메뉴 건너뛰기




Volumn 140, Issue , 2018, Pages 133-144

A hybrid MLP-CNN classifier for very fine resolution remotely sensed image classification

Author keywords

Convolutional neural network; Feature representation; Fusion decision; Multilayer perceptron; VFSR remotely sensed imagery

Indexed keywords

AERIAL PHOTOGRAPHY; CLASSIFICATION (OF INFORMATION); CONVOLUTION; IMAGE RESOLUTION; LEARNING SYSTEMS; MULTILAYER NEURAL NETWORKS; MULTILAYERS; NEURAL NETWORKS; PIXELS; REMOTE SENSING;

EID: 85026643598     PISSN: 09242716     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.isprsjprs.2017.07.014     Document Type: Article
Times cited : (339)

References (67)
  • 1
    • 80053353473 scopus 로고    scopus 로고
    • Markov-random-field-based super-resolution mapping for identification of urban trees in VHR images
    • Ardila, J.P., Tolpekin, V.A., Bijker, W., Stein, A., Markov-random-field-based super-resolution mapping for identification of urban trees in VHR images. ISPRS J. Photogramm. Remote Sens. 66 (2011), 762–775, 10.1016/j.isprsjprs.2011.08.002.
    • (2011) ISPRS J. Photogramm. Remote Sens. , vol.66 , pp. 762-775
    • Ardila, J.P.1    Tolpekin, V.A.2    Bijker, W.3    Stein, A.4
  • 2
    • 77958488310 scopus 로고    scopus 로고
    • Deep machine learning – a new frontier in artificial intelligence research
    • Arel, I., Rose, D.C., Karnowski, T.P., Deep machine learning – a new frontier in artificial intelligence research. IEEE Comput. Intell. Mag. 5 (2010), 13–18, 10.1109/MCI.2010.938364.
    • (2010) IEEE Comput. Intell. Mag. , vol.5 , pp. 13-18
    • Arel, I.1    Rose, D.C.2    Karnowski, T.P.3
  • 3
    • 0031105739 scopus 로고    scopus 로고
    • Introduction neural networks in remote sensing
    • Atkinson, P.M., Tatnall, A.R.L., Introduction neural networks in remote sensing. Int. J. Remote Sens. 18 (1997), 699–709, 10.1080/014311697218700.
    • (1997) Int. J. Remote Sens. , vol.18 , pp. 699-709
    • Atkinson, P.M.1    Tatnall, A.R.L.2
  • 4
    • 84901479073 scopus 로고    scopus 로고
    • Classifying complex mountainous forests with L-Band SAR and landsat data integration: a comparison among different machine learning methods in the Hyrcanian forest
    • Attarchi, S., Gloaguen, R., Classifying complex mountainous forests with L-Band SAR and landsat data integration: a comparison among different machine learning methods in the Hyrcanian forest. Remote Sens. 6 (2014), 3624–3647, 10.3390/rs6053624.
    • (2014) Remote Sens. , vol.6 , pp. 3624-3647
    • Attarchi, S.1    Gloaguen, R.2
  • 5
    • 70350294122 scopus 로고    scopus 로고
    • Ensemble classification algorithm for hyperspectral remote sensing data
    • Benediktsson, J.A., Ensemble classification algorithm for hyperspectral remote sensing data. IEEE Geosci. Remote Sens. Lett. 6 (2009), 762–766, 10.1109/LGRS.2009.2024624.
    • (2009) IEEE Geosci. Remote Sens. Lett. , vol.6 , pp. 762-766
    • Benediktsson, J.A.1
  • 6
    • 0034104554 scopus 로고    scopus 로고
    • The integration of spectral and textural information using neural networks for land cover mapping in the Mediterranean
    • Berberoglu, S., Lloyd, C.D., Atkinson, P.M., Curran, P.J., The integration of spectral and textural information using neural networks for land cover mapping in the Mediterranean. Comput. Geosci. 26 (2000), 385–396, 10.1016/S0098-3004(99)00119-3.
    • (2000) Comput. Geosci. , vol.26 , pp. 385-396
    • Berberoglu, S.1    Lloyd, C.D.2    Atkinson, P.M.3    Curran, P.J.4
  • 7
    • 84923683217 scopus 로고    scopus 로고
    • Advanced robotic grasping system using deep learning
    • Bezak, P., Bozek, P., Nikitin, Y., Advanced robotic grasping system using deep learning. Procedia Eng. 96 (2014), 10–20, 10.1016/j.proeng.2014.12.092.
    • (2014) Procedia Eng. , vol.96 , pp. 10-20
    • Bezak, P.1    Bozek, P.2    Nikitin, Y.3
  • 8
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L., Bagging predictors. Mach. Learn. 24 (1996), 123–140.
    • (1996) Mach. Learn. , vol.24 , pp. 123-140
    • Breiman, L.1
  • 9
    • 84992303973 scopus 로고    scopus 로고
    • Target classification using the deep convolutional networks for SAR images
    • Chen, S., Member, S., Wang, H., Xu, F., Member, S., Target classification using the deep convolutional networks for SAR images. IEEE Trans. Geosci. Remote Sens. 54 (2016), 4806–4817.
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , pp. 4806-4817
    • Chen, S.1    Member, S.2    Wang, H.3    Xu, F.4    Member, S.5
  • 10
    • 84978805819 scopus 로고    scopus 로고
    • Deep feature extraction and classification of hyperspectral images based on convolutional neural networks
    • Chen, Y., Jiang, H., Li, C., Jia, X., Member, S., Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEE Trans. Geosci. Remote Sens. 54 (2016), 6232–6251, 10.1109/TGRS.2016.2584107.
    • (2016) IEE Trans. Geosci. Remote Sens. , vol.54 , pp. 6232-6251
    • Chen, Y.1    Jiang, H.2    Li, C.3    Jia, X.4    Member, S.5
  • 12
    • 84930621165 scopus 로고    scopus 로고
    • Geographic stacking: decision fusion to increase global land cover map accuracy
    • Clinton, N., Yu, L., Gong, P., Geographic stacking: decision fusion to increase global land cover map accuracy. ISPRS J. Photogramm. Remote Sens. 103 (2015), 57–65, 10.1016/j.isprsjprs.2015.02.010.
    • (2015) ISPRS J. Photogramm. Remote Sens. , vol.103 , pp. 57-65
    • Clinton, N.1    Yu, L.2    Gong, P.3
  • 13
    • 0026278621 scopus 로고
    • A review of assessing the accuracy of classifications of remotely sensed data
    • Congalton, R.G., A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 37 (1991), 35–46.
    • (1991) Remote Sens. Environ. , vol.37 , pp. 35-46
    • Congalton, R.G.1
  • 14
    • 37049005158 scopus 로고    scopus 로고
    • The modifiable areal unit problem (MAUP) in physical geography
    • Dark, S.J., Bram, D., The modifiable areal unit problem (MAUP) in physical geography. Prog. Phys. Geogr. 31 (2007), 471–479, 10.1177/0309133307083294.
    • (2007) Prog. Phys. Geogr. , vol.31 , pp. 471-479
    • Dark, S.J.1    Bram, D.2
  • 15
    • 33947699893 scopus 로고    scopus 로고
    • Use of neural networks for automatic classification from high-resolution images
    • Del Frate, F., Pacifici, F., Schiavon, G., Solimini, C., Use of neural networks for automatic classification from high-resolution images. IEEE Trans. Geosci. Remote Sens. 45 (2007), 800–809, 10.1109/TGRS.2007.892009.
    • (2007) IEEE Trans. Geosci. Remote Sens. , vol.45 , pp. 800-809
    • Del Frate, F.1    Pacifici, F.2    Schiavon, G.3    Solimini, C.4
  • 16
    • 84889672730 scopus 로고    scopus 로고
    • Assessing the performance of two unsupervised dimensionality reduction techniques on hyperspectral APEX data for high resolution urban land-cover mapping
    • Demarchi, L., Canters, F., Cariou, C., Licciardi, G., Chan, J.C.W., Assessing the performance of two unsupervised dimensionality reduction techniques on hyperspectral APEX data for high resolution urban land-cover mapping. ISPRS J. Photogramm. Remote Sens. 87 (2014), 166–179, 10.1016/j.isprsjprs.2013.10.012.
    • (2014) ISPRS J. Photogramm. Remote Sens. , vol.87 , pp. 166-179
    • Demarchi, L.1    Canters, F.2    Cariou, C.3    Licciardi, G.4    Chan, J.C.W.5
  • 17
    • 85028222906 scopus 로고    scopus 로고
    • Vehicle type classification using unsupervised convolutional neural network
    • Dong, Z., Pei, M., He, Y., Liu, T., Dong, Y., Jia, Y., Vehicle type classification using unsupervised convolutional neural network. IEEE Trans. Intell. Transp. Syst. 16 (2015), 2247–2256, 10.1109/ICPR.2014.39.
    • (2015) IEEE Trans. Intell. Transp. Syst. , vol.16 , pp. 2247-2256
    • Dong, Z.1    Pei, M.2    He, Y.3    Liu, T.4    Dong, Y.5    Jia, Y.6
  • 18
    • 84860267020 scopus 로고    scopus 로고
    • Multiple classifier system for remote sensing image classification: a review
    • Du, P., Xia, J., Zhang, W., Tan, K., Liu, Y., Liu, S., Multiple classifier system for remote sensing image classification: a review. Sensors 12 (2012), 4764–4792, 10.3390/s120404764.
    • (2012) Sensors , vol.12 , pp. 4764-4792
    • Du, P.1    Xia, J.2    Zhang, W.3    Tan, K.4    Liu, Y.5    Liu, S.6
  • 20
    • 80052740627 scopus 로고    scopus 로고
    • A spatial-spectral kernel-based approach for the classification of remote-sensing images
    • Fauvel, M., Chanussot, J., Benediktsson, J.A., A spatial-spectral kernel-based approach for the classification of remote-sensing images. Pattern Recognit. 45 (2012), 381–392, 10.1016/j.patcog.2011.03.035.
    • (2012) Pattern Recognit. , vol.45 , pp. 381-392
    • Fauvel, M.1    Chanussot, J.2    Benediktsson, J.A.3
  • 21
    • 34249822423 scopus 로고    scopus 로고
    • Decision fusion for the classification of urban remote sensing images
    • Fauvel, M., Chanussot, J., Benediktsson, J.A., Decision fusion for the classification of urban remote sensing images. IEEE Trans. Geosci. Remote Sens. 44 (2006), 2828–2838, 10.1109/TGRS.2006.876708.
    • (2006) IEEE Trans. Geosci. Remote Sens. , vol.44 , pp. 2828-2838
    • Fauvel, M.1    Chanussot, J.2    Benediktsson, J.A.3
  • 22
    • 0031105722 scopus 로고    scopus 로고
    • An evaluation of some factors affecting the accuracy of classification by an artificial neural network
    • Foody, G.M., Arora, M.K., An evaluation of some factors affecting the accuracy of classification by an artificial neural network. Int. J. Remote Sens. 18 (1997), 799–810, 10.1080/014311697218764.
    • (1997) Int. J. Remote Sens. , vol.18 , pp. 799-810
    • Foody, G.M.1    Arora, M.K.2
  • 23
    • 4644367942 scopus 로고    scopus 로고
    • An efficient boosting algorithm for combining preferences
    • Freund, Y., Iyer, R., Schapire, R.E., Singer, Y., An efficient boosting algorithm for combining preferences. J. Mach. Learn. Res. 4 (2003), 933–969.
    • (2003) J. Mach. Learn. Res. , vol.4 , pp. 933-969
    • Freund, Y.1    Iyer, R.2    Schapire, R.E.3    Singer, Y.4
  • 25
    • 84950141946 scopus 로고    scopus 로고
    • Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery
    • Hu, F., Xia, G.-S., Hu, J., Zhang, L., Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery. Remote Sens. 7 (2015), 14680–14707, 10.3390/rs71114680.
    • (2015) Remote Sens. , vol.7 , pp. 14680-14707
    • Hu, F.1    Xia, G.-S.2    Hu, J.3    Zhang, L.4
  • 26
    • 85027929099 scopus 로고    scopus 로고
    • Unsupervised feature learning via spectral clustering of multidimensional patches for remotely sensed scene classification
    • Hu, F., Xia, G.S., Wang, Z., Huang, X., Zhang, L., Sun, H., Unsupervised feature learning via spectral clustering of multidimensional patches for remotely sensed scene classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 8 (2015), 2015–2030, 10.1109/JSTARS.2015.2444405.
    • (2015) IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. , vol.8 , pp. 2015-2030
    • Hu, F.1    Xia, G.S.2    Wang, Z.3    Huang, X.4    Zhang, L.5    Sun, H.6
  • 27
    • 84894370515 scopus 로고    scopus 로고
    • A multi-index learning approach for classification of high-resolution remotely sensed images over urban areas
    • Huang, X., Lu, Q., Zhang, L., A multi-index learning approach for classification of high-resolution remotely sensed images over urban areas. ISPRS J. Photogramm. Remote Sens. 90 (2014), 36–48, 10.1016/j.isprsjprs.2014.01.008.
    • (2014) ISPRS J. Photogramm. Remote Sens. , vol.90 , pp. 36-48
    • Huang, X.1    Lu, Q.2    Zhang, L.3
  • 28
    • 77957741951 scopus 로고
    • On the mean accuracy of statistical pattern recognizers
    • Hughes, G.F., On the mean accuracy of statistical pattern recognizers. IEEE Trans. Inf. Theory 14 (1968), 55–63, 10.1109/TIT.1968.1054102.
    • (1968) IEEE Trans. Inf. Theory , vol.14 , pp. 55-63
    • Hughes, G.F.1
  • 30
    • 84971612769 scopus 로고    scopus 로고
    • Classification and segmentation of satellite orthoimagery using convolutional neural networks
    • Längkvist, M., Kiselev, A., Alirezaie, M., Loutfi, A., Classification and segmentation of satellite orthoimagery using convolutional neural networks. Remote Sens. 8 (2016), 1–21, 10.3390/rs8040329.
    • (2016) Remote Sens. , vol.8 , pp. 1-21
    • Längkvist, M.1    Kiselev, A.2    Alirezaie, M.3    Loutfi, A.4
  • 31
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • LeCun, Y., Bengio, Y., Hinton, G., Deep learning. Nature 521 (2015), 436–444, 10.1038/nature14539.
    • (2015) Nature , vol.521 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.3
  • 32
    • 84928013181 scopus 로고    scopus 로고
    • Deep learning for detecting robotic grasps
    • Lenz, I., Lee, H., Saxena, A., Deep learning for detecting robotic grasps. Int. J. Rob. Res. 34 (2015), 705–724, 10.1177/0278364914549607.
    • (2015) Int. J. Rob. Res. , vol.34 , pp. 705-724
    • Lenz, I.1    Lee, H.2    Saxena, A.3
  • 33
    • 84942546109 scopus 로고    scopus 로고
    • Decision fusion and non-parametric classifiers for land use mapping using multi-temporal RapidEye data
    • Löw, F., Conrad, C., Michel, U., Decision fusion and non-parametric classifiers for land use mapping using multi-temporal RapidEye data. ISPRS J. Photogramm. Remote Sens. 108 (2015), 191–204, 10.1016/j.isprsjprs.2015.07.001.
    • (2015) ISPRS J. Photogramm. Remote Sens. , vol.108 , pp. 191-204
    • Löw, F.1    Conrad, C.2    Michel, U.3
  • 34
    • 37549009133 scopus 로고    scopus 로고
    • The application of artificial neural networks to the analysis of remotely sensed data
    • Mas, J.F., Flores, J.J., The application of artificial neural networks to the analysis of remotely sensed data. Int. J. Remote Sens. 29 (2008), 617–663, 10.1080/01431160701352154.
    • (2008) Int. J. Remote Sens. , vol.29 , pp. 617-663
    • Mas, J.F.1    Flores, J.J.2
  • 36
    • 34249108636 scopus 로고    scopus 로고
    • Mapping private gardens in urban areas using object-oriented techniques and very high-resolution satellite imagery
    • Mathieu, R., Freeman, C., Aryal, J., Mapping private gardens in urban areas using object-oriented techniques and very high-resolution satellite imagery. Landsc. Urban Plan. 81 (2007), 179–192, 10.1016/j.landurbplan.2006.11.009.
    • (2007) Landsc. Urban Plan. , vol.81 , pp. 179-192
    • Mathieu, R.1    Freeman, C.2    Aryal, J.3
  • 37
    • 17844363481 scopus 로고    scopus 로고
    • Bankruptcy prediction using support vector machine with optimal choice of kernel function parameters
    • Min, J.H., Lee, Y.-C., Bankruptcy prediction using support vector machine with optimal choice of kernel function parameters. Expert Syst. Appl. 28 (2005), 603–614.
    • (2005) Expert Syst. Appl. , vol.28 , pp. 603-614
    • Min, J.H.1    Lee, Y.-C.2
  • 38
    • 33846122949 scopus 로고    scopus 로고
    • Road detection from high-resolution satellite images using artificial neural networks
    • Mokhtarzade, M., Zoej, M.J.V., Road detection from high-resolution satellite images using artificial neural networks. Int. J. Appl. Earth Obs. Geoinf. 9 (2007), 32–40, 10.1016/j.jag.2006.05.001.
    • (2007) Int. J. Appl. Earth Obs. Geoinf. , vol.9 , pp. 32-40
    • Mokhtarzade, M.1    Zoej, M.J.V.2
  • 39
    • 84978388572 scopus 로고    scopus 로고
    • Using convolutional features and a sparse autoencoder for land-use scene classification
    • Othman, E., Bazi, Y., Alajlan, N., Alhichri, H., Melgani, F., Using convolutional features and a sparse autoencoder for land-use scene classification. Int. J. Remote Sens. 37 (2016), 2149–2167, 10.1080/01431161.2016.1171928.
    • (2016) Int. J. Remote Sens. , vol.37 , pp. 2149-2167
    • Othman, E.1    Bazi, Y.2    Alajlan, N.3    Alhichri, H.4    Melgani, F.5
  • 40
    • 84930016645 scopus 로고    scopus 로고
    • Mapping of agricultural crops from single high-resolution multispectral images—data-driven smoothing vs. Parcel-based smoothing
    • Ozdarici-Ok, A., Ok, A., Schindler, K., Mapping of agricultural crops from single high-resolution multispectral images—data-driven smoothing vs. Parcel-based smoothing. Remote Sens. 7 (2015), 5611–5638, 10.3390/rs70505611.
    • (2015) Remote Sens. , vol.7 , pp. 5611-5638
    • Ozdarici-Ok, A.1    Ok, A.2    Schindler, K.3
  • 41
    • 64549105242 scopus 로고    scopus 로고
    • A neural network approach using multi-scale textural metrics from very high-resolution panchromatic imagery for urban land-use classification
    • Pacifici, F., Chini, M., Emery, W.J., A neural network approach using multi-scale textural metrics from very high-resolution panchromatic imagery for urban land-use classification. Remote Sens. Environ. 113 (2009), 1276–1292, 10.1016/j.rse.2009.02.014.
    • (2009) Remote Sens. Environ. , vol.113 , pp. 1276-1292
    • Pacifici, F.1    Chini, M.2    Emery, W.J.3
  • 42
    • 84873023814 scopus 로고    scopus 로고
    • An improved simple morphological filter for the terrain classification of airborne LIDAR data
    • Pingel, T.J., Clarke, K.C., McBride, W.A., An improved simple morphological filter for the terrain classification of airborne LIDAR data. ISPRS J. Photogramm. Remote Sens. 77 (2013), 21–30, 10.1016/j.isprsjprs.2012.12.002.
    • (2013) ISPRS J. Photogramm. Remote Sens. , vol.77 , pp. 21-30
    • Pingel, T.J.1    Clarke, K.C.2    McBride, W.A.3
  • 43
    • 84911365176 scopus 로고    scopus 로고
    • Remote sensing and object-based techniques for mapping fine-scale industrial disturbances
    • Powers, R.P., Hermosilla, T., Coops, N.C., Chen, G., Remote sensing and object-based techniques for mapping fine-scale industrial disturbances. Int. J. Appl. Earth Obs. Geoinf. 34 (2015), 51–57, 10.1016/j.jag.2014.06.015.
    • (2015) Int. J. Appl. Earth Obs. Geoinf. , vol.34 , pp. 51-57
    • Powers, R.P.1    Hermosilla, T.2    Coops, N.C.3    Chen, G.4
  • 44
    • 33745102029 scopus 로고    scopus 로고
    • Creating a hydrographic network from its cartographic representation: a case study using Ordnance Survey MasterMap data
    • Regnauld, N., Mackaness, W.a., Creating a hydrographic network from its cartographic representation: a case study using Ordnance Survey MasterMap data. Int. J. Geogr. Inf. Sci. 20 (2006), 611–631, 10.1080/13658810600607402.
    • (2006) Int. J. Geogr. Inf. Sci. , vol.20 , pp. 611-631
    • Regnauld, N.1    Mackaness, W.A.2
  • 45
    • 80052792336 scopus 로고    scopus 로고
    • Identification of hazelnut fields using spectral and gabor textural features
    • Reis, S., Tasdemir, K., Identification of hazelnut fields using spectral and gabor textural features. ISPRS J. Photogramm. Remote Sens. 66 (2011), 652–661, 10.1016/j.isprsjprs.2011.04.006.
    • (2011) ISPRS J. Photogramm. Remote Sens. , vol.66 , pp. 652-661
    • Reis, S.1    Tasdemir, K.2
  • 46
    • 84857753353 scopus 로고    scopus 로고
    • Random Forest classification of Mediterranean land cover using multi-seasonal imagery and multi-seasonal texture
    • Rodriguez-Galiano, V.F., Chica-Olmo, M., Abarca-Hernandez, F., Atkinson, P.M., Jeganathan, C., Random Forest classification of Mediterranean land cover using multi-seasonal imagery and multi-seasonal texture. Remote Sens. Environ. 121 (2012), 93–107, 10.1016/j.rse.2011.12.003.
    • (2012) Remote Sens. Environ. , vol.121 , pp. 93-107
    • Rodriguez-Galiano, V.F.1    Chica-Olmo, M.2    Abarca-Hernandez, F.3    Atkinson, P.M.4    Jeganathan, C.5
  • 47
    • 84940417789 scopus 로고    scopus 로고
    • Unsupervised deep feature extraction for remote sensing image classification
    • Romero, A., Gatta, C., Camps-valls, G., Member, S., Unsupervised deep feature extraction for remote sensing image classification. IEEE Trans. Geosci. Remote Sens. 54 (2016), 1349–1362, 10.1109/TGRS.2015.2478379.
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , pp. 1349-1362
    • Romero, A.1    Gatta, C.2    Camps-valls, G.3    Member, S.4
  • 48
    • 84910651844 scopus 로고    scopus 로고
    • Deep learning in neural networks: an overview
    • Schmidhuber, J., Deep learning in neural networks: an overview. Neural Networks, 2015, 10.1016/j.neunet.2014.09.003.
    • (2015) Neural Networks
    • Schmidhuber, J.1
  • 50
    • 77952610482 scopus 로고    scopus 로고
    • Performance and scalability of GPU-based convolutional neural networks. In: 2010 18th Euromicro Conference on Parallel, Distributed and Network-Based Processing
    • Strigl, D., Kofler, K., Podlipnig, S., 2010. Performance and scalability of GPU-based convolutional neural networks. In: 2010 18th Euromicro Conference on Parallel, Distributed and Network-Based Processing, pp. 317–324. http://dx.doi.org/10.1109/PDP.2010.43.
    • (2010) , pp. 317-324
    • Strigl, D.1    Kofler, K.2    Podlipnig, S.3
  • 51
    • 84937522268 scopus 로고    scopus 로고
    • Going deeper with convolutions. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
    • Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A., 2015. Going deeper with convolutions. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1–9. http://dx.doi.org/10.1109/CVPR.2015.7298594.
    • (2015) , pp. 1-9
    • Szegedy, C.1    Liu, W.2    Jia, Y.3    Sermanet, P.4    Reed, S.5    Anguelov, D.6    Erhan, D.7    Vanhoucke, V.8    Rabinovich, A.9
  • 52
    • 84907463801 scopus 로고    scopus 로고
    • Compressed-domain ship detection on spaceborne optical image using deep neural network and extreme learning machine
    • Tang, J., Deng, C., Huang, G.-B., Zhao, B., Compressed-domain ship detection on spaceborne optical image using deep neural network and extreme learning machine. IEEE Trans. Geosci. Remote Sens. 53 (2015), 1174–1185, 10.1109/TGRS.2014.2335751.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , pp. 1174-1185
    • Tang, J.1    Deng, C.2    Huang, G.-B.3    Zhao, B.4
  • 53
    • 84978857965 scopus 로고    scopus 로고
    • A survey of methods incorporating spatial information in image classification and spectral unmixing
    • Wang, L., Shi, C., Diao, C., Ji, W., Yin, D., A survey of methods incorporating spatial information in image classification and spectral unmixing. Int. J. Remote Sens. 37 (2016), 3870–3910, 10.1080/01431161.2016.1204032.
    • (2016) Int. J. Remote Sens. , vol.37 , pp. 3870-3910
    • Wang, L.1    Shi, C.2    Diao, C.3    Ji, W.4    Yin, D.5
  • 54
    • 0031118203 scopus 로고    scopus 로고
    • No free lunch theorems for optimization
    • Wolpert, D.H., Macready, W.G., No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1 (1997), 67–82, 10.1109/4235.585893.
    • (1997) IEEE Trans. Evol. Comput. , vol.1 , pp. 67-82
    • Wolpert, D.H.1    Macready, W.G.2
  • 55
    • 77951252742 scopus 로고    scopus 로고
    • Shape-based invariant texture indexing
    • Xia, G.S., Delon, J., Gousseau, Y., Shape-based invariant texture indexing. Int. J. Comput. Vis. 88 (2010), 382–403, 10.1007/s11263-009-0312-3.
    • (2010) Int. J. Comput. Vis. , vol.88 , pp. 382-403
    • Xia, G.S.1    Delon, J.2    Gousseau, Y.3
  • 56
    • 84865420049 scopus 로고    scopus 로고
    • SAR-based terrain classification using weakly supervised hierarchical Markov aspect models
    • Yang, W., Dai, D., Triggs, B., Xia, G.S., SAR-based terrain classification using weakly supervised hierarchical Markov aspect models. IEEE Trans. Image Process. 21 (2012), 4232–4243, 10.1109/TIP.2012.2199127.
    • (2012) IEEE Trans. Image Process. , vol.21 , pp. 4232-4243
    • Yang, W.1    Dai, D.2    Triggs, B.3    Xia, G.S.4
  • 57
    • 85027931914 scopus 로고    scopus 로고
    • Learning high-level features for satellite image classification with limited labeled samples
    • Yang, W., Yin, X., Xia, G.S., Learning high-level features for satellite image classification with limited labeled samples. IEEE Trans. Geosci. Remote Sens. 53 (2015), 4472–4482, 10.1109/TGRS.2015.2400449.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , pp. 4472-4482
    • Yang, W.1    Yin, X.2    Xia, G.S.3
  • 58
    • 84931574348 scopus 로고    scopus 로고
    • Learning salient visual word for scalable mobile image retrieval
    • Yang, X., Qian, X., Mei, T., Learning salient visual word for scalable mobile image retrieval. Pattern Recognit. 48 (2015), 3093–3101, 10.1016/j.patcog.2014.12.017.
    • (2015) Pattern Recognit. , vol.48 , pp. 3093-3101
    • Yang, X.1    Qian, X.2    Mei, T.3
  • 59
    • 84923360722 scopus 로고    scopus 로고
    • Object-based larch tree-crown delineation using high-resolution satellite imagery
    • Yin, W., Yang, J., Yamamoto, H., Li, C., Object-based larch tree-crown delineation using high-resolution satellite imagery. Int. J. Remote Sens. 36 (2015), 822–844, 10.1080/01431161.2014.999165.
    • (2015) Int. J. Remote Sens. , vol.36 , pp. 822-844
    • Yin, W.1    Yang, J.2    Yamamoto, H.3    Li, C.4
  • 60
    • 84898822427 scopus 로고    scopus 로고
    • A vision-based robotic grasping system using deep learning for 3D object recognition and pose estimation. In: 2013 IEEE International Conference on Robotics and Biomimetics (ROBIO)
    • Yu, J., Weng, K., Liang, G., Xie, G., 2013. A vision-based robotic grasping system using deep learning for 3D object recognition and pose estimation. In: 2013 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 1175–1180. http://dx.doi.org/10.1109/ROBIO.2013.6739623.
    • (2013) , pp. 1175-1180
    • Yu, J.1    Weng, K.2    Liang, G.3    Xie, G.4
  • 61
    • 84976347344 scopus 로고    scopus 로고
    • A deep learning framework for hyperspectral image classification using spatial pyramid pooling
    • Yue, J., Mao, S., Li, M., A deep learning framework for hyperspectral image classification using spatial pyramid pooling. Remote Sens. Lett. 7 (2016), 875–884, 10.1080/2150704X.2016.1193793.
    • (2016) Remote Sens. Lett. , vol.7 , pp. 875-884
    • Yue, J.1    Mao, S.2    Li, M.3
  • 62
    • 84868629775 scopus 로고    scopus 로고
    • The application of small unmanned aerial systems for precision agriculture: a review
    • Zhang, C., Kovacs, J.M., The application of small unmanned aerial systems for precision agriculture: a review. Precis. Agric. 13 (2012), 693–712, 10.1007/s11119-012-9274-5.
    • (2012) Precis. Agric. , vol.13 , pp. 693-712
    • Zhang, C.1    Kovacs, J.M.2
  • 63
    • 84928487450 scopus 로고    scopus 로고
    • A novel multi-parameter support vector machine for image classification
    • Zhang, C., Wang, T., Atkinson, P.M., Pan, X., Li, H., A novel multi-parameter support vector machine for image classification. Int. J. Remote Sens. 36 (2015), 1890–1906, 10.1080/01431161.2015.1029096.
    • (2015) Int. J. Remote Sens. , vol.36 , pp. 1890-1906
    • Zhang, C.1    Wang, T.2    Atkinson, P.M.3    Pan, X.4    Li, H.5
  • 64
    • 84945898896 scopus 로고    scopus 로고
    • Scene classification via a gradient boosting random convolutional network framework
    • Zhang, F., Du, B., Zhang, L., Scene classification via a gradient boosting random convolutional network framework. IEEE Trans. Geosci. Remote Sens. 54 (2016), 1793–1802, 10.1109/TGRS.2015.2488681.
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , pp. 1793-1802
    • Zhang, F.1    Du, B.2    Zhang, L.3
  • 65
    • 0344099114 scopus 로고    scopus 로고
    • Study of urban spatial patterns from SPOT panchromatic imagery using textural analysis
    • Zhang, Q., Wang, J., Gong, P., Shi, P., Study of urban spatial patterns from SPOT panchromatic imagery using textural analysis. Int. J. Remote Sens. 24 (2003), 4137–4160, 10.1080/0143116031000070445.
    • (2003) Int. J. Remote Sens. , vol.24 , pp. 4137-4160
    • Zhang, Q.1    Wang, J.2    Gong, P.3    Shi, P.4
  • 66
    • 84956620231 scopus 로고    scopus 로고
    • Learning multiscale and deep representations for classifying remotely sensed imagery
    • Zhao, W., Du, S., Learning multiscale and deep representations for classifying remotely sensed imagery. ISPRS J. Photogramm. Remote Sens. 113 (2016), 155–165, 10.1016/j.isprsjprs.2016.01.004.
    • (2016) ISPRS J. Photogramm. Remote Sens. , vol.113 , pp. 155-165
    • Zhao, W.1    Du, S.2
  • 67
    • 84902120621 scopus 로고    scopus 로고
    • A hybrid object-oriented conditional random field classification framework for high spatial resolution remote sensing imagery
    • Zhong, Y., Zhao, J., Zhang, L., A hybrid object-oriented conditional random field classification framework for high spatial resolution remote sensing imagery. IEEE Trans. Geosci. Remote Sens. 52 (2014), 7023–7037, 10.1109/TGRS.2014.2306692.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , pp. 7023-7037
    • Zhong, Y.1    Zhao, J.2    Zhang, L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.