type: Article
Times cited : (86)

References (53)
  • 4
    • 84855418272 scopus 로고    scopus 로고
    • Urban vegetation detection using radiometrically calibrated small-footprint full-waveform airborne LiDAR data
    • Höfle, B.; Hollaus, M.; Hagenauer, J. Urban vegetation detection using radiometrically calibrated small-footprint full-waveform airborne LiDAR data. ISPRS J. Photogramm. Remote Sens. 2012, 67, 134-147
    • (2012) ISPRS J. Photogramm. Remote Sens , vol.67 , pp. 134-147
    • Höfle, B.1    Hollaus, M.2    Hagenauer, J.3
  • 5
    • 17444404910 scopus 로고    scopus 로고
    • Urban remote sensing using multiple data sets: Past, present, and future
    • Gamba, P.; Acqua, F.D.; Dasarathy, B.V. Urban remote sensing using multiple data sets: Past, present, and future. Inf. Fusion 2005, 6, 319-326
    • (2005) Inf. Fusion , vol.6 , pp. 319-326
    • Gamba, P.1    Acqua, F.D.2    Dasarathy, B.V.3
  • 6
    • 84907495101 scopus 로고    scopus 로고
    • Generalized graph-based fusion of hyperspectral and LiDAR data using morphological features
    • Liao, W.; Pizurica, A.; Bellens, R.; Gautama, S.; Philips, W. Generalized graph-based fusion of hyperspectral and LiDAR data using morphological features. IEEE Geosci. Remote Sens. Lett. 2015, 12, 552-556
    • (2015) IEEE Geosci. Remote Sens. Lett , vol.12 , pp. 552-556
    • Liao, W.1    Pizurica, A.2    Bellens, R.3    Gautama, S.4    Philips, W.5
  • 7
    • 85055430278 scopus 로고    scopus 로고
    • Fusion of Hyperspectral and LiDAR data for Classification of Cloud-shadow Mixed Remote Sensing Scene
    • Luo, R.; Liao, W.; Zhang, H.; Zhang, L.; Scheunders, P.; Philips, W. Fusion of Hyperspectral and LiDAR data for Classification of Cloud-shadow Mixed Remote Sensing Scene. IEEE J-STARS 2017, 10, 53768-3781
    • (2017) IEEE J-STARS , vol.10 , pp. 53768-53781
    • Luo, R.1    Liao, W.2    Zhang, H.3    Zhang, L.4    Scheunders, P.5    Philips, W.6
  • 8
    • 85007305421 scopus 로고    scopus 로고
    • Hyperspectral and LiDAR Data Fusion Using Extinction Profiles and Deep Convolutional Neural Network
    • Ghamisi, P.; Höfle, B.; Zhu, X.X. Hyperspectral and LiDAR Data Fusion Using Extinction Profiles and Deep Convolutional Neural Network. IEEE J-STARS 2017, 10, 3011-3024
    • (2017) IEEE J-STARS , vol.10 , pp. 3011-3024
    • Ghamisi, P.1    Höfle, B.2    Zhu, X.X.3
  • 9
    • 85029143056 scopus 로고    scopus 로고
    • Fusion of Hyperspectral and LiDAR Data Using Sparse and Low-Rank Component Analysis
    • Rasti, B.; Ghamisi, P.; Plaza, J.; Plaza, A. Fusion of Hyperspectral and LiDAR Data Using Sparse and Low-Rank Component Analysis. IEEE Trans. Geosci. Remote Sens. 2017, 55, 6354-6365
    • (2017) IEEE Trans. Geosci. Remote Sens , vol.55 , pp. 6354-6365
    • Rasti, B.1    Ghamisi, P.2    Plaza, J.3    Plaza, A.4
  • 10
  • 11
    • 85018628243 scopus 로고    scopus 로고
    • Hyperspectral and LiDAR Fusion Using Extinction Profiles and Total Variation Component Analysis
    • Rasti, B.; Ghamisi, P.; Gloaguen, R. Hyperspectral and LiDAR Fusion Using Extinction Profiles and Total Variation Component Analysis. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3997-4007
    • (2017) IEEE Trans. Geosci. Remote Sens , vol.55 , pp. 3997-4007
    • Rasti, B.1    Ghamisi, P.2    Gloaguen, R.3
  • 12
    • 85020532300 scopus 로고    scopus 로고
    • Classification of hyperspectral and LIDAR data using extinction profiles with feature fusion
    • Zhang, M.; Ghamisi, P.; Li, W. Classification of hyperspectral and LIDAR data using extinction profiles with feature fusion. Remote Sens. Lett. 2017, 8, 957-966
    • (2017) Remote Sens. Lett , vol.8 , pp. 957-966
    • Zhang, M.1    Ghamisi, P.2    Li, W.3
  • 13
    • 84938975533 scopus 로고    scopus 로고
    • Land-cover classification using both hyperspectral and LiDAR data
    • Ghamisi, P.; Benediktsson, J.A.; Phinn, S. Land-cover classification using both hyperspectral and LiDAR data. Int. J. Image Data Fusion 2015, 6, 189-215
    • (2015) Int. J. Image Data Fusion , vol.6 , pp. 189-215
    • Ghamisi, P.1    Benediktsson, J.A.2    Phinn, S.3
  • 15
    • 0035248508 scopus 로고    scopus 로고
    • A new approach for the morphological segmentation of high-resolution satellite imagery
    • Pesaresi, M.; Benediktsoon, J.A. A new approach for the morphological segmentation of high-resolution satellite imagery. IEEE Trans. Geosci. Remote Sens. 2005, 39, 309-320
    • (2005) IEEE Trans. Geosci. Remote Sens , vol.39 , pp. 309-320
    • Pesaresi, M.1    Benediktsoon, J.A.2
  • 16
    • 84921020001 scopus 로고    scopus 로고
    • A Survey on Spectral Spatial Classification Techniques Based on Attribute Profiles
    • Ghamisi, P.; Mura, M.D.; Benediktsson, J.A. A Survey on Spectral Spatial Classification Techniques Based on Attribute Profiles. IEEE Trans. Geosci. Remote Sens. 2015, 53, 2335-2353
    • (2015) IEEE Trans. Geosci. Remote Sens , vol.53 , pp. 2335-2353
    • Ghamisi, P.1    Mura, M.D.2    Benediktsson, J.A.3
  • 17
  • 18
    • 84897024579 scopus 로고    scopus 로고
    • Supervised Segmentation of Very High Resolution Images by the Use of Extended Morphological Attribute Profiles and a Sparse Transform
    • Li, J.; Zhang, H.; Zhang, L. Supervised Segmentation of Very High Resolution Images by the Use of Extended Morphological Attribute Profiles and a Sparse Transform. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1409-1413
    • (2014) IEEE Geosci. Remote Sens. Lett , vol.11 , pp. 1409-1413
    • Li, J.1    Zhang, H.2    Zhang, L.3
  • 20
    • 70350453598 scopus 로고    scopus 로고
    • Modeling structural information for building extraction with morphological attribute filters
    • International Society for Optics and Photonics: Bellingham, WA, USA, Volume
    • Mura, M.D.; Benediktsson, J.A.; Bruzzone, L. Modeling structural information for building extraction with morphological attribute filters. In Image and Signal Processing for Remote Sensing XV; International Society for Optics and Photonics: Bellingham, WA, USA, 2009; Volume 7477
    • (2009) Image and Signal Processing for Remote Sensing XV
    • Mura, M.D.1    Benediktsson, J.A.2    Bruzzone, L.3
  • 21
    • 85027924180 scopus 로고    scopus 로고
    • Fusion of Hyperspectral and LiDAR Remote Sensing Data Using Multiple Feature Learning
    • Khodadadzadeh, M.; Li, J.; Prasad, S.; Plaza, A. Fusion of Hyperspectral and LiDAR Remote Sensing Data Using Multiple Feature Learning. IEEE J-STARS 2015, 8, 2971-2983
    • (2015) IEEE J-STARS , vol.8 , pp. 2971-2983
    • Khodadadzadeh, M.1    Li, J.2    Prasad, S.3    Plaza, A.4
  • 24
    • 85014870346 scopus 로고    scopus 로고
    • LiDAR Data Classification Using Extinction Profiles and a Composite Kernel Support Vector Machine
    • Ghamisi, P.; Höfle, B. LiDAR Data Classification Using Extinction Profiles and a Composite Kernel Support Vector Machine. IEEE Geosci. Remote Sens. Lett. 2017, 14, 659-663
    • (2017) IEEE Geosci. Remote Sens. Lett , vol.14 , pp. 659-663
    • Ghamisi, P.1    Höfle, B.2
  • 28
    • 85019010234 scopus 로고    scopus 로고
    • Deep Recurrent Neural Networks for Hyperspectral Image Classification
    • Mou, L.; Ghamisi, P.; Zhu, X.X. Deep Recurrent Neural Networks for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3639-3655
    • (2017) IEEE Trans. Geosci. Remote Sens , vol.55 , pp. 3639-3655
    • Mou, L.1    Ghamisi, P.2    Zhu, X.X.3
  • 29
    • 85044202715 scopus 로고    scopus 로고
    • Long-Term Annual Mapping of Four Cities on Different Continents by Applying a Deep Information Learning Method to Landsat Data
    • Lyu, H.; Lu, H.; Mou, L.; Li, W.; Wright, J.; Li, X.; Li, X.; Zhu, X.X.; Wang, J.; Yu, L.; et al. Long-Term Annual Mapping of Four Cities on Different Continents by Applying a Deep Information Learning Method to Landsat Data. IEEE J-STARS 2018, 10, 471
    • (2018) IEEE J-STARS , vol.10 , pp. 471
    • Lyu, H.1    Lu, H.2    Mou, L.3    Li, W.4    Wright, J.5    Li, X.6    Li, X.7    Zhu, X.X.8    Wang, J.9    Yu, L.10
  • 30
    • 84978805819 scopus 로고    scopus 로고
    • Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks
    • Chen, Y.; Jiang, H.; Li, C.; Jia, X.; Ghamisi, P. Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6232-6250
    • (2016) IEEE Trans. Geosci. Remote Sens , vol.54 , pp. 6232-6250
    • Chen, Y.1    Jiang, H.2    Li, C.3    Jia, X.4    Ghamisi, P.5
  • 32
    • 84982237011 scopus 로고    scopus 로고
    • A Self-Improving Convolution Neural Network for the Classification of Hyperspectral Data
    • Ghamisi, P.; Chen, Y.; Zhu, X.X. A Self-Improving Convolution Neural Network for the Classification of Hyperspectral Data. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1537-1541
    • (2016) IEEE Geosci. Remote Sens. Lett , vol.13 , pp. 1537-1541
    • Ghamisi, P.1    Chen, Y.2    Zhu, X.X.3
  • 33
    • 85043467411 scopus 로고    scopus 로고
    • Identifying Corresponding Patches in SAR and Optical ImagesWith a Pseudo-Siamese CNN
    • Hughes, L.H.; Schmitt, M.; Mou, L.; Wang, Y.; Zhu, X.X. Identifying Corresponding Patches in SAR and Optical ImagesWith a Pseudo-Siamese CNN. IEEE Geosci. Remote Sens. Lett. 2018, 15, 784-788
    • (2018) IEEE Geosci. Remote Sens. Lett , vol.15 , pp. 784-788
    • Hughes, L.H.1    Schmitt, M.2    Mou, L.3    Wang, Y.4    Zhu, X.X.5
  • 35
    • 85032438871 scopus 로고    scopus 로고
    • Unsupervised Spectral-Spatial Feature Learning viaDeep Residual Conv-Deconv Network for Hyperspectral Image Classification
    • Mou, L.; Ghamisi, P.; Zhu, X.X. Unsupervised Spectral-Spatial Feature Learning viaDeep Residual Conv-Deconv Network for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2018, 56, 391-406
    • (2018) IEEE Trans. Geosci. Remote Sens , vol.56 , pp. 391-406
    • Mou, L.1    Ghamisi, P.2    Zhu, X.X.3
  • 36
    • 85027956117 scopus 로고    scopus 로고
    • Extreme Learning MachineWith Composite Kernels for Hyperspectral Image Classification
    • Zhou, Y.; Peng, J.; Chen, C.L.P. Extreme Learning MachineWith Composite Kernels for Hyperspectral Image Classification. IEEE J-STARS 2015, 8, 2351-2360
    • (2015) IEEE J-STARS , vol.8 , pp. 2351-2360
    • Zhou, Y.1    Peng, J.2    Chen, C.L.P.3
  • 40
    • 0003477718 scopus 로고    scopus 로고
    • Chapter Convolutional Networks for Images, Speech, and Time Series; MIT Press: Cambridge, MA, USA
    • LeCun, Y.; Bengio, Y. The Handbook of Brain Theory and Neural Networks; Chapter Convolutional Networks for Images, Speech, and Time Series; MIT Press: Cambridge, MA, USA, 1998; pp. 255-258
    • (1998) The Handbook of Brain Theory and Neural Networks , pp. 255-258
    • LeCun, Y.1    Bengio, Y.2
  • 41
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278-2324
    • (1998) Proc. IEEE , vol.86 , pp. 2278-2324
    • Lecun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 43
    • 84994217941 scopus 로고    scopus 로고
    • Dense Semantic Labeling of Subdecimeter Resolution Images With Convolutional Neural Networks
    • Volpi, M.; Tuia, D. Dense Semantic Labeling of Subdecimeter Resolution Images With Convolutional Neural Networks. IEEE Trans. Geosci. Remote Sens. 2017, 55, 881-893
    • (2017) IEEE Trans. Geosci. Remote Sens , vol.55 , pp. 881-893
    • Volpi, M.1    Tuia, D.2
  • 44
    • 78049408551 scopus 로고    scopus 로고
    • Evaluation of Pooling Operations in Convolutional Architectures for Object Recognition
    • Diamantaras, K., Duch, W., Iliadis, L.S., Eds.; Springer: Berlin/Heidelberg, Germany
    • Scherer, D.; Müller, A.; Behnke, S. Evaluation of Pooling Operations in Convolutional Architectures for Object Recognition. In Artificial Neural Networks-ICANN 2010; Diamantaras, K., Duch, W., Iliadis, L.S., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 92-101
    • (2010) Artificial Neural Networks-ICANN 2010 , pp. 92-101
    • Scherer, D.1    Müller, A.2    Behnke, S.3
  • 45
    • 77957741951 scopus 로고
    • On the mean accuracy of statistical pattern recognizers
    • Hughes, G.F. On the mean accuracy of statistical pattern recognizers. IEEE Trans. Inf. Theory 1968, 14, 55-63
    • (1968) IEEE Trans. Inf. Theory , vol.14 , pp. 55-63
    • Hughes, G.F.1
  • 46
  • 47
    • 84862993024 scopus 로고    scopus 로고
    • Representative Multiple Kernel Learning for Classification in Hyperspectral Imagery
    • Gu, Y.; Wang, C.; You, D.; Zhang, Y.; Wang, S.; Zhang, Y. Representative Multiple Kernel Learning for Classification in Hyperspectral Imagery. IEEE Trans. Geosci. Remote Sens. 2012, 50, 2852-2865
    • (2012) IEEE Trans. Geosci. Remote Sens , vol.50 , pp. 2852-2865
    • Gu, Y.1    Wang, C.2    You, D.3    Zhang, Y.4    Wang, S.5    Zhang, Y.6
  • 49
    • 20444432773 scopus 로고    scopus 로고
    • Kernel-based methods for hyperspectral image classification
    • Camps-Valls, G.; Bruzzone, L. Kernel-based methods for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2005, 43, 1351-1362
    • (2005) IEEE Trans. Geosci. Remote Sens , vol.43 , pp. 1351-1362
    • Camps-Valls, G.1    Bruzzone, L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.