-
1
-
-
80053353473
-
Markov-random-field-based super-resolution mapping for identification of urban trees in VHR images
-
Ardila, J.P., Tolpekin, V.A., Bijker, W., Stein, A., Markov-random-field-based super-resolution mapping for identification of urban trees in VHR images. ISPRS J. Photogramm. Remote Sens. 66 (2011), 762–775, 10.1016/j.isprsjprs.2011.08.002.
-
(2011)
ISPRS J. Photogramm. Remote Sens.
, vol.66
, pp. 762-775
-
-
Ardila, J.P.1
Tolpekin, V.A.2
Bijker, W.3
Stein, A.4
-
2
-
-
77958488310
-
Deep machine learning – a new frontier in artificial intelligence research
-
Arel, I., Rose, D.C., Karnowski, T.P., Deep machine learning – a new frontier in artificial intelligence research. IEEE Comput. Intell. Mag. 5 (2010), 13–18, 10.1109/MCI.2010.938364.
-
(2010)
IEEE Comput. Intell. Mag.
, vol.5
, pp. 13-18
-
-
Arel, I.1
Rose, D.C.2
Karnowski, T.P.3
-
3
-
-
0031105739
-
Introduction neural networks in remote sensing
-
Atkinson, P.M., Tatnall, A.R.L., Introduction neural networks in remote sensing. Int. J. Remote Sens. 18 (1997), 699–709, 10.1080/014311697218700.
-
(1997)
Int. J. Remote Sens.
, vol.18
, pp. 699-709
-
-
Atkinson, P.M.1
Tatnall, A.R.L.2
-
4
-
-
84901479073
-
Classifying complex mountainous forests with L-Band SAR and landsat data integration: a comparison among different machine learning methods in the Hyrcanian forest
-
Attarchi, S., Gloaguen, R., Classifying complex mountainous forests with L-Band SAR and landsat data integration: a comparison among different machine learning methods in the Hyrcanian forest. Remote Sens. 6 (2014), 3624–3647, 10.3390/rs6053624.
-
(2014)
Remote Sens.
, vol.6
, pp. 3624-3647
-
-
Attarchi, S.1
Gloaguen, R.2
-
5
-
-
70350294122
-
Ensemble classification algorithm for hyperspectral remote sensing data
-
Benediktsson, J.A., Ensemble classification algorithm for hyperspectral remote sensing data. IEEE Geosci. Remote Sens. Lett. 6 (2009), 762–766, 10.1109/LGRS.2009.2024624.
-
(2009)
IEEE Geosci. Remote Sens. Lett.
, vol.6
, pp. 762-766
-
-
Benediktsson, J.A.1
-
6
-
-
0034104554
-
The integration of spectral and textural information using neural networks for land cover mapping in the Mediterranean
-
Berberoglu, S., Lloyd, C.D., Atkinson, P.M., Curran, P.J., The integration of spectral and textural information using neural networks for land cover mapping in the Mediterranean. Comput. Geosci. 26 (2000), 385–396, 10.1016/S0098-3004(99)00119-3.
-
(2000)
Comput. Geosci.
, vol.26
, pp. 385-396
-
-
Berberoglu, S.1
Lloyd, C.D.2
Atkinson, P.M.3
Curran, P.J.4
-
7
-
-
84923683217
-
Advanced robotic grasping system using deep learning
-
Bezak, P., Bozek, P., Nikitin, Y., Advanced robotic grasping system using deep learning. Procedia Eng. 96 (2014), 10–20, 10.1016/j.proeng.2014.12.092.
-
(2014)
Procedia Eng.
, vol.96
, pp. 10-20
-
-
Bezak, P.1
Bozek, P.2
Nikitin, Y.3
-
8
-
-
0030211964
-
Bagging predictors
-
Breiman, L., Bagging predictors. Mach. Learn. 24 (1996), 123–140.
-
(1996)
Mach. Learn.
, vol.24
, pp. 123-140
-
-
Breiman, L.1
-
9
-
-
84992303973
-
Target classification using the deep convolutional networks for SAR images
-
Chen, S., Member, S., Wang, H., Xu, F., Member, S., Target classification using the deep convolutional networks for SAR images. IEEE Trans. Geosci. Remote Sens. 54 (2016), 4806–4817.
-
(2016)
IEEE Trans. Geosci. Remote Sens.
, vol.54
, pp. 4806-4817
-
-
Chen, S.1
Member, S.2
Wang, H.3
Xu, F.4
Member, S.5
-
10
-
-
84978805819
-
Deep feature extraction and classification of hyperspectral images based on convolutional neural networks
-
Chen, Y., Jiang, H., Li, C., Jia, X., Member, S., Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEE Trans. Geosci. Remote Sens. 54 (2016), 6232–6251, 10.1109/TGRS.2016.2584107.
-
(2016)
IEE Trans. Geosci. Remote Sens.
, vol.54
, pp. 6232-6251
-
-
Chen, Y.1
Jiang, H.2
Li, C.3
Jia, X.4
Member, S.5
-
11
-
-
84905925092
-
Deep learning-based classification of hyperspectral data
-
Chen, Y., Lin, Z., Zhao, X., Wang, G., Gu, Y., Deep learning-based classification of hyperspectral data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 7 (2014), 2094–2107, 10.1109/JSTARS.2014.2329330.
-
(2014)
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
, vol.7
, pp. 2094-2107
-
-
Chen, Y.1
Lin, Z.2
Zhao, X.3
Wang, G.4
Gu, Y.5
-
12
-
-
84930621165
-
Geographic stacking: decision fusion to increase global land cover map accuracy
-
Clinton, N., Yu, L., Gong, P., Geographic stacking: decision fusion to increase global land cover map accuracy. ISPRS J. Photogramm. Remote Sens. 103 (2015), 57–65, 10.1016/j.isprsjprs.2015.02.010.
-
(2015)
ISPRS J. Photogramm. Remote Sens.
, vol.103
, pp. 57-65
-
-
Clinton, N.1
Yu, L.2
Gong, P.3
-
13
-
-
0026278621
-
A review of assessing the accuracy of classifications of remotely sensed data
-
Congalton, R.G., A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 37 (1991), 35–46.
-
(1991)
Remote Sens. Environ.
, vol.37
, pp. 35-46
-
-
Congalton, R.G.1
-
14
-
-
37049005158
-
The modifiable areal unit problem (MAUP) in physical geography
-
Dark, S.J., Bram, D., The modifiable areal unit problem (MAUP) in physical geography. Prog. Phys. Geogr. 31 (2007), 471–479, 10.1177/0309133307083294.
-
(2007)
Prog. Phys. Geogr.
, vol.31
, pp. 471-479
-
-
Dark, S.J.1
Bram, D.2
-
15
-
-
33947699893
-
Use of neural networks for automatic classification from high-resolution images
-
Del Frate, F., Pacifici, F., Schiavon, G., Solimini, C., Use of neural networks for automatic classification from high-resolution images. IEEE Trans. Geosci. Remote Sens. 45 (2007), 800–809, 10.1109/TGRS.2007.892009.
-
(2007)
IEEE Trans. Geosci. Remote Sens.
, vol.45
, pp. 800-809
-
-
Del Frate, F.1
Pacifici, F.2
Schiavon, G.3
Solimini, C.4
-
16
-
-
84889672730
-
Assessing the performance of two unsupervised dimensionality reduction techniques on hyperspectral APEX data for high resolution urban land-cover mapping
-
Demarchi, L., Canters, F., Cariou, C., Licciardi, G., Chan, J.C.W., Assessing the performance of two unsupervised dimensionality reduction techniques on hyperspectral APEX data for high resolution urban land-cover mapping. ISPRS J. Photogramm. Remote Sens. 87 (2014), 166–179, 10.1016/j.isprsjprs.2013.10.012.
-
(2014)
ISPRS J. Photogramm. Remote Sens.
, vol.87
, pp. 166-179
-
-
Demarchi, L.1
Canters, F.2
Cariou, C.3
Licciardi, G.4
Chan, J.C.W.5
-
17
-
-
85028222906
-
Vehicle type classification using unsupervised convolutional neural network
-
Dong, Z., Pei, M., He, Y., Liu, T., Dong, Y., Jia, Y., Vehicle type classification using unsupervised convolutional neural network. IEEE Trans. Intell. Transp. Syst. 16 (2015), 2247–2256, 10.1109/ICPR.2014.39.
-
(2015)
IEEE Trans. Intell. Transp. Syst.
, vol.16
, pp. 2247-2256
-
-
Dong, Z.1
Pei, M.2
He, Y.3
Liu, T.4
Dong, Y.5
Jia, Y.6
-
18
-
-
84860267020
-
Multiple classifier system for remote sensing image classification: a review
-
Du, P., Xia, J., Zhang, W., Tan, K., Liu, Y., Liu, S., Multiple classifier system for remote sensing image classification: a review. Sensors 12 (2012), 4764–4792, 10.3390/s120404764.
-
(2012)
Sensors
, vol.12
, pp. 4764-4792
-
-
Du, P.1
Xia, J.2
Zhang, W.3
Tan, K.4
Liu, Y.5
Liu, S.6
-
19
-
-
84876258641
-
Learning hierarchical features for scene labeling
-
Farabet, C., Couprie, C., Najman, L., Lecun, Y., Learning hierarchical features for scene labeling. IEEE Trans. Pattern Anal. Mach. Intell. 35 (2013), 1915–1929, 10.1109/TPAMI.2012.231.
-
(2013)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.35
, pp. 1915-1929
-
-
Farabet, C.1
Couprie, C.2
Najman, L.3
Lecun, Y.4
-
20
-
-
80052740627
-
A spatial-spectral kernel-based approach for the classification of remote-sensing images
-
Fauvel, M., Chanussot, J., Benediktsson, J.A., A spatial-spectral kernel-based approach for the classification of remote-sensing images. Pattern Recognit. 45 (2012), 381–392, 10.1016/j.patcog.2011.03.035.
-
(2012)
Pattern Recognit.
, vol.45
, pp. 381-392
-
-
Fauvel, M.1
Chanussot, J.2
Benediktsson, J.A.3
-
21
-
-
34249822423
-
Decision fusion for the classification of urban remote sensing images
-
Fauvel, M., Chanussot, J., Benediktsson, J.A., Decision fusion for the classification of urban remote sensing images. IEEE Trans. Geosci. Remote Sens. 44 (2006), 2828–2838, 10.1109/TGRS.2006.876708.
-
(2006)
IEEE Trans. Geosci. Remote Sens.
, vol.44
, pp. 2828-2838
-
-
Fauvel, M.1
Chanussot, J.2
Benediktsson, J.A.3
-
22
-
-
0031105722
-
An evaluation of some factors affecting the accuracy of classification by an artificial neural network
-
Foody, G.M., Arora, M.K., An evaluation of some factors affecting the accuracy of classification by an artificial neural network. Int. J. Remote Sens. 18 (1997), 799–810, 10.1080/014311697218764.
-
(1997)
Int. J. Remote Sens.
, vol.18
, pp. 799-810
-
-
Foody, G.M.1
Arora, M.K.2
-
23
-
-
4644367942
-
An efficient boosting algorithm for combining preferences
-
Freund, Y., Iyer, R., Schapire, R.E., Singer, Y., An efficient boosting algorithm for combining preferences. J. Mach. Learn. Res. 4 (2003), 933–969.
-
(2003)
J. Mach. Learn. Res.
, vol.4
, pp. 933-969
-
-
Freund, Y.1
Iyer, R.2
Schapire, R.E.3
Singer, Y.4
-
24
-
-
0015680481
-
Textural features for image classification
-
Haralick, R.M., Shanmugam, K., Dinstein, I., Textural features for image classification. IEEE Trans. Syst. Man. Cybern. 3 (1973), 610–621, 10.1109/TSMC.1973.4309314.
-
(1973)
IEEE Trans. Syst. Man. Cybern.
, vol.3
, pp. 610-621
-
-
Haralick, R.M.1
Shanmugam, K.2
Dinstein, I.3
-
25
-
-
84950141946
-
Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery
-
Hu, F., Xia, G.-S., Hu, J., Zhang, L., Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery. Remote Sens. 7 (2015), 14680–14707, 10.3390/rs71114680.
-
(2015)
Remote Sens.
, vol.7
, pp. 14680-14707
-
-
Hu, F.1
Xia, G.-S.2
Hu, J.3
Zhang, L.4
-
26
-
-
85027929099
-
Unsupervised feature learning via spectral clustering of multidimensional patches for remotely sensed scene classification
-
Hu, F., Xia, G.S., Wang, Z., Huang, X., Zhang, L., Sun, H., Unsupervised feature learning via spectral clustering of multidimensional patches for remotely sensed scene classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 8 (2015), 2015–2030, 10.1109/JSTARS.2015.2444405.
-
(2015)
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
, vol.8
, pp. 2015-2030
-
-
Hu, F.1
Xia, G.S.2
Wang, Z.3
Huang, X.4
Zhang, L.5
Sun, H.6
-
27
-
-
84894370515
-
A multi-index learning approach for classification of high-resolution remotely sensed images over urban areas
-
Huang, X., Lu, Q., Zhang, L., A multi-index learning approach for classification of high-resolution remotely sensed images over urban areas. ISPRS J. Photogramm. Remote Sens. 90 (2014), 36–48, 10.1016/j.isprsjprs.2014.01.008.
-
(2014)
ISPRS J. Photogramm. Remote Sens.
, vol.90
, pp. 36-48
-
-
Huang, X.1
Lu, Q.2
Zhang, L.3
-
28
-
-
77957741951
-
On the mean accuracy of statistical pattern recognizers
-
Hughes, G.F., On the mean accuracy of statistical pattern recognizers. IEEE Trans. Inf. Theory 14 (1968), 55–63, 10.1109/TIT.1968.1054102.
-
(1968)
IEEE Trans. Inf. Theory
, vol.14
, pp. 55-63
-
-
Hughes, G.F.1
-
29
-
-
84878919540
-
ImageNet classification with deep convolutional neural networks
-
Krizhevsky, A., Sutskever, I., Hinton, G.E., ImageNet classification with deep convolutional neural networks. NIPS2012: Neural Information Processing Systems. Lake Tahoe, Nevada, 2012, 1–9.
-
(2012)
NIPS2012: Neural Information Processing Systems. Lake Tahoe, Nevada
, pp. 1-9
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
30
-
-
84971612769
-
Classification and segmentation of satellite orthoimagery using convolutional neural networks
-
Längkvist, M., Kiselev, A., Alirezaie, M., Loutfi, A., Classification and segmentation of satellite orthoimagery using convolutional neural networks. Remote Sens. 8 (2016), 1–21, 10.3390/rs8040329.
-
(2016)
Remote Sens.
, vol.8
, pp. 1-21
-
-
Längkvist, M.1
Kiselev, A.2
Alirezaie, M.3
Loutfi, A.4
-
31
-
-
84930630277
-
Deep learning
-
LeCun, Y., Bengio, Y., Hinton, G., Deep learning. Nature 521 (2015), 436–444, 10.1038/nature14539.
-
(2015)
Nature
, vol.521
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
32
-
-
84928013181
-
Deep learning for detecting robotic grasps
-
Lenz, I., Lee, H., Saxena, A., Deep learning for detecting robotic grasps. Int. J. Rob. Res. 34 (2015), 705–724, 10.1177/0278364914549607.
-
(2015)
Int. J. Rob. Res.
, vol.34
, pp. 705-724
-
-
Lenz, I.1
Lee, H.2
Saxena, A.3
-
33
-
-
84942546109
-
Decision fusion and non-parametric classifiers for land use mapping using multi-temporal RapidEye data
-
Löw, F., Conrad, C., Michel, U., Decision fusion and non-parametric classifiers for land use mapping using multi-temporal RapidEye data. ISPRS J. Photogramm. Remote Sens. 108 (2015), 191–204, 10.1016/j.isprsjprs.2015.07.001.
-
(2015)
ISPRS J. Photogramm. Remote Sens.
, vol.108
, pp. 191-204
-
-
Löw, F.1
Conrad, C.2
Michel, U.3
-
34
-
-
37549009133
-
The application of artificial neural networks to the analysis of remotely sensed data
-
Mas, J.F., Flores, J.J., The application of artificial neural networks to the analysis of remotely sensed data. Int. J. Remote Sens. 29 (2008), 617–663, 10.1080/01431160701352154.
-
(2008)
Int. J. Remote Sens.
, vol.29
, pp. 617-663
-
-
Mas, J.F.1
Flores, J.J.2
-
35
-
-
84993982662
-
Pansharpening by convolutional neural networks
-
Masi, G., Cozzolino, D., Verdoliva, L., Scarpa, G., Wang, L., Zhou, G., Thenkabail, P.S., Pansharpening by convolutional neural networks. Remote Sens. 8 (2016), 1–22, 10.3390/rs8070594.
-
(2016)
Remote Sens.
, vol.8
, pp. 1-22
-
-
Masi, G.1
Cozzolino, D.2
Verdoliva, L.3
Scarpa, G.4
Wang, L.5
Zhou, G.6
Thenkabail, P.S.7
-
36
-
-
34249108636
-
Mapping private gardens in urban areas using object-oriented techniques and very high-resolution satellite imagery
-
Mathieu, R., Freeman, C., Aryal, J., Mapping private gardens in urban areas using object-oriented techniques and very high-resolution satellite imagery. Landsc. Urban Plan. 81 (2007), 179–192, 10.1016/j.landurbplan.2006.11.009.
-
(2007)
Landsc. Urban Plan.
, vol.81
, pp. 179-192
-
-
Mathieu, R.1
Freeman, C.2
Aryal, J.3
-
37
-
-
17844363481
-
Bankruptcy prediction using support vector machine with optimal choice of kernel function parameters
-
Min, J.H., Lee, Y.-C., Bankruptcy prediction using support vector machine with optimal choice of kernel function parameters. Expert Syst. Appl. 28 (2005), 603–614.
-
(2005)
Expert Syst. Appl.
, vol.28
, pp. 603-614
-
-
Min, J.H.1
Lee, Y.-C.2
-
38
-
-
33846122949
-
Road detection from high-resolution satellite images using artificial neural networks
-
Mokhtarzade, M., Zoej, M.J.V., Road detection from high-resolution satellite images using artificial neural networks. Int. J. Appl. Earth Obs. Geoinf. 9 (2007), 32–40, 10.1016/j.jag.2006.05.001.
-
(2007)
Int. J. Appl. Earth Obs. Geoinf.
, vol.9
, pp. 32-40
-
-
Mokhtarzade, M.1
Zoej, M.J.V.2
-
39
-
-
84978388572
-
Using convolutional features and a sparse autoencoder for land-use scene classification
-
Othman, E., Bazi, Y., Alajlan, N., Alhichri, H., Melgani, F., Using convolutional features and a sparse autoencoder for land-use scene classification. Int. J. Remote Sens. 37 (2016), 2149–2167, 10.1080/01431161.2016.1171928.
-
(2016)
Int. J. Remote Sens.
, vol.37
, pp. 2149-2167
-
-
Othman, E.1
Bazi, Y.2
Alajlan, N.3
Alhichri, H.4
Melgani, F.5
-
40
-
-
84930016645
-
Mapping of agricultural crops from single high-resolution multispectral images—data-driven smoothing vs. Parcel-based smoothing
-
Ozdarici-Ok, A., Ok, A., Schindler, K., Mapping of agricultural crops from single high-resolution multispectral images—data-driven smoothing vs. Parcel-based smoothing. Remote Sens. 7 (2015), 5611–5638, 10.3390/rs70505611.
-
(2015)
Remote Sens.
, vol.7
, pp. 5611-5638
-
-
Ozdarici-Ok, A.1
Ok, A.2
Schindler, K.3
-
41
-
-
64549105242
-
A neural network approach using multi-scale textural metrics from very high-resolution panchromatic imagery for urban land-use classification
-
Pacifici, F., Chini, M., Emery, W.J., A neural network approach using multi-scale textural metrics from very high-resolution panchromatic imagery for urban land-use classification. Remote Sens. Environ. 113 (2009), 1276–1292, 10.1016/j.rse.2009.02.014.
-
(2009)
Remote Sens. Environ.
, vol.113
, pp. 1276-1292
-
-
Pacifici, F.1
Chini, M.2
Emery, W.J.3
-
42
-
-
84873023814
-
An improved simple morphological filter for the terrain classification of airborne LIDAR data
-
Pingel, T.J., Clarke, K.C., McBride, W.A., An improved simple morphological filter for the terrain classification of airborne LIDAR data. ISPRS J. Photogramm. Remote Sens. 77 (2013), 21–30, 10.1016/j.isprsjprs.2012.12.002.
-
(2013)
ISPRS J. Photogramm. Remote Sens.
, vol.77
, pp. 21-30
-
-
Pingel, T.J.1
Clarke, K.C.2
McBride, W.A.3
-
43
-
-
84911365176
-
Remote sensing and object-based techniques for mapping fine-scale industrial disturbances
-
Powers, R.P., Hermosilla, T., Coops, N.C., Chen, G., Remote sensing and object-based techniques for mapping fine-scale industrial disturbances. Int. J. Appl. Earth Obs. Geoinf. 34 (2015), 51–57, 10.1016/j.jag.2014.06.015.
-
(2015)
Int. J. Appl. Earth Obs. Geoinf.
, vol.34
, pp. 51-57
-
-
Powers, R.P.1
Hermosilla, T.2
Coops, N.C.3
Chen, G.4
-
44
-
-
33745102029
-
Creating a hydrographic network from its cartographic representation: a case study using Ordnance Survey MasterMap data
-
Regnauld, N., Mackaness, W.a., Creating a hydrographic network from its cartographic representation: a case study using Ordnance Survey MasterMap data. Int. J. Geogr. Inf. Sci. 20 (2006), 611–631, 10.1080/13658810600607402.
-
(2006)
Int. J. Geogr. Inf. Sci.
, vol.20
, pp. 611-631
-
-
Regnauld, N.1
Mackaness, W.A.2
-
45
-
-
80052792336
-
Identification of hazelnut fields using spectral and gabor textural features
-
Reis, S., Tasdemir, K., Identification of hazelnut fields using spectral and gabor textural features. ISPRS J. Photogramm. Remote Sens. 66 (2011), 652–661, 10.1016/j.isprsjprs.2011.04.006.
-
(2011)
ISPRS J. Photogramm. Remote Sens.
, vol.66
, pp. 652-661
-
-
Reis, S.1
Tasdemir, K.2
-
46
-
-
84857753353
-
Random Forest classification of Mediterranean land cover using multi-seasonal imagery and multi-seasonal texture
-
Rodriguez-Galiano, V.F., Chica-Olmo, M., Abarca-Hernandez, F., Atkinson, P.M., Jeganathan, C., Random Forest classification of Mediterranean land cover using multi-seasonal imagery and multi-seasonal texture. Remote Sens. Environ. 121 (2012), 93–107, 10.1016/j.rse.2011.12.003.
-
(2012)
Remote Sens. Environ.
, vol.121
, pp. 93-107
-
-
Rodriguez-Galiano, V.F.1
Chica-Olmo, M.2
Abarca-Hernandez, F.3
Atkinson, P.M.4
Jeganathan, C.5
-
47
-
-
84940417789
-
Unsupervised deep feature extraction for remote sensing image classification
-
Romero, A., Gatta, C., Camps-valls, G., Member, S., Unsupervised deep feature extraction for remote sensing image classification. IEEE Trans. Geosci. Remote Sens. 54 (2016), 1349–1362, 10.1109/TGRS.2015.2478379.
-
(2016)
IEEE Trans. Geosci. Remote Sens.
, vol.54
, pp. 1349-1362
-
-
Romero, A.1
Gatta, C.2
Camps-valls, G.3
Member, S.4
-
48
-
-
84910651844
-
Deep learning in neural networks: an overview
-
Schmidhuber, J., Deep learning in neural networks: an overview. Neural Networks, 2015, 10.1016/j.neunet.2014.09.003.
-
(2015)
Neural Networks
-
-
Schmidhuber, J.1
-
49
-
-
85027956498
-
Accurate urban area detection in remote sensing images
-
Shi, H., Chen, L., Bi, F., Chen, H., Yu, Y., Accurate urban area detection in remote sensing images. IEEE Geosci. Remote Sens. Lett. 12 (2015), 1948–1952.
-
(2015)
IEEE Geosci. Remote Sens. Lett.
, vol.12
, pp. 1948-1952
-
-
Shi, H.1
Chen, L.2
Bi, F.3
Chen, H.4
Yu, Y.5
-
50
-
-
77952610482
-
-
Performance and scalability of GPU-based convolutional neural networks. In: 2010 18th Euromicro Conference on Parallel, Distributed and Network-Based Processing
-
Strigl, D., Kofler, K., Podlipnig, S., 2010. Performance and scalability of GPU-based convolutional neural networks. In: 2010 18th Euromicro Conference on Parallel, Distributed and Network-Based Processing, pp. 317–324. http://dx.doi.org/10.1109/PDP.2010.43.
-
(2010)
, pp. 317-324
-
-
Strigl, D.1
Kofler, K.2
Podlipnig, S.3
-
51
-
-
84937522268
-
-
Going deeper with convolutions. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
-
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A., 2015. Going deeper with convolutions. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1–9. http://dx.doi.org/10.1109/CVPR.2015.7298594.
-
(2015)
, pp. 1-9
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.3
Sermanet, P.4
Reed, S.5
Anguelov, D.6
Erhan, D.7
Vanhoucke, V.8
Rabinovich, A.9
-
52
-
-
84907463801
-
Compressed-domain ship detection on spaceborne optical image using deep neural network and extreme learning machine
-
Tang, J., Deng, C., Huang, G.-B., Zhao, B., Compressed-domain ship detection on spaceborne optical image using deep neural network and extreme learning machine. IEEE Trans. Geosci. Remote Sens. 53 (2015), 1174–1185, 10.1109/TGRS.2014.2335751.
-
(2015)
IEEE Trans. Geosci. Remote Sens.
, vol.53
, pp. 1174-1185
-
-
Tang, J.1
Deng, C.2
Huang, G.-B.3
Zhao, B.4
-
53
-
-
84978857965
-
A survey of methods incorporating spatial information in image classification and spectral unmixing
-
Wang, L., Shi, C., Diao, C., Ji, W., Yin, D., A survey of methods incorporating spatial information in image classification and spectral unmixing. Int. J. Remote Sens. 37 (2016), 3870–3910, 10.1080/01431161.2016.1204032.
-
(2016)
Int. J. Remote Sens.
, vol.37
, pp. 3870-3910
-
-
Wang, L.1
Shi, C.2
Diao, C.3
Ji, W.4
Yin, D.5
-
54
-
-
0031118203
-
No free lunch theorems for optimization
-
Wolpert, D.H., Macready, W.G., No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1 (1997), 67–82, 10.1109/4235.585893.
-
(1997)
IEEE Trans. Evol. Comput.
, vol.1
, pp. 67-82
-
-
Wolpert, D.H.1
Macready, W.G.2
-
55
-
-
77951252742
-
Shape-based invariant texture indexing
-
Xia, G.S., Delon, J., Gousseau, Y., Shape-based invariant texture indexing. Int. J. Comput. Vis. 88 (2010), 382–403, 10.1007/s11263-009-0312-3.
-
(2010)
Int. J. Comput. Vis.
, vol.88
, pp. 382-403
-
-
Xia, G.S.1
Delon, J.2
Gousseau, Y.3
-
56
-
-
84865420049
-
SAR-based terrain classification using weakly supervised hierarchical Markov aspect models
-
Yang, W., Dai, D., Triggs, B., Xia, G.S., SAR-based terrain classification using weakly supervised hierarchical Markov aspect models. IEEE Trans. Image Process. 21 (2012), 4232–4243, 10.1109/TIP.2012.2199127.
-
(2012)
IEEE Trans. Image Process.
, vol.21
, pp. 4232-4243
-
-
Yang, W.1
Dai, D.2
Triggs, B.3
Xia, G.S.4
-
57
-
-
85027931914
-
Learning high-level features for satellite image classification with limited labeled samples
-
Yang, W., Yin, X., Xia, G.S., Learning high-level features for satellite image classification with limited labeled samples. IEEE Trans. Geosci. Remote Sens. 53 (2015), 4472–4482, 10.1109/TGRS.2015.2400449.
-
(2015)
IEEE Trans. Geosci. Remote Sens.
, vol.53
, pp. 4472-4482
-
-
Yang, W.1
Yin, X.2
Xia, G.S.3
-
58
-
-
84931574348
-
Learning salient visual word for scalable mobile image retrieval
-
Yang, X., Qian, X., Mei, T., Learning salient visual word for scalable mobile image retrieval. Pattern Recognit. 48 (2015), 3093–3101, 10.1016/j.patcog.2014.12.017.
-
(2015)
Pattern Recognit.
, vol.48
, pp. 3093-3101
-
-
Yang, X.1
Qian, X.2
Mei, T.3
-
59
-
-
84923360722
-
Object-based larch tree-crown delineation using high-resolution satellite imagery
-
Yin, W., Yang, J., Yamamoto, H., Li, C., Object-based larch tree-crown delineation using high-resolution satellite imagery. Int. J. Remote Sens. 36 (2015), 822–844, 10.1080/01431161.2014.999165.
-
(2015)
Int. J. Remote Sens.
, vol.36
, pp. 822-844
-
-
Yin, W.1
Yang, J.2
Yamamoto, H.3
Li, C.4
-
60
-
-
84898822427
-
-
A vision-based robotic grasping system using deep learning for 3D object recognition and pose estimation. In: 2013 IEEE International Conference on Robotics and Biomimetics (ROBIO)
-
Yu, J., Weng, K., Liang, G., Xie, G., 2013. A vision-based robotic grasping system using deep learning for 3D object recognition and pose estimation. In: 2013 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 1175–1180. http://dx.doi.org/10.1109/ROBIO.2013.6739623.
-
(2013)
, pp. 1175-1180
-
-
Yu, J.1
Weng, K.2
Liang, G.3
Xie, G.4
-
61
-
-
84976347344
-
A deep learning framework for hyperspectral image classification using spatial pyramid pooling
-
Yue, J., Mao, S., Li, M., A deep learning framework for hyperspectral image classification using spatial pyramid pooling. Remote Sens. Lett. 7 (2016), 875–884, 10.1080/2150704X.2016.1193793.
-
(2016)
Remote Sens. Lett.
, vol.7
, pp. 875-884
-
-
Yue, J.1
Mao, S.2
Li, M.3
-
62
-
-
84868629775
-
The application of small unmanned aerial systems for precision agriculture: a review
-
Zhang, C., Kovacs, J.M., The application of small unmanned aerial systems for precision agriculture: a review. Precis. Agric. 13 (2012), 693–712, 10.1007/s11119-012-9274-5.
-
(2012)
Precis. Agric.
, vol.13
, pp. 693-712
-
-
Zhang, C.1
Kovacs, J.M.2
-
63
-
-
84928487450
-
A novel multi-parameter support vector machine for image classification
-
Zhang, C., Wang, T., Atkinson, P.M., Pan, X., Li, H., A novel multi-parameter support vector machine for image classification. Int. J. Remote Sens. 36 (2015), 1890–1906, 10.1080/01431161.2015.1029096.
-
(2015)
Int. J. Remote Sens.
, vol.36
, pp. 1890-1906
-
-
Zhang, C.1
Wang, T.2
Atkinson, P.M.3
Pan, X.4
Li, H.5
-
64
-
-
84945898896
-
Scene classification via a gradient boosting random convolutional network framework
-
Zhang, F., Du, B., Zhang, L., Scene classification via a gradient boosting random convolutional network framework. IEEE Trans. Geosci. Remote Sens. 54 (2016), 1793–1802, 10.1109/TGRS.2015.2488681.
-
(2016)
IEEE Trans. Geosci. Remote Sens.
, vol.54
, pp. 1793-1802
-
-
Zhang, F.1
Du, B.2
Zhang, L.3
-
65
-
-
0344099114
-
Study of urban spatial patterns from SPOT panchromatic imagery using textural analysis
-
Zhang, Q., Wang, J., Gong, P., Shi, P., Study of urban spatial patterns from SPOT panchromatic imagery using textural analysis. Int. J. Remote Sens. 24 (2003), 4137–4160, 10.1080/0143116031000070445.
-
(2003)
Int. J. Remote Sens.
, vol.24
, pp. 4137-4160
-
-
Zhang, Q.1
Wang, J.2
Gong, P.3
Shi, P.4
-
66
-
-
84956620231
-
Learning multiscale and deep representations for classifying remotely sensed imagery
-
Zhao, W., Du, S., Learning multiscale and deep representations for classifying remotely sensed imagery. ISPRS J. Photogramm. Remote Sens. 113 (2016), 155–165, 10.1016/j.isprsjprs.2016.01.004.
-
(2016)
ISPRS J. Photogramm. Remote Sens.
, vol.113
, pp. 155-165
-
-
Zhao, W.1
Du, S.2
-
67
-
-
84902120621
-
A hybrid object-oriented conditional random field classification framework for high spatial resolution remote sensing imagery
-
Zhong, Y., Zhao, J., Zhang, L., A hybrid object-oriented conditional random field classification framework for high spatial resolution remote sensing imagery. IEEE Trans. Geosci. Remote Sens. 52 (2014), 7023–7037, 10.1109/TGRS.2014.2306692.
-
(2014)
IEEE Trans. Geosci. Remote Sens.
, vol.52
, pp. 7023-7037
-
-
Zhong, Y.1
Zhao, J.2
Zhang, L.3
|