메뉴 건너뛰기




Volumn 42, Issue , 2018, Pages 158-173

Deep learning for pixel-level image fusion: Recent advances and future prospects

Author keywords

Convolutional neural network; Convolutional sparse representation; Deep learning; Image fusion; Stacked autoencoder

Indexed keywords

CONVOLUTION; DEEP LEARNING; IMAGE PROCESSING; LEARNING SYSTEMS; MEDICAL IMAGING; MEDICAL PROBLEMS; NEURAL NETWORKS; PIXELS; REMOTE SENSING; SECURITY SYSTEMS;

EID: 85033460261     PISSN: 15662535     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.inffus.2017.10.007     Document Type: Article
Times cited : (633)

References (137)
  • 1
    • 33846594428 scopus 로고    scopus 로고
    • Image fusion: advances in the state of the art
    • Goshtasby, A., Nikolov, S., Image fusion: advances in the state of the art. Inf. Fusion 8:2 (2007), 114–118.
    • (2007) Inf. Fusion , vol.8 , Issue.2 , pp. 114-118
    • Goshtasby, A.1    Nikolov, S.2
  • 2
    • 84970983713 scopus 로고    scopus 로고
    • Pixel-level image fusion: a survey of the state of the art
    • Li, S., Kang, X., Fang, L., Hu, J., Yin, H., Pixel-level image fusion: a survey of the state of the art. Inf. Fusion 33 (2017), 100–112.
    • (2017) Inf. Fusion , vol.33 , pp. 100-112
    • Li, S.1    Kang, X.2    Fang, L.3    Hu, J.4    Yin, H.5
  • 6
    • 85002945898 scopus 로고    scopus 로고
    • Multi-focus image fusion with a deep convolutional neural network
    • Liu, Y., Chen, X., Peng, H., Wang, Z., Multi-focus image fusion with a deep convolutional neural network. Inf. Fusion 36 (2017), 191–207.
    • (2017) Inf. Fusion , vol.36 , pp. 191-207
    • Liu, Y.1    Chen, X.2    Peng, H.3    Wang, Z.4
  • 7
    • 85019653326 scopus 로고    scopus 로고
    • Multi-focus image fusion and super-resolution with convolutional neural network
    • Yang, B., Zhong, J., Li, Y., Chen, Z., Multi-focus image fusion and super-resolution with convolutional neural network. Int. J. Wavelets Multiresolut. Inf. Process. 15:4 (2017), 1750037:1–15.
    • (2017) Int. J. Wavelets Multiresolut. Inf. Process. , vol.15 , Issue.4 , pp. 17500371-17500315
    • Yang, B.1    Zhong, J.2    Li, Y.3    Chen, Z.4
  • 8
    • 85028919325 scopus 로고    scopus 로고
    • Image segmentation-based multi-focus image fusion through multi-scale convolutional neural network
    • Du, C., Gao, S., Image segmentation-based multi-focus image fusion through multi-scale convolutional neural network. IEEE Access 5 (2017), 15750–15761.
    • (2017) IEEE Access , vol.5 , pp. 15750-15761
    • Du, C.1    Gao, S.2
  • 9
    • 85030779899 scopus 로고    scopus 로고
    • Deep high dynamic range imaging of dynamic scenes
    • Kalantari, N., Ramamoorthi, R., Deep high dynamic range imaging of dynamic scenes. ACM Trans. Graph. 36:4 (2017), 144:1–12.
    • (2017) ACM Trans. Graph. , vol.36 , Issue.4 , pp. 1441-1412
    • Kalantari, N.1    Ramamoorthi, R.2
  • 11
    • 85005999434 scopus 로고    scopus 로고
    • Image fusion with convolutional sparse representation
    • Liu, Y., Chen, X., Ward, R., Wang, Z., Image fusion with convolutional sparse representation. IEEE Signal Process. Lett. 23:12 (2016), 1882–1886.
    • (2016) IEEE Signal Process. Lett. , vol.23 , Issue.12 , pp. 1882-1886
    • Liu, Y.1    Chen, X.2    Ward, R.3    Wang, Z.4
  • 14
    • 84975475015 scopus 로고    scopus 로고
    • Remote sensing image fusion with convolutional neural network
    • Zhong, J., Yang, B., Huang, G., Zhong, F., Chen, Z., Remote sensing image fusion with convolutional neural network. Sensing Imaging 17 (2016), 10:1–16.
    • (2016) Sensing Imaging , vol.17 , pp. 101-116
    • Zhong, J.1    Yang, B.2    Huang, G.3    Zhong, F.4    Chen, Z.5
  • 15
    • 84993982662 scopus 로고    scopus 로고
    • Pansharpening by convolutional neural networks
    • Masi, G., Cozzolino, D., Verdoliva, L., Scarpa, G., Pansharpening by convolutional neural networks. Remote Sens. 8 (2016), 594:1–22.
    • (2016) Remote Sens. , vol.8 , pp. 5941-5922
    • Masi, G.1    Cozzolino, D.2    Verdoliva, L.3    Scarpa, G.4
  • 18
    • 85028507222 scopus 로고    scopus 로고
    • Boosting the accuracy of multispectral image pansharpening by learning a deep residual network
    • Wei, Y., Yuan, Q., Shen, H., Zhang, L., Boosting the accuracy of multispectral image pansharpening by learning a deep residual network. IEEE Geosci. Remote Sens. Lett. 14:10 (2017), 1795–1799.
    • (2017) IEEE Geosci. Remote Sens. Lett. , vol.14 , Issue.10 , pp. 1795-1799
    • Wei, Y.1    Yuan, Q.2    Shen, H.3    Zhang, L.4
  • 19
    • 85014871642 scopus 로고    scopus 로고
    • Multispectral and hyperspectral image fusion using a 3-d-convolutional neural network
    • Palsson, F., Sveinsson, J., Ulfarsson, M., Multispectral and hyperspectral image fusion using a 3-d-convolutional neural network. IEEE Geosci. Remote Sens. Lett. 14:5 (2017), 639–643.
    • (2017) IEEE Geosci. Remote Sens. Lett. , vol.14 , Issue.5 , pp. 639-643
    • Palsson, F.1    Sveinsson, J.2    Ulfarsson, M.3
  • 20
    • 0032640298 scopus 로고    scopus 로고
    • A categorization of multiscale-decomposition-based image fusion schemes with a performance study for a digital camera application
    • Zhang, Z., Blum, R., A categorization of multiscale-decomposition-based image fusion schemes with a performance study for a digital camera application. Proc. IEEE 87:8 (1999), 1315–1326.
    • (1999) Proc. IEEE , vol.87 , Issue.8 , pp. 1315-1326
    • Zhang, Z.1    Blum, R.2
  • 21
    • 0242270987 scopus 로고    scopus 로고
    • A general framework for multiresolution image fusion: from pixels to regions
    • Piella, G., A general framework for multiresolution image fusion: from pixels to regions. Inf. Fusion 4:4 (2003), 259–280.
    • (2003) Inf. Fusion , vol.4 , Issue.4 , pp. 259-280
    • Piella, G.1
  • 22
    • 81855191848 scopus 로고    scopus 로고
    • Objective assessment of multiresolution image fusion algorithms for context enhancement in night vision: a comparative study
    • Liu, Z., Blasch, E., Xue, Z., Zhao, J., Laganiere, R., Wu, W., Objective assessment of multiresolution image fusion algorithms for context enhancement in night vision: a comparative study. IEEE Trans. Pattern Anal. Mach. Intell. 34:1 (2012), 94–109.
    • (2012) IEEE Trans. Pattern Anal. Mach. Intell. , vol.34 , Issue.1 , pp. 94-109
    • Liu, Z.1    Blasch, E.2    Xue, Z.3    Zhao, J.4    Laganiere, R.5    Wu, W.6
  • 23
    • 85020791523 scopus 로고    scopus 로고
    • Sparse representation based multi-sensor image fusion for multi-focus and multi-modality images: a review
    • Zhang, Q., Liu, Y., Blum, R., Han, J., Tao, D., Sparse representation based multi-sensor image fusion for multi-focus and multi-modality images: a review. Inf. Fusion 40 (2018), 57–75.
    • (2018) Inf. Fusion , vol.40 , pp. 57-75
    • Zhang, Q.1    Liu, Y.2    Blum, R.3    Han, J.4    Tao, D.5
  • 24
    • 84897986730 scopus 로고    scopus 로고
    • Medical image fusion: a survey of the state of the art
    • James, A., Dasarathy, B., Medical image fusion: a survey of the state of the art. Inf. Fusion 19 (2014), 4–19.
    • (2014) Inf. Fusion , vol.19 , pp. 4-19
    • James, A.1    Dasarathy, B.2
  • 25
    • 84977557211 scopus 로고    scopus 로고
    • An overview of multi-modal medical image fusion
    • Du, J., Li, W., Lu, K., Xiao, B., An overview of multi-modal medical image fusion. Neurocomputing 215 (2016), 3–20.
    • (2016) Neurocomputing , vol.215 , pp. 3-20
    • Du, J.1    Li, W.2    Lu, K.3    Xiao, B.4
  • 27
    • 84977975160 scopus 로고    scopus 로고
    • A review of remote sensing image fusion methods
    • Ghassemian, H., A review of remote sensing image fusion methods. Inf. Fusion 32 (2016), 75–89.
    • (2016) Inf. Fusion , vol.32 , pp. 75-89
    • Ghassemian, H.1
  • 29
    • 0024870392 scopus 로고
    • Image fusion by a ratio of low pass pyramid
    • Toet, A., Image fusion by a ratio of low pass pyramid. Pattern Recognit. Lett. 9:4 (1989), 245–253.
    • (1989) Pattern Recognit. Lett. , vol.9 , Issue.4 , pp. 245-253
    • Toet, A.1
  • 31
    • 1942421822 scopus 로고    scopus 로고
    • Gradient-based multiresolution image fusion
    • Petrovic, V., Xydeas, C., Gradient-based multiresolution image fusion. IEEE Trans. Image Process. 13:2 (2004), 228–237.
    • (2004) IEEE Trans. Image Process. , vol.13 , Issue.2 , pp. 228-237
    • Petrovic, V.1    Xydeas, C.2
  • 33
    • 0028975378 scopus 로고
    • Multisensor image fusion using the wavelet transform
    • Li, H., Manjunath, B., Mitra, S., Multisensor image fusion using the wavelet transform. Graph. Models Image Process. 57:3 (1995), 235–245.
    • (1995) Graph. Models Image Process. , vol.57 , Issue.3 , pp. 235-245
    • Li, H.1    Manjunath, B.2    Mitra, S.3
  • 34
    • 3042554837 scopus 로고    scopus 로고
    • A wavelet-based image fusion tutorial
    • Pajares, G., de la Cruz, J.M., A wavelet-based image fusion tutorial. Pattern Recognit. 37:9 (2004), 1855–1872.
    • (2004) Pattern Recognit. , vol.37 , Issue.9 , pp. 1855-1872
    • Pajares, G.1    de la Cruz, J.M.2
  • 35
    • 33846604533 scopus 로고    scopus 로고
    • Pixel- and region-based image fusion with complex wavelets
    • Lewis, J., OCallaghan, R., Nikolov, S., Bull, D., Canagarajah, N., Pixel- and region-based image fusion with complex wavelets. Inf. Fusion 8:2 (2007), 119–130.
    • (2007) Inf. Fusion , vol.8 , Issue.2 , pp. 119-130
    • Lewis, J.1    OCallaghan, R.2    Nikolov, S.3    Bull, D.4    Canagarajah, N.5
  • 36
    • 55949126595 scopus 로고    scopus 로고
    • Multimodality medical image fusion based on multiscale geometric analysis of contourlet transform
    • Yang, L., Guo, B., Ni, W., Multimodality medical image fusion based on multiscale geometric analysis of contourlet transform. Neurocomputing 72 (2008), 203–211.
    • (2008) Neurocomputing , vol.72 , pp. 203-211
    • Yang, L.1    Guo, B.2    Ni, W.3
  • 37
    • 62749094298 scopus 로고    scopus 로고
    • Multifocus image fusion using the nonsubsampled contourlet transform
    • Zhang, Q., Guo, B., Multifocus image fusion using the nonsubsampled contourlet transform. Signal Process. 89:7 (2009), 1334–1346.
    • (2009) Signal Process. , vol.89 , Issue.7 , pp. 1334-1346
    • Zhang, Q.1    Guo, B.2
  • 38
    • 58149235372 scopus 로고    scopus 로고
    • Image fusion algorithm based on spatial frequency-motivated pulse coupled neural networks in nonsubsampled contourlet transform domain
    • Qu, X., Yan, J., Xiao, H., Zhu, Z., Image fusion algorithm based on spatial frequency-motivated pulse coupled neural networks in nonsubsampled contourlet transform domain. Acta Automatic Sinica 34:12 (2008), 1508–1514.
    • (2008) Acta Automatic Sinica , vol.34 , Issue.12 , pp. 1508-1514
    • Qu, X.1    Yan, J.2    Xiao, H.3    Zhu, Z.4
  • 39
    • 84884732358 scopus 로고    scopus 로고
    • Multi-focus image fusion based on non-subsampled shearlet transform
    • Gao, G., Xu, L., Feng, D., Multi-focus image fusion based on non-subsampled shearlet transform. IET Image Proc. 7:6 (2013), 633–639.
    • (2013) IET Image Proc. , vol.7 , Issue.6 , pp. 633-639
    • Gao, G.1    Xu, L.2    Feng, D.3
  • 40
    • 49249119306 scopus 로고    scopus 로고
    • Edge-preserving decompositions for multi-scale tone and detail manipulation
    • Farbman, Z., Fattal, R., Lischinski, D., Szeliski, R., Edge-preserving decompositions for multi-scale tone and detail manipulation. ACM Trans. Graph. 27:3 (2008), 67:1–10.
    • (2008) ACM Trans. Graph. , vol.27 , Issue.3 , pp. 671-610
    • Farbman, Z.1    Fattal, R.2    Lischinski, D.3    Szeliski, R.4
  • 41
    • 84858080785 scopus 로고    scopus 로고
    • The multiscale directional bilateral filter and its application to multisensor image fusion
    • Hu, J., Li, S., The multiscale directional bilateral filter and its application to multisensor image fusion. Inf. Fusion 13 (2012), 196–206.
    • (2012) Inf. Fusion , vol.13 , pp. 196-206
    • Hu, J.1    Li, S.2
  • 42
    • 84878331557 scopus 로고    scopus 로고
    • Image fusion with guided filtering
    • Li, S., Kang, X., Hu, J., Image fusion with guided filtering. IEEE Trans. Image Process. 22:7 (2013), 2864–2875.
    • (2013) IEEE Trans. Image Process. , vol.22 , Issue.7 , pp. 2864-2875
    • Li, S.1    Kang, X.2    Hu, J.3
  • 43
    • 84870239303 scopus 로고    scopus 로고
    • Multi-focus image fusion based on the neighbor distance
    • Zhao, H., Shang, Z., Tang, Y., Fang, B., Multi-focus image fusion based on the neighbor distance. Pattern Recognit. 46:3 (2013), 1002–1011.
    • (2013) Pattern Recognit. , vol.46 , Issue.3 , pp. 1002-1011
    • Zhao, H.1    Shang, Z.2    Tang, Y.3    Fang, B.4
  • 44
    • 84971251064 scopus 로고    scopus 로고
    • Perceptual fusion of infrared and visible images through a hybrid multi-scale decomposition with gaussian and bilateral filters
    • Zhou, Z., Wang, B., Li, S., Dong, M., Perceptual fusion of infrared and visible images through a hybrid multi-scale decomposition with gaussian and bilateral filters. Inf. Fusion 30 (2016), 15–26.
    • (2016) Inf. Fusion , vol.30 , pp. 15-26
    • Zhou, Z.1    Wang, B.2    Li, S.3    Dong, M.4
  • 45
    • 77949422825 scopus 로고    scopus 로고
    • Multifocus image fusion and restoration with sparse representation
    • Yang, B., Li, S., Multifocus image fusion and restoration with sparse representation. IEEE Trans. Instrum. Meas. 59:4 (2010), 884–892.
    • (2010) IEEE Trans. Instrum. Meas. , vol.59 , Issue.4 , pp. 884-892
    • Yang, B.1    Li, S.2
  • 46
    • 80051765671 scopus 로고    scopus 로고
    • Image features extraction and fusion based on joint sparse representation
    • Yu, N., Qiu, T., Bi, F., Wang, A., Image features extraction and fusion based on joint sparse representation. IEEE J. Sel. Top Signal Process. 5:5 (2011), 1074–1082.
    • (2011) IEEE J. Sel. Top Signal Process. , vol.5 , Issue.5 , pp. 1074-1082
    • Yu, N.1    Qiu, T.2    Bi, F.3    Wang, A.4
  • 47
    • 80053987231 scopus 로고    scopus 로고
    • Pixel-level image fusion with simultaneous orthogonal matching pursuit
    • Yang, B., Li, S., Pixel-level image fusion with simultaneous orthogonal matching pursuit. Inf. Fusion 13:1 (2012), 10–19.
    • (2012) Inf. Fusion , vol.13 , Issue.1 , pp. 10-19
    • Yang, B.1    Li, S.2
  • 48
    • 84870520820 scopus 로고    scopus 로고
    • Group-sparse representation with dictionary learning for medical image denoising and fusion
    • Li, S., Yin, H., Fang, L., Group-sparse representation with dictionary learning for medical image denoising and fusion. IEEE Trans. Biomed. Eng. 59 (2012), 3450–3459.
    • (2012) IEEE Trans. Biomed. Eng. , vol.59 , pp. 3450-3459
    • Li, S.1    Yin, H.2    Fang, L.3
  • 49
    • 84897912908 scopus 로고    scopus 로고
    • Exposure fusion based on sparse representation using approximate k-svd
    • Wang, J., Liu, H., He, N., Exposure fusion based on sparse representation using approximate k-svd. Neurocomputing 135 (2014), 145–154.
    • (2014) Neurocomputing , vol.135 , pp. 145-154
    • Wang, J.1    Liu, H.2    He, N.3
  • 50
    • 84928618797 scopus 로고    scopus 로고
    • Simultaneous image fusion and denosing with adaptive sparse representation
    • Liu, Y., Wang, Z., Simultaneous image fusion and denosing with adaptive sparse representation. IET Image Proc. 9:5 (2015), 347–357.
    • (2015) IET Image Proc. , vol.9 , Issue.5 , pp. 347-357
    • Liu, Y.1    Wang, Z.2
  • 51
    • 84924785815 scopus 로고    scopus 로고
    • Multi-focus image fusion using dictionary-based sparse representation
    • Nejati, M., Samavi, S., Shirani, S., Multi-focus image fusion using dictionary-based sparse representation. Inf. Fusion 25:1 (2015), 72–84.
    • (2015) Inf. Fusion , vol.25 , Issue.1 , pp. 72-84
    • Nejati, M.1    Samavi, S.2    Shirani, S.3
  • 52
    • 84938200080 scopus 로고    scopus 로고
    • Joint patch clustering-based dictionary learning for multimodal image fusion
    • Kim, M., Han, D.K., Ko, H., Joint patch clustering-based dictionary learning for multimodal image fusion. Inf. Fusion 27 (2016), 198–214.
    • (2016) Inf. Fusion , vol.27 , pp. 198-214
    • Kim, M.1    Han, D.K.2    Ko, H.3
  • 53
    • 84963831223 scopus 로고    scopus 로고
    • Robust multi-focus image fusion using multi-task sparse representation and spatial context
    • Zhang, Q., Levine, M., Robust multi-focus image fusion using multi-task sparse representation and spatial context. IEEE Trans. Image Process. 25:5 (2016), 2045–2058.
    • (2016) IEEE Trans. Image Process. , vol.25 , Issue.5 , pp. 2045-2058
    • Zhang, Q.1    Levine, M.2
  • 54
    • 18044366169 scopus 로고    scopus 로고
    • Combination of images with diverse focuses using the spatial frequency
    • Li, S., Kwok, J., Wang, Y., Combination of images with diverse focuses using the spatial frequency. Inf. Fusion 2:3 (2001), 169–176.
    • (2001) Inf. Fusion , vol.2 , Issue.3 , pp. 169-176
    • Li, S.1    Kwok, J.2    Wang, Y.3
  • 55
    • 0036605011 scopus 로고    scopus 로고
    • Multifocus image fusion using artificial neural networks
    • Li, S., Kwok, J., Wang, Y., Multifocus image fusion using artificial neural networks. Pattern Recognit Lett 23:8 (2002), 985–997.
    • (2002) Pattern Recognit Lett , vol.23 , Issue.8 , pp. 985-997
    • Li, S.1    Kwok, J.2    Wang, Y.3
  • 56
    • 17444373926 scopus 로고    scopus 로고
    • Fusion of multi-exposure images
    • Goshtasby, A., Fusion of multi-exposure images. Image Vision Comput. 23:6 (2005), 611–618.
    • (2005) Image Vision Comput. , vol.23 , Issue.6 , pp. 611-618
    • Goshtasby, A.1
  • 57
    • 77957841780 scopus 로고    scopus 로고
    • Multi-focus image fusion using spatial frequency and genetic algorithm
    • Kong, J., Zheng, K., Feng, X., Multi-focus image fusion using spatial frequency and genetic algorithm. Int. J. Comput. Sci. Network Secur. 8:2 (2008), 220–224.
    • (2008) Int. J. Comput. Sci. Network Secur. , vol.8 , Issue.2 , pp. 220-224
    • Kong, J.1    Zheng, K.2    Feng, X.3
  • 58
    • 77957833232 scopus 로고    scopus 로고
    • Fusion of multi-focus images using differential evolution algorithm
    • Aslantas, V., Kurban, R., Fusion of multi-focus images using differential evolution algorithm. Expert Syst. Appl. 37:12 (2010), 8861–8870.
    • (2010) Expert Syst. Appl. , vol.37 , Issue.12 , pp. 8861-8870
    • Aslantas, V.1    Kurban, R.2
  • 59
    • 84880325401 scopus 로고    scopus 로고
    • Multi-focus image fusion using a morphology-based focus measure in a quad-tree structure
    • De, I., Chanda, B., Multi-focus image fusion using a morphology-based focus measure in a quad-tree structure. Inf. Fusion 14:2 (2013), 136–146.
    • (2013) Inf. Fusion , vol.14 , Issue.2 , pp. 136-146
    • De, I.1    Chanda, B.2
  • 60
    • 84907599964 scopus 로고    scopus 로고
    • Quadtree-based multi-focus image fusion using a weighted focus-measure
    • Bai, X., Zhang, Y., Zhou, F., Xue, B., Quadtree-based multi-focus image fusion using a weighted focus-measure. Inf. Fusion 22:1 (2015), 105–118.
    • (2015) Inf. Fusion , vol.22 , Issue.1 , pp. 105-118
    • Bai, X.1    Zhang, Y.2    Zhou, F.3    Xue, B.4
  • 61
    • 33749677854 scopus 로고    scopus 로고
    • A region-based multi-sensor image fusion scheme using pulse-coupled neural network
    • Li, M., Cai, W., Tan, Z., A region-based multi-sensor image fusion scheme using pulse-coupled neural network. Pattern Recognit. Lett. 27:16 (2006), 1948–1956.
    • (2006) Pattern Recognit. Lett. , vol.27 , Issue.16 , pp. 1948-1956
    • Li, M.1    Cai, W.2    Tan, Z.3
  • 62
    • 42249086780 scopus 로고    scopus 로고
    • Multifocus image fusion using region segmentation and spatial frequency
    • Li, S., Yang, B., Multifocus image fusion using region segmentation and spatial frequency. Image Vis. Comput. 26:7 (2008), 971–979.
    • (2008) Image Vis. Comput. , vol.26 , Issue.7 , pp. 971-979
    • Li, S.1    Yang, B.2
  • 63
    • 82055163045 scopus 로고    scopus 로고
    • Generalized random walks for fusion of multi-exposure images
    • Shen, R., Cheng, I., Shi, J., Basu, A., Generalized random walks for fusion of multi-exposure images. IEEE Trans. Image Process. 20:12 (2011), 3634–3646.
    • (2011) IEEE Trans. Image Process. , vol.20 , Issue.12 , pp. 3634-3646
    • Shen, R.1    Cheng, I.2    Shi, J.3    Basu, A.4
  • 64
    • 84863658437 scopus 로고    scopus 로고
    • Fast multi-exposure image fusion with median filter and recursive filter
    • Li, S., Kang, X., Fast multi-exposure image fusion with median filter and recursive filter. IEEE Trans. Consum. Electron. 58:2 (2012), 626–632.
    • (2012) IEEE Trans. Consum. Electron. , vol.58 , Issue.2 , pp. 626-632
    • Li, S.1    Kang, X.2
  • 65
    • 84859084288 scopus 로고    scopus 로고
    • Gradient-directed multiexposure composition
    • Zhang, W., Cham, W.-K., Gradient-directed multiexposure composition. IEEE Trans. Image Process. 21:4 (2012), 2318–2323.
    • (2012) IEEE Trans. Image Process. , vol.21 , Issue.4 , pp. 2318-2323
    • Zhang, W.1    Cham, W.-K.2
  • 66
    • 84878308650 scopus 로고    scopus 로고
    • Image matting for fusion of multi-focus images in dynamic scenes
    • Li, S., Kang, X., Hu, J., Y, B., Image matting for fusion of multi-focus images in dynamic scenes. Inf. Fusion 14:2 (2013), 147–162.
    • (2013) Inf. Fusion , vol.14 , Issue.2 , pp. 147-162
    • Li, S.1    Kang, X.2    Hu, J.3    Y, B.4
  • 67
    • 84908402697 scopus 로고    scopus 로고
    • Multi-focus image fusion with dense sift
    • Liu, Y., Liu, S., Wang, Z., Multi-focus image fusion with dense sift. Inf. Fusion 23:1 (2015), 139–155.
    • (2015) Inf. Fusion , vol.23 , Issue.1 , pp. 139-155
    • Liu, Y.1    Liu, S.2    Wang, Z.3
  • 68
    • 84910054213 scopus 로고    scopus 로고
    • High quality multi-focus image fusion using self-similarity and depth information
    • Guo, D., Yan, J., Qu, X., High quality multi-focus image fusion using self-similarity and depth information. Opt. Commun. 338:1 (2015), 138–144.
    • (2015) Opt. Commun. , vol.338 , Issue.1 , pp. 138-144
    • Guo, D.1    Yan, J.2    Qu, X.3
  • 69
    • 84937123057 scopus 로고    scopus 로고
    • Dense sift for ghost-free multi-exposure fusion
    • Liu, Y., Wang, Z., Dense sift for ghost-free multi-exposure fusion. J. Vis. Commun. Image Represent. 31 (2015), 208–224.
    • (2015) J. Vis. Commun. Image Represent. , vol.31 , pp. 208-224
    • Liu, Y.1    Wang, Z.2
  • 70
    • 84958952372 scopus 로고    scopus 로고
    • Infrared and visible image fusion via gradient transfer and total variation minimization
    • Ma, J., Chen, C., Li, C., Huang, J., Infrared and visible image fusion via gradient transfer and total variation minimization. Inf. Fusion 31 (2016), 100–109.
    • (2016) Inf. Fusion , vol.31 , pp. 100-109
    • Ma, J.1    Chen, C.2    Li, C.3    Huang, J.4
  • 71
    • 84988650908 scopus 로고    scopus 로고
    • Boundary finding based multi-focus image fusion through multi-scale morphological focus-measure
    • Zhang, Y., Bai, X., Wang, T., Boundary finding based multi-focus image fusion through multi-scale morphological focus-measure. Inf. Fusion 35 (2017), 81–101.
    • (2017) Inf. Fusion , vol.35 , pp. 81-101
    • Zhang, Y.1    Bai, X.2    Wang, T.3
  • 72
    • 43249115812 scopus 로고    scopus 로고
    • Multifocus image fusion by combining curvelet and wavelet transform
    • Li, S., Yang, B., Multifocus image fusion by combining curvelet and wavelet transform. Pattern Recognit. Lett. 29:9 (2008), 1295–1301.
    • (2008) Pattern Recognit. Lett. , vol.29 , Issue.9 , pp. 1295-1301
    • Li, S.1    Yang, B.2
  • 73
    • 77954877056 scopus 로고    scopus 로고
    • Hybrid multiresolution method for multisensor multimodal image fusion
    • Li, S., Yang, B., Hybrid multiresolution method for multisensor multimodal image fusion. IEEE Sens. J. 10:9 (2010), 1519–1526.
    • (2010) IEEE Sens. J. , vol.10 , Issue.9 , pp. 1519-1526
    • Li, S.1    Yang, B.2
  • 74
    • 85027936737 scopus 로고    scopus 로고
    • A general framework for image fusion based on multi-scale transform and sparse representation
    • Liu, Y., Liu, S., Wang, Z., A general framework for image fusion based on multi-scale transform and sparse representation. Inf. Fusion 24:1 (2015), 147–164.
    • (2015) Inf. Fusion , vol.24 , Issue.1 , pp. 147-164
    • Liu, Y.1    Liu, S.2    Wang, Z.3
  • 75
    • 9244257883 scopus 로고    scopus 로고
    • Fusing images with different focuses using support vector machines
    • Li, S., Kwok, J., Tsang, I., Wang, Y., Fusing images with different focuses using support vector machines. IEEE Trans. Neural Networks 15:6 (2004), 1555–1561.
    • (2004) IEEE Trans. Neural Networks , vol.15 , Issue.6 , pp. 1555-1561
    • Li, S.1    Kwok, J.2    Tsang, I.3    Wang, Y.4
  • 76
    • 85028756472 scopus 로고    scopus 로고
    • Multifocus image fusion based on extreme learning machine and human visual system
    • Yang, Y., Yang, M., Huang, S., Que, Y., Ding, M., Sun, J., Multifocus image fusion based on extreme learning machine and human visual system. IEEE Access 5 (2017), 6989–7000.
    • (2017) IEEE Access , vol.5 , pp. 6989-7000
    • Yang, Y.1    Yang, M.2    Huang, S.3    Que, Y.4    Ding, M.5    Sun, J.6
  • 77
    • 0035458185 scopus 로고    scopus 로고
    • A new look at ihs-like image fusion methods
    • Tu, T., Su, S., Shyu, H., Huang, P., A new look at ihs-like image fusion methods. Inf. Fusion 2:3 (2001), 177–186.
    • (2001) Inf. Fusion , vol.2 , Issue.3 , pp. 177-186
    • Tu, T.1    Su, S.2    Shyu, H.3    Huang, P.4
  • 79
    • 84936858181 scopus 로고    scopus 로고
    • Combining the spectral pca and spatial pca fusion methods by an optimal filter
    • Shahdoosti, H.R., Ghassemian, H., Combining the spectral pca and spatial pca fusion methods by an optimal filter. Inf. Fusion 27 (2016), 150–160.
    • (2016) Inf. Fusion , vol.27 , pp. 150-160
    • Shahdoosti, H.R.1    Ghassemian, H.2
  • 81
    • 34548204275 scopus 로고    scopus 로고
    • Wavelet based image fusion techniques: an introduction, review and comparison
    • Amolins, K., Zhang, Y., Dare, P., Wavelet based image fusion techniques: an introduction, review and comparison. ISPRS J. Photogramm. Remote Sens. 62:4 (2007), 249–263.
    • (2007) ISPRS J. Photogramm. Remote Sens. , vol.62 , Issue.4 , pp. 249-263
    • Amolins, K.1    Zhang, Y.2    Dare, P.3
  • 82
    • 53349157432 scopus 로고    scopus 로고
    • An efficient pan-sharpening method via a combined adaptive pca approach and contourlets
    • Shah, V., Younan, N., King, R., An efficient pan-sharpening method via a combined adaptive pca approach and contourlets. IEEE Trans. Geosci. Remote Sens. 46 (2008), 1323–1335.
    • (2008) IEEE Trans. Geosci. Remote Sens. , vol.46 , pp. 1323-1335
    • Shah, V.1    Younan, N.2    King, R.3
  • 83
    • 67349189174 scopus 로고    scopus 로고
    • Fusion of multispectral and panchromatic images using a restoration-based method
    • Li, Z., Leung, H., Fusion of multispectral and panchromatic images using a restoration-based method. IEEE Trans. Geosci. Remote Sens. 47:5 (2009), 1482–1491.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , Issue.5 , pp. 1482-1491
    • Li, Z.1    Leung, H.2
  • 84
    • 78751483480 scopus 로고    scopus 로고
    • Map estimation for multiresolution fusion in remotely sensed images using an igmrf prior model
    • Joshi, M., Jalobeanu, A., Map estimation for multiresolution fusion in remotely sensed images using an igmrf prior model. IEEE Trans. Geosci. Remote Sens. 48:3 (2010), 1245–1255.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.3 , pp. 1245-1255
    • Joshi, M.1    Jalobeanu, A.2
  • 85
    • 82155167667 scopus 로고    scopus 로고
    • An image fusion approach based on markov random fields
    • Xu, M., Chen, H., Varshney, P., An image fusion approach based on markov random fields. IEEE Trans. Geosci. Remote Sens. 49:12 (2011), 5116–5127.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.12 , pp. 5116-5127
    • Xu, M.1    Chen, H.2    Varshney, P.3
  • 86
    • 84878275758 scopus 로고    scopus 로고
    • A variational approach for pan-sharpening
    • Fang, F., Li, F., Shen, C., Zhang, G., A variational approach for pan-sharpening. IEEE Trans. Image Process. 22:7 (2013), 2822–2834.
    • (2013) IEEE Trans. Image Process. , vol.22 , Issue.7 , pp. 2822-2834
    • Fang, F.1    Li, F.2    Shen, C.3    Zhang, G.4
  • 88
    • 79151485703 scopus 로고    scopus 로고
    • A new pan-sharpening method using a compressed sensing technique
    • Li, S., Yang, B., A new pan-sharpening method using a compressed sensing technique. IEEE Trans. Geosci. Remote Sens. 49:2 (2011), 738–746.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.2 , pp. 738-746
    • Li, S.1    Yang, B.2
  • 89
    • 84949908191 scopus 로고    scopus 로고
    • A compressed-sensing-based pan-sharpening method for spectral distortion reduction
    • Ghahremani, M., Ghassemian, H., A compressed-sensing-based pan-sharpening method for spectral distortion reduction. IEEE Trans. Geosci. Remote Sens. 54:4 (2016), 2194–2206.
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , Issue.4 , pp. 2194-2206
    • Ghahremani, M.1    Ghassemian, H.2
  • 90
    • 78049312324 scopus 로고    scopus 로고
    • Image super-resolution via sparse representation
    • Yang, J., J. Wright, T.H., Ma, Y., Image super-resolution via sparse representation. IEEE Trans. Image Process. 19:11 (2010), 2861–2873.
    • (2010) IEEE Trans. Image Process. , vol.19 , Issue.11 , pp. 2861-2873
    • Yang, J.1    J. Wright, T.H.2    Ma, Y.3
  • 91
    • 84883814326 scopus 로고    scopus 로고
    • Remote sensing image fusion via sparse representations over learned dictionaries
    • Li, S., Yin, H., Fang, L., Remote sensing image fusion via sparse representations over learned dictionaries. IEEE Trans. Geosci. Remote Sens. 51:9 (2013), 4779–4789.
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.51 , Issue.9 , pp. 4779-4789
    • Li, S.1    Yin, H.2    Fang, L.3
  • 92
    • 84885018469 scopus 로고    scopus 로고
    • A sparse image fusion algorithm with application to pan-sharpening
    • Zhu, X., Bamler, R., A sparse image fusion algorithm with application to pan-sharpening. IEEE Trans. Geosci. Remote Sens. 51:5 (2013), 2827–2836.
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.51 , Issue.5 , pp. 2827-2836
    • Zhu, X.1    Bamler, R.2
  • 94
    • 0037187687 scopus 로고    scopus 로고
    • Information measure for performance of image fusion
    • Qu, G., Zhang, D., Yan, P., Information measure for performance of image fusion. Electron. Lett. 38:7 (2002), 313–315.
    • (2002) Electron. Lett. , vol.38 , Issue.7 , pp. 313-315
    • Qu, G.1    Zhang, D.2    Yan, P.3
  • 95
    • 50849121419 scopus 로고    scopus 로고
    • Comments on information measure for performance of image fusion
    • Hossny, M., Nahavandi, S., Creighton, D., Comments on information measure for performance of image fusion. Electron. Lett. 44:18 (2008), 1066–1067.
    • (2008) Electron. Lett. , vol.44 , Issue.18 , pp. 1066-1067
    • Hossny, M.1    Nahavandi, S.2    Creighton, D.3
  • 96
    • 12244308530 scopus 로고    scopus 로고
    • A nonlinear correlation measure for multivariable data set
    • Wang, Q., Shen, Y., A nonlinear correlation measure for multivariable data set. Physica D 200:3 (2005), 287–295.
    • (2005) Physica D , vol.200 , Issue.3 , pp. 287-295
    • Wang, Q.1    Shen, Y.2
  • 97
    • 77956330992 scopus 로고    scopus 로고
    • Image fusion performance metric based on mutual information and entropy driven quadtree decomposition
    • Hossny, M., Nahavandi, S., Creighton, D., Bhatti, A., Image fusion performance metric based on mutual information and entropy driven quadtree decomposition. Electron. Lett. 46:18 (2010), 1266–1268.
    • (2010) Electron. Lett. , vol.46 , Issue.18 , pp. 1266-1268
    • Hossny, M.1    Nahavandi, S.2    Creighton, D.3    Bhatti, A.4
  • 98
    • 0033908184 scopus 로고    scopus 로고
    • Objective image fusion performance measure
    • Xydeas, C.S., Petrovic, V.S., Objective image fusion performance measure. Electron. Lett. 36:4 (2000), 308–309.
    • (2000) Electron. Lett. , vol.36 , Issue.4 , pp. 308-309
    • Xydeas, C.S.1    Petrovic, V.S.2
  • 99
    • 63849287542 scopus 로고    scopus 로고
    • Performance assessment of combinative pixel-level image fusion based on an absolute feature measurement
    • Zhao, J., Laganiere, R., Liu, Z., Performance assessment of combinative pixel-level image fusion based on an absolute feature measurement. Int. J. Innovat. Comput., Inf. Control 6 (A):3 (2007), 1433–1447.
    • (2007) Int. J. Innovat. Comput., Inf. Control , vol.6 A) , Issue.3 , pp. 1433-1447
    • Zhao, J.1    Laganiere, R.2    Liu, Z.3
  • 100
    • 33846620939 scopus 로고    scopus 로고
    • A new metric based on extended spatial frequency and its application to dwt based fusion algorithms
    • Zheng, Y., Essock, E., Hansen, B., Haun, A., A new metric based on extended spatial frequency and its application to dwt based fusion algorithms. Inf. Fusion 8:2 (2007), 177–192.
    • (2007) Inf. Fusion , vol.8 , Issue.2 , pp. 177-192
    • Zheng, Y.1    Essock, E.2    Hansen, B.3    Haun, A.4
  • 102
    • 33747376945 scopus 로고    scopus 로고
    • A similarity metric for assessment of image fusion algorithms
    • Cvejic, N., Loza, A., Bull, D., Canagarajah, N., A similarity metric for assessment of image fusion algorithms. Int. J. Signal Process. 2:3 (2005), 178–182.
    • (2005) Int. J. Signal Process. , vol.2 , Issue.3 , pp. 178-182
    • Cvejic, N.1    Loza, A.2    Bull, D.3    Canagarajah, N.4
  • 103
    • 39749119883 scopus 로고    scopus 로고
    • A novel similarity based quality metric for image fusion
    • Yang, C., Zhang, J., Wang, X., Liu, X., A novel similarity based quality metric for image fusion. Inf. Fusion 9:2 (2008), 156–160.
    • (2008) Inf. Fusion , vol.9 , Issue.2 , pp. 156-160
    • Yang, C.1    Zhang, J.2    Wang, X.3    Liu, X.4
  • 104
    • 33846628448 scopus 로고    scopus 로고
    • A human perception inspired quality metric for image fusion based on regional information
    • Chen, H., Varshney, P., A human perception inspired quality metric for image fusion based on regional information. Inf. Fusion 8 (2007), 193–207.
    • (2007) Inf. Fusion , vol.8 , pp. 193-207
    • Chen, H.1    Varshney, P.2
  • 105
    • 63649094848 scopus 로고    scopus 로고
    • A new automated quality assessment algorithm for image fusion
    • Chen, Y., Blum, R., A new automated quality assessment algorithm for image fusion. Image Vis. Comput. 27:10 (2009), 1421–1432.
    • (2009) Image Vis. Comput. , vol.27 , Issue.10 , pp. 1421-1432
    • Chen, Y.1    Blum, R.2
  • 106
    • 84880331058 scopus 로고    scopus 로고
    • A new image fusion performance metric based on visual information fidelity
    • Han, Y., Cai, Y., Cao, Y., Xu, X., A new image fusion performance metric based on visual information fidelity. Inf. Fusion 14 (2013), 127–135.
    • (2013) Inf. Fusion , vol.14 , pp. 127-135
    • Han, Y.1    Cai, Y.2    Cao, Y.3    Xu, X.4
  • 107
    • 0031284883 scopus 로고    scopus 로고
    • Fusion of satellite images of different spatial resolutions: assessing the quality of resulting images
    • Wald, L., Ranchin, T., Mangolini, M., Fusion of satellite images of different spatial resolutions: assessing the quality of resulting images. Photogramm. Eng. Remote Sens. 63:6 (1997), 691–699.
    • (1997) Photogramm. Eng. Remote Sens. , vol.63 , Issue.6 , pp. 691-699
    • Wald, L.1    Ranchin, T.2    Mangolini, M.3
  • 108
    • 0001256711 scopus 로고
    • Discrimination among semi-arid landscape endmembers using the spectral angle mapper (sam) algorithm
    • Yuhas, R., Goetz, A., Boardman, J., Discrimination among semi-arid landscape endmembers using the spectral angle mapper (sam) algorithm. Proceedings of 4th JPL Airborne Earth Science Workshop, 1992, 147–149.
    • (1992) Proceedings of 4th JPL Airborne Earth Science Workshop , pp. 147-149
    • Yuhas, R.1    Goetz, A.2    Boardman, J.3
  • 112
    • 85007082708 scopus 로고    scopus 로고
    • Statistical comparison of image fusion algorithms: recommendations
    • Liu, Z., Blasch, E., John, V., Statistical comparison of image fusion algorithms: recommendations. Inf, Fusion 36 (2017), 251–260.
    • (2017) Inf, Fusion , vol.36 , pp. 251-260
    • Liu, Z.1    Blasch, E.2    John, V.3
  • 114
    • 85009373801 scopus 로고    scopus 로고
    • Efficient algorithms for convolutional sparse representation
    • Wohlberg, B., Efficient algorithms for convolutional sparse representation. IEEE Trans. Image Process. 25:1 (2016), 301–315.
    • (2016) IEEE Trans. Image Process. , vol.25 , Issue.1 , pp. 301-315
    • Wohlberg, B.1
  • 117
    • 85030167003 scopus 로고    scopus 로고
    • Video super-resolution via motion com-pensation and deep residual learning
    • Li, D., Wang, Z., Video super-resolution via motion com-pensation and deep residual learning. IEEE Trans. Comput. Imaging DOI: 10.1109/TCI.2017.2671360 (2017), 1–15.
    • (2017) IEEE Trans. Comput. Imaging , vol.DOI 10.1109/TCI.2017.2671360 , pp. 1-15
    • Li, D.1    Wang, Z.2
  • 119
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based leaning applied to document recognition
    • LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., Gradient-based leaning applied to document recognition. Proc. IEEE 86:11 (1998), 2278–2324.
    • (1998) Proc. IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 121
    • 85033484844 scopus 로고    scopus 로고
    • Overfeat: integrated recognition, localizaton and detection using convolutional networks, (2014) 1–16., arXiv:1312.6299v4
    • P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, Y. L, Overfeat: integrated recognition, localizaton and detection using convolutional networks, arXiv:1312.6299v4 (2014) 1–16.
    • Sermanet, P.1    Eigen, D.2    Zhang, X.3    Mathieu, M.4    Fergus, R.5    L, Y.6
  • 123
    • 85033475391 scopus 로고    scopus 로고
    • Convolutional neural networks analyzed via convolutional sparse coding, (2016) 1–50., arXiv:1607.08194v4
    • V. Papyan, Y. Romano, M. Elad, Convolutional neural networks analyzed via convolutional sparse coding, arXiv:1607.08194v4 (2016) 1–50.
    • Papyan, V.1    Romano, Y.2    Elad, M.3
  • 124
  • 129
    • 85033457138 scopus 로고    scopus 로고
    • http://brendt.wohlberg.net/software/SPORCO/.
  • 130
    • 85033472706 scopus 로고    scopus 로고
    • http://www.image-net.org/challenges/LSVRC/.
  • 131
    • 85033481297 scopus 로고    scopus 로고
    • http://cseweb.ucsd.edu/%7eviscomp/projects/SIG17HDR/.
  • 132
    • 85033494534 scopus 로고    scopus 로고
    • http://mmlab.ie.cuhk.edu.hk/projects/SRCNN.html.
  • 134
    • 79551480483 scopus 로고    scopus 로고
    • Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion
    • Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P., Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11 (2010), 3371–3408.
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 3371-3408
    • Vincent, P.1    Larochelle, H.2    Lajoie, I.3    Bengio, Y.4    Manzagol, P.5
  • 136
    • 85033440378 scopus 로고    scopus 로고
    • http://www.escience.cn/people/liuyu1/Codes.html.
  • 137
    • 85033499333 scopus 로고    scopus 로고
    • http://www.grip.unina.it/research/85-image-enhancement/93-pnn.html.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.