-
2
-
-
84894288250
-
Deriving crop specific covariate data sets from multi-year NASS geospatial cropland data layers
-
Melbourne, VIC
-
Boryan, C. G., and Yang, Z. (2013, July). “Deriving crop specific covariate data sets from multi-year NASS geospatial cropland data layers,” in 2013 IEEE International Geoscience and Remote Sensing Symposium-IGARSS (Melbourne, VIC), 4225-4228.
-
(2013)
2013 IEEE International Geoscience and Remote Sensing Symposium-Igarss
, pp. 4225-4228
-
-
Boryan, C.G.1
Yang, Z.2
-
3
-
-
0035478854
-
Random forests
-
Breiman, L. (2001). Random forests. Mach. Learn. 45, 5-32. doi: 10.1023/A:1010933404324
-
(2001)
Mach. Learn
, vol.45
, pp. 5-32
-
-
Breiman, L.1
-
4
-
-
0026278621
-
A review of assessing the accuracy of classifications of remotely sensed data
-
Congalton, R. G. (1991). A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 37, 35-46. doi: 10.1016/0034-4257(91)90048-B
-
(1991)
Remote Sens. Environ
, vol.37
, pp. 35-46
-
-
Congalton, R.G.1
-
6
-
-
84939975297
-
The need for improved maps of global cropland
-
Fritz, S., See, L., You, L., Justice, C., Becker-Reshef, I., Bydekerke, L., and Gilliams, S. (2013). The need for improved maps of global cropland. Eos Trans. Am. Geophys. Union 94, 31-32. doi: 10.1002/2013EO030006
-
(2013)
Eos Trans. Am. Geophys. Union
, vol.94
, pp. 31-32
-
-
Fritz, S.1
See, L.2
You, L.3
Justice, C.4
Becker-Reshef, I.5
Bydekerke, L.6
Gilliams, S.7
-
7
-
-
84897501332
-
Efficiency assessment of using satellite data for crop area estimation in Ukraine
-
Gallego, F. J., Kussul, N., Skakun, S., Kravchenko, O., Shelestov, A., and Kussul, O. (2014). Efficiency assessment of using satellite data for crop area estimation in Ukraine. Int. J. Appl. Earth Observ. Geoinform. 29, 22-30. doi: 10.1016/j.jag.2013.12.013
-
(2014)
Int. J. Appl. Earth Observ. Geoinform
, vol.29
, pp. 22-30
-
-
Gallego, F.J.1
Kussul, N.2
Skakun, S.3
Kravchenko, O.4
Shelestov, A.5
Kussul, O.6
-
8
-
-
84886045513
-
Accuracy, objectivity and efficiency of remote sensing for agricultural statistics
-
eds R. Benedetti, M. Bee, G. Espa, and F. Piersimoni (Chichester, UK: JohnWiley & Sons, Ltd
-
Gallego, J., Carfagna, E., and Baruth, B. (2010). “Accuracy, objectivity and efficiency of remote sensing for agricultural statistics,” in Agricultural Survey Methods, eds R. Benedetti, M. Bee, G. Espa, and F. Piersimoni (Chichester, UK: JohnWiley & Sons, Ltd.). doi: 10.1002/9780470665480.ch12
-
(2010)
Agricultural Survey Methods
-
-
Gallego, J.1
Carfagna, E.2
Baruth, B.3
-
9
-
-
84864540336
-
Efficiency assessment of different approaches to crop classification based on satellite and ground observations
-
Gallego, J., Kravchenko, A. N., Kussul, N. N., Skakun, S. V., Shelestov, A. Y., and Grypych, Y. A. (2012). Efficiency assessment of different approaches to crop classification based on satellite and ground observations. J. Autom. Inf. Sci. 44, 67-80. doi: 10.1615/JAutomatInfScien.v44.i5.70
-
(2012)
J. Autom. Inf. Sci
, vol.44
, pp. 67-80
-
-
Gallego, J.1
Kravchenko, A.N.2
Kussul, N.N.3
Skakun, S.V.4
Shelestov, A.Y.5
Grypych, Y.A.6
-
10
-
-
33746932125
-
On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance
-
Gao, F., Masek, J., Schwaller, M., and Hall, F. (2006). On the blending of the Landsat and MODIS surface reflectance: predicting daily Landsat surface reflectance. IEEE Trans. Geosci. Remote Sens. 44, 2207-2218. doi: 10.1109/TGRS.2006.872081
-
(2006)
IEEE Trans. Geosci. Remote Sens
, vol.44
, pp. 2207-2218
-
-
Gao, F.1
Masek, J.2
Schwaller, M.3
Hall, F.4
-
12
-
-
67651113818
-
Generation of dense time series synthetic Landsat data through data blending with MODIS using a spatial and temporal adaptive reflectance fusion model
-
Hilker, T., Wulder, M. A., Coops, N. C., Seitz, N., White, J. C., Gao, F., et al. (2009). Generation of dense time series synthetic Landsat data through data blending with MODIS using a spatial and temporal adaptive reflectance fusion model. Remote Sens. Environ. 113, 1988-1999. doi: 10.1016/j.rse.2009.05.011
-
(2009)
Remote Sens. Environ
, vol.113
, pp. 1988-1999
-
-
Hilker, T.1
Wulder, M.A.2
Coops, N.C.3
Seitz, N.4
White, J.C.5
Gao, F.6
-
13
-
-
84880317742
-
Winter wheat yield forecasting in Ukraine based on Earth observation, meteorological data and biophysical models
-
Kogan, F., Kussul, N., Adamenko, T., Skakun, S., Kravchenko, O., Kryvobok, O., et al. (2013a). Winter wheat yield forecasting in Ukraine based on Earth observation, meteorological data and biophysical models. Int. J. Appl. Earth Observ. Geoinform. 23, 192-203. doi: 10.1016/j.jag.2013.01.002
-
(2013)
Int. J. Appl. Earth Observ. Geoinform
, vol.23
, pp. 192-203
-
-
Kogan, F.1
Kussul, N.2
Adamenko, T.3
Skakun, S.4
Kravchenko, O.5
Kryvobok, O.6
-
14
-
-
84883343032
-
Winter wheat yield forecasting: A comparative analysis of results of regression and biophysical models
-
Kogan, F., Kussul, N. N., Adamenko, T. I., Skakun, S. V., Kravchenko, A. N., Krivobok, A. A., et al. (2013b). Winter wheat yield forecasting: A comparative analysis of results of regression and biophysical models. J. Autom. Inf. Sci. 45, 68-81. doi: 10.1615/JAutomatInfScien.v45.i6.70
-
(2013)
J. Autom. Inf. Sci
, vol.45
, pp. 68-81
-
-
Kogan, F.1
Kussul, N.N.2
Adamenko, T.I.3
Skakun, S.V.4
Kravchenko, A.N.5
Krivobok, A.A.6
-
15
-
-
84930408057
-
Comparison of biophysical and satellite predictors for wheat yield forecasting in Ukraine
-
Kolotii, A., Kussul, N., Shelestov, A., Skakun, S., Yailymov, B., Basarab, R., and Ostapenko, V. (2015). Comparison of biophysical and satellite predictors for wheat yield forecasting in Ukraine. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 40, 39. doi: 10.5194/isprsarchives-XL-7-W3-39-2015
-
(2015)
Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci
, vol.40
, pp. 39
-
-
Kolotii, A.1
Kussul, N.2
Shelestov, A.3
Skakun, S.4
Yailymov, B.5
Basarab, R.6
Ostapenko, V.7
-
16
-
-
84969492132
-
Parcel-based crop classification in ukraine using landsat-8 data and sentinel-1A data
-
Kussul, N., Lemoine, G., Gallego, F. J., Skakun, S. V., Lavreniuk, M., and Shelestov, A. Y. (2016). Parcel-based crop classification in ukraine using landsat-8 data and sentinel-1A data. IEEE J. Select. Top. Appl. Earth Observ. Rem. Sens. 9, 2500-2508. doi: 10.1109/JSTARS.2016.2560141
-
(2016)
IEEE J. Select. Top. Appl. Earth Observ. Rem. Sens.
, vol.9
, pp. 2500-2508
-
-
Kussul, N.1
Lemoine, G.2
Gallego, F.J.3
Skakun, S.V.4
Lavreniuk, M.5
Shelestov, A.Y.6
-
17
-
-
78650583200
-
Disaster risk assessment based on heterogeneous geospatial information
-
Kussul, N. N., Sokolov, B. V., Zyelyk, Y. I., Zelentsov, V. A., Skakun, S. V., and Shelestov, A. Y. (2010). Disaster risk assessment based on heterogeneous geospatial information. J. Autom. Inf. Sci. 42, 32-45. doi: 10.1615/JAutomatInfScien.v42.i12.40
-
(2010)
J. Autom. Inf. Sci
, vol.42
, pp. 32-45
-
-
Kussul, N.N.1
Sokolov, B.V.2
Zyelyk, Y.I.3
Zelentsov, V.A.4
Skakun, S.V.5
Shelestov, A.Y.6
-
18
-
-
84930335603
-
Geospatial Intelligence and Data Fusion Techniques for Sustainable Development Problems
-
Kussul, N., Shelestov, A., Basarab, R., Skakun, S., Kussul, O., and Lavrenyuk, M. (2015). “Geospatial Intelligence and Data Fusion Techniques for Sustainable Development Problems,” in ICTERI (Lviv), 196-203.
-
(2015)
ICTERI (Lviv)
, pp. 196-203
-
-
Kussul, N.1
Shelestov, A.2
Basarab, R.3
Skakun, S.4
Kussul, O.5
Lavrenyuk, M.6
-
19
-
-
84872056550
-
Grid technologies for satellite data processing and management within international disaster monitoring projects
-
eds S. Fiore and G. Aloisio (Berlin; Heidelberg: Springer
-
Kussul, N., Shelestov, A., and Skakun, S. (2011). “Grid technologies for satellite data processing and management within international disaster monitoring projects,” in Grid and Cloud Database Management, eds S. Fiore and G. Aloisio (Berlin; Heidelberg: Springer), 279-305.
-
(2011)
Grid and Cloud Database Management
, pp. 279-305
-
-
Kussul, N.1
Shelestov, A.2
Skakun, S.3
-
20
-
-
85007384910
-
Large-scale classification of land cover using retrospective satellite data
-
Lavreniuk, M. S., Skakun, S. V., Shelestov, A. J., Yalimov, B. Y., Yanchevskii, S. L., Yaschuk, D. J., et al. (2016). Large-scale classification of land cover using retrospective satellite data. Cybern. Syst. Anal. 52, 127-138. doi: 10.1007/s10559-016-9807-4
-
(2016)
Cybern. Syst. Anal
, vol.52
, pp. 127-138
-
-
Lavreniuk, M.S.1
Skakun, S.V.2
Shelestov, A.J.3
Yalimov, B.Y.4
Yanchevskii, S.L.5
Yaschuk, D.J.6
-
21
-
-
34250091945
-
Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm
-
Littlestone, N. (1988). Learning quickly when irrelevant attributes abound: a new linear-threshold algorithm. Mach. Learn. 2, 285-318. doi: 10.1007/BF00116827
-
(1988)
Mach. Learn
, vol.2
, pp. 285-318
-
-
Littlestone, N.1
-
22
-
-
84930826671
-
Towards building a dataintensive index for big data computing-a case study of Remote Sensing data processing
-
Ma, Y., Wang, L., Liu, P., and Ranjan, R. (2015a). Towards building a dataintensive index for big data computing-a case study of Remote Sensing data processing. Inf. Sci. 319, 171-188. doi: 10.1016/j.ins.2014.10.006
-
(2015)
Inf. Sci
, vol.319
, pp. 171-188
-
-
Ma, Y.1
Wang, L.2
Liu, P.3
Ranjan, R.4
-
23
-
-
84930575472
-
Remote sensing big data computing: Challenges and opportunities
-
Ma, Y., Wu, H., Wang, L., Huang, B., Ranjan, R., Zomaya, A., et al. (2015b). Remote sensing big data computing: challenges and opportunities. Future Generation Comput. Syst. 51, 47-60. doi: 10.1016/j.future.2014. 10.029
-
(2015)
Future Generation Comput. Syst
, vol.51
, pp. 47-60
-
-
Ma, Y.1
Wu, H.2
Wang, L.3
Huang, B.4
Ranjan, R.5
Zomaya, A.6
-
24
-
-
51949098112
-
Classification using intersection kernel support vector machines is efficient
-
Maji, S., Berg, A. C., and Malik, J. (2008). “Classification using intersection kernel support vector machines is efficient,” in IEEE Conference on Computer Vision and Pattern Recognition (Anchorage, AK), 1-8.
-
(2008)
IEEE Conference on Computer Vision and Pattern Recognition (Anchorage, AK)
, pp. 1-8
-
-
Maji, S.1
Berg, A.C.2
Malik, J.3
-
25
-
-
69849110324
-
Integration of optical and Synthetic Aperture Radar (SAR) imagery for delivering operational annual crop inventories
-
McNairn, H., Champagne, C., Shang, J., Holmstrom, D. A., and Reichert, G. (2009). Integration of optical and Synthetic Aperture Radar (SAR) imagery for delivering operational annual crop inventories. ISPRS J. Photogramm. Remote Sens. 64, 434-449. doi: 10.1016/j.isprsjprs.2008.07.006
-
(2009)
ISPRS J. Photogramm. Remote Sens
, vol.64
, pp. 434-449
-
-
McNairn, H.1
Champagne, C.2
Shang, J.3
Holmstrom, D.A.4
Reichert, G.5
-
26
-
-
0028183911
-
SMAC: A simplified method for the atmospheric correction of satellite measurements in the solar spectrum
-
Rahman, H., and Dedieu, G. (1994). SMAC: a simplified method for the atmospheric correction of satellite measurements in the solar spectrum. Remote Sens. 15, 123-143. doi: 10.1080/01431169408954055
-
(1994)
Remote Sens
, vol.15
, pp. 123-143
-
-
Rahman, H.1
Dedieu, G.2
-
27
-
-
44149102637
-
Multitemporal MODIS-Landsat data fusion for relative radiometric normalization, gap filling, and prediction of Landsat data
-
Roy, D. P., Ju, J., Lewis, P., Schaaf, C., Gao, F., Hansen, M., et al. (2008). Multitemporal MODIS-Landsat data fusion for relative radiometric normalization, gap filling, and prediction of Landsat data. Remote Sens. Environ. 112, 3112-3130. doi: 10.1016/j.rse.2008.03.009
-
(2008)
Remote Sens. Environ
, vol.112
, pp. 3112-3130
-
-
Roy, D.P.1
Ju, J.2
Lewis, P.3
Schaaf, C.4
Gao, F.5
Hansen, M.6
-
28
-
-
84896818071
-
Landsat-8: Science and product vision for terrestrial global change research
-
Roy, D. P., Wulder, M. A., Loveland, T. R., Woodcock, C. E., Allen, R. G., Anderson, M. C., et al. (2014). Landsat-8: science and product vision for terrestrial global change research. Remote Sens. Environ. 145, 154-172. doi: 10.1016/j.rse.2014.02.001
-
(2014)
Remote Sens. Environ
, vol.145
, pp. 154-172
-
-
Roy, D.P.1
Wulder, M.A.2
Loveland, T.R.3
Woodcock, C.E.4
Allen, R.G.5
Erson, M.C.6
-
29
-
-
79952748054
-
Pegasos: Primal estimated sub-gradient solver for svm
-
Shalev-Shwartz, S., Singer, Y., Srebro, N., and Cotter, A. (2011). Pegasos: primal estimated sub-gradient solver for svm. Math. Programming 127, 3-30. doi: 10.1007/s10107-010-0420-4
-
(2011)
Math. Programming
, vol.127
, pp. 3-30
-
-
Shalev-Shwartz, S.1
Singer, Y.2
Srebro, N.3
Cotter, A.4
-
30
-
-
84961210112
-
The use of satellite data for agriculture drought risk quantification in Ukraine
-
Skakun, S., Kussul, N., Shelestov, A., and Kussul, O. (2016b). The use of satellite data for agriculture drought risk quantification in Ukraine. Geomatics Nat. Hazards Risk, 7, 901-917. doi: 10.1080/19475705.2015.1016555
-
(2016)
Geomatics Nat. Hazards Risk
, vol.7
, pp. 901-917
-
-
Skakun, S.1
Kussul, N.2
Shelestov, A.3
Kussul, O.4
-
31
-
-
84938815954
-
Efficiency assessment of multitemporal C-Band Radarsat-2 intensity and Landsat-8 surface reflectance satellite imagery for crop classification in Ukraine
-
Skakun, S., Kussul, N., Shelestov, A. Y., Lavreniuk, M., and Kussul, O. (2016a). Efficiency assessment of multitemporal C-Band Radarsat-2 intensity and Landsat-8 surface reflectance satellite imagery for crop classification in Ukraine. IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. 9, 3712-3719. doi: 10.1109/JSTARS.2015.2454297
-
(2016)
IEEE J. Select. Top. Appl. Earth Observ. Remote Sens
, vol.9
, pp. 3712-3719
-
-
Skakun, S.1
Kussul, N.2
Shelestov, A.Y.3
Lavreniuk, M.4
Kussul, O.5
-
32
-
-
84920511605
-
Reconstruction of missing data in timeseries of optical satellite images using self-organizing Kohonen maps
-
Skakun, S. V., and Basarab, R. M. (2014). Reconstruction of missing data in timeseries of optical satellite images using self-organizing Kohonen maps. J. Autom. Inf. Sci. 46, 19-26. doi: 10.1615/JAutomatInfScien.v46.i12.30
-
(2014)
J. Autom. Inf. Sci
, vol.46
, pp. 19-26
-
-
Skakun, S.V.1
Basarab, R.M.2
-
33
-
-
34249997303
-
Analysis of applicability of neural networks for classification of satellite data
-
Skakun, S. V., Nasuro, E. V., Lavrenyuk, A. N., and Kussul, O. M. (2007). Analysis of applicability of neural networks for classification of satellite data. J. Autom. Inf. Sci. 39, 37-50. doi: 10.1615/JAutomatInfScien.v39.i3.40
-
(2007)
J. Autom. Inf. Sci
, vol.39
, pp. 37-50
-
-
Skakun, S.V.1
Nasuro, E.V.2
Lavrenyuk, A.N.3
Kussul, O.M.4
-
34
-
-
84982913053
-
Towards a set of agrosystem-specific cropland mapping methods to address the global cropland diversity
-
Waldner, F., De Abelleyra, D., Verón, S. R., Zhang, M., Wu, B., Plotnikov, D., et al. (2016). Towards a set of agrosystem-specific cropland mapping methods to address the global cropland diversity. Int. J. Remote Sens. 37, 3196-3231. doi: 10.1080/01431161.2016.1194545
-
(2016)
Int. J. Remote Sens
, vol.37
, pp. 3196-3231
-
-
Waldner, F.1
De Abelleyra, D.2
Verón, S.R.3
Zhang, M.4
Wu, B.5
Plotnikov, D.6
-
35
-
-
84893445992
-
Automated crop field extraction from multitemporal Web Enabled Landsat Data
-
Yan, L., and Roy, D. P. (2014). Automated crop field extraction from multitemporal Web Enabled Landsat Data. Remote Sens. Environ. 144, 42-64. doi: 10.1016/j.rse.2014.01.006
-
(2014)
Remote Sens. Environ
, vol.144
, pp. 42-64
-
-
Yan, L.1
Roy, D.P.2
-
36
-
-
83455195642
-
Object-based cloud and cloud shadow detection in Landsat imagery
-
Zhu, Z., and Woodcock, C. E. (2012). Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sens. Environ. 118, 83-94. doi: 10.1016/j.rse.2011.10.028
-
(2012)
Remote Sens. Environ
, vol.118
, pp. 83-94
-
-
Zhu, Z.1
Woodcock, C.E.2
|