메뉴 건너뛰기




Volumn 44, Issue 7, 2019, Pages 589-598

DNA (Hydroxy)Methylation in T Helper Lymphocytes

Author keywords

[No Author keywords available]

Indexed keywords

GENOMIC DNA; DNA;

EID: 85061728130     PISSN: 09680004     EISSN: 13624326     Source Type: Journal    
DOI: 10.1016/j.tibs.2019.01.009     Document Type: Review
Times cited : (9)

References (83)
  • 1
    • 84859401055 scopus 로고    scopus 로고
    • Transcriptional and epigenetic control of T helper cell specification: molecular mechanisms underlying commitment and plasticity
    • Kanno, Y., et al. Transcriptional and epigenetic control of T helper cell specification: molecular mechanisms underlying commitment and plasticity. Annu. Rev. Immunol. 30 (2012), 707–731.
    • (2012) Annu. Rev. Immunol. , vol.30 , pp. 707-731
    • Kanno, Y.1
  • 2
    • 58849092225 scopus 로고    scopus 로고
    • Epigenetic control of T-helper-cell differentiation
    • Wilson, C.B., et al. Epigenetic control of T-helper-cell differentiation. Nat. Rev. Immunol. 9 (2009), 91–105.
    • (2009) Nat. Rev. Immunol. , vol.9 , pp. 91-105
    • Wilson, C.B.1
  • 3
    • 84888884346 scopus 로고    scopus 로고
    • The many faces of CD4 T cells: roles in immunity and disease
    • Sallusto, F., Monticelli, S., The many faces of CD4 T cells: roles in immunity and disease. Semin. Immunol. 25 (2013), 249–251.
    • (2013) Semin. Immunol. , vol.25 , pp. 249-251
    • Sallusto, F.1    Monticelli, S.2
  • 4
    • 84888884174 scopus 로고    scopus 로고
    • MicroRNAs in T helper cell differentiation and plasticity
    • Monticelli, S., MicroRNAs in T helper cell differentiation and plasticity. Semin. Immunol. 25 (2013), 291–298.
    • (2013) Semin. Immunol. , vol.25 , pp. 291-298
    • Monticelli, S.1
  • 5
    • 0035070195 scopus 로고    scopus 로고
    • Early transcription and silencing of cytokine genes underlie polarization of T helper cell subsets
    • Grogan, J.L., et al. Early transcription and silencing of cytokine genes underlie polarization of T helper cell subsets. Immunity 14 (2001), 205–215.
    • (2001) Immunity , vol.14 , pp. 205-215
    • Grogan, J.L.1
  • 6
    • 85017192307 scopus 로고    scopus 로고
    • Heritable gene regulation in the CD4:CD8 T cell lineage choice
    • Issuree, P.D., et al. Heritable gene regulation in the CD4:CD8 T cell lineage choice. Front. Immunol., 8, 2017, 291.
    • (2017) Front. Immunol. , vol.8 , pp. 291
    • Issuree, P.D.1
  • 8
    • 84895801889 scopus 로고    scopus 로고
    • Genomic patterns and context specific interpretation of DNA methylation
    • Baubec, T., Schubeler, D., Genomic patterns and context specific interpretation of DNA methylation. Curr. Opin. Genet. Dev. 25 (2014), 85–92.
    • (2014) Curr. Opin. Genet. Dev. , vol.25 , pp. 85-92
    • Baubec, T.1    Schubeler, D.2
  • 9
    • 70450217879 scopus 로고    scopus 로고
    • Human DNA methylomes at base resolution show widespread epigenomic differences
    • Lister, R., et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462 (2009), 315–322.
    • (2009) Nature , vol.462 , pp. 315-322
    • Lister, R.1
  • 10
    • 84355163093 scopus 로고    scopus 로고
    • DNA-binding factors shape the mouse methylome at distal regulatory regions
    • Stadler, M.B., et al. DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature 480 (2011), 490–495.
    • (2011) Nature , vol.480 , pp. 490-495
    • Stadler, M.B.1
  • 11
    • 0033615717 scopus 로고    scopus 로고
    • DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development
    • Okano, M., et al. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99 (1999), 247–257.
    • (1999) Cell , vol.99 , pp. 247-257
    • Okano, M.1
  • 12
    • 0036144048 scopus 로고    scopus 로고
    • DNA methylation patterns and epigenetic memory
    • Bird, A., DNA methylation patterns and epigenetic memory. Genes Dev. 16 (2002), 6–21.
    • (2002) Genes Dev. , vol.16 , pp. 6-21
    • Bird, A.1
  • 13
    • 0026708177 scopus 로고
    • Targeted mutation of the DNA methyltransferase gene results in embryonic lethality
    • Li, E., et al. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69 (1992), 915–926.
    • (1992) Cell , vol.69 , pp. 915-926
    • Li, E.1
  • 14
    • 84923580247 scopus 로고    scopus 로고
    • DNMT3A in haematological malignancies
    • Yang, L., et al. DNMT3A in haematological malignancies. Nat. Rev. Cancer 15 (2015), 152–165.
    • (2015) Nat. Rev. Cancer , vol.15 , pp. 152-165
    • Yang, L.1
  • 15
    • 0033547330 scopus 로고    scopus 로고
    • Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene
    • Xu, G.L., et al. Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature 402 (1999), 187–191.
    • (1999) Nature , vol.402 , pp. 187-191
    • Xu, G.L.1
  • 16
    • 84898057327 scopus 로고    scopus 로고
    • Mutations in the DNA methyltransferase gene DNMT3A cause an overgrowth syndrome with intellectual disability
    • Tatton-Brown, K., et al. Mutations in the DNA methyltransferase gene DNMT3A cause an overgrowth syndrome with intellectual disability. Nat. Genet. 46 (2014), 385–388.
    • (2014) Nat. Genet. , vol.46 , pp. 385-388
    • Tatton-Brown, K.1
  • 17
    • 78649906060 scopus 로고    scopus 로고
    • DNMT3A mutations in acute myeloid leukemia
    • Ley, T.J., et al. DNMT3A mutations in acute myeloid leukemia. N. Engl. J. Med. 363 (2010), 2424–2433.
    • (2010) N. Engl. J. Med. , vol.363 , pp. 2424-2433
    • Ley, T.J.1
  • 18
    • 84874194072 scopus 로고    scopus 로고
    • DNA methylation: roles in mammalian development
    • Smith, Z.D., Meissner, A., DNA methylation: roles in mammalian development. Nat. Rev. Genet. 14 (2013), 204–220.
    • (2013) Nat. Rev. Genet. , vol.14 , pp. 204-220
    • Smith, Z.D.1    Meissner, A.2
  • 19
    • 85027516743 scopus 로고    scopus 로고
    • TET-mediated active DNA demethylation: mechanism, function and beyond
    • Wu, X., Zhang, Y., TET-mediated active DNA demethylation: mechanism, function and beyond. Nat. Rev. Genet. 18 (2017), 517–534.
    • (2017) Nat. Rev. Genet. , vol.18 , pp. 517-534
    • Wu, X.1    Zhang, Y.2
  • 20
    • 84923401742 scopus 로고    scopus 로고
    • ESCI award lecture: regulation, function and biomarker potential of DNA methylation
    • Schubeler, D., ESCI award lecture: regulation, function and biomarker potential of DNA methylation. Eur. J. Clin. Invest. 45 (2015), 288–293.
    • (2015) Eur. J. Clin. Invest. , vol.45 , pp. 288-293
    • Schubeler, D.1
  • 21
    • 0034713375 scopus 로고    scopus 로고
    • Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene
    • Bell, A.C., Felsenfeld, G., Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature 405 (2000), 482–485.
    • (2000) Nature , vol.405 , pp. 482-485
    • Bell, A.C.1    Felsenfeld, G.2
  • 22
    • 84951325892 scopus 로고    scopus 로고
    • Competition between DNA methylation and transcription factors determines binding of NRF1
    • Domcke, S., et al. Competition between DNA methylation and transcription factors determines binding of NRF1. Nature 528 (2015), 575–579.
    • (2015) Nature , vol.528 , pp. 575-579
    • Domcke, S.1
  • 23
    • 85018754019 scopus 로고    scopus 로고
    • Impact of cytosine methylation on DNA binding specificities of human transcription factors
    • Yin, Y., et al. Impact of cytosine methylation on DNA binding specificities of human transcription factors. Science, 356, 2017, eaaj2239.
    • (2017) Science , vol.356
    • Yin, Y.1
  • 24
    • 84875505675 scopus 로고    scopus 로고
    • A common mode of recognition for methylated CpG
    • Liu, Y., et al. A common mode of recognition for methylated CpG. Trends Biochem. Sci. 38 (2013), 177–183.
    • (2013) Trends Biochem. Sci. , vol.38 , pp. 177-183
    • Liu, Y.1
  • 25
    • 84874771985 scopus 로고    scopus 로고
    • Dynamic readers for 5-(hydroxy)methylcytosine and its oxidized derivatives
    • Spruijt, C.G., et al. Dynamic readers for 5-(hydroxy)methylcytosine and its oxidized derivatives. Cell 152 (2013), 1146–1159.
    • (2013) Cell , vol.152 , pp. 1146-1159
    • Spruijt, C.G.1
  • 26
    • 84886834154 scopus 로고    scopus 로고
    • Identification of active regulatory regions from DNA methylation data
    • Burger, L., et al. Identification of active regulatory regions from DNA methylation data. Nucleic Acids Res., 41, 2013, e155.
    • (2013) Nucleic Acids Res. , vol.41 , pp. e155
    • Burger, L.1
  • 27
    • 84923330509 scopus 로고    scopus 로고
    • Genomic profiling of DNA methyltransferases reveals a role for DNMT3B in genic methylation
    • Baubec, T., et al. Genomic profiling of DNA methyltransferases reveals a role for DNMT3B in genic methylation. Nature 520 (2015), 243–247.
    • (2015) Nature , vol.520 , pp. 243-247
    • Baubec, T.1
  • 28
    • 85014546354 scopus 로고    scopus 로고
    • Intragenic DNA methylation prevents spurious transcription initiation
    • Neri, F., et al. Intragenic DNA methylation prevents spurious transcription initiation. Nature 543 (2017), 72–77.
    • (2017) Nature , vol.543 , pp. 72-77
    • Neri, F.1
  • 29
    • 85067911080 scopus 로고    scopus 로고
    • An unmethylated 3′ promoter-proximal region is required for efficient transcription initiation
    • Appanah, R., et al. An unmethylated 3′ promoter-proximal region is required for efficient transcription initiation. PLoS Genet., 3, 2007, e27.
    • (2007) PLoS Genet. , vol.3 , pp. e27
    • Appanah, R.1
  • 30
    • 84880815366 scopus 로고    scopus 로고
    • Short-term memory of danger signals and environmental stimuli in immune cells
    • Monticelli, S., Natoli, G., Short-term memory of danger signals and environmental stimuli in immune cells. Nat. Immunol. 14 (2013), 777–784.
    • (2013) Nat. Immunol. , vol.14 , pp. 777-784
    • Monticelli, S.1    Natoli, G.2
  • 31
    • 84878260646 scopus 로고    scopus 로고
    • TETonic shift: biological roles of TET proteins in DNA demethylation and transcription
    • Pastor, W.A., et al. TETonic shift: biological roles of TET proteins in DNA demethylation and transcription. Nat. Rev. Mol. Cell Biol. 14 (2013), 341–356.
    • (2013) Nat. Rev. Mol. Cell Biol. , vol.14 , pp. 341-356
    • Pastor, W.A.1
  • 32
    • 66149146320 scopus 로고    scopus 로고
    • Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1
    • Tahiliani, M., et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324 (2009), 930–935.
    • (2009) Science , vol.324 , pp. 930-935
    • Tahiliani, M.1
  • 33
    • 85017132645 scopus 로고    scopus 로고
    • TET Methylcytosine oxidases in T cell and B cell development and function
    • Tsagaratou, A., et al. TET Methylcytosine oxidases in T cell and B cell development and function. Front. Immunol., 8, 2017, 220.
    • (2017) Front. Immunol. , vol.8 , pp. 220
    • Tsagaratou, A.1
  • 34
    • 78650175023 scopus 로고    scopus 로고
    • Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2
    • Ko, M., et al. Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature 468 (2010), 839–843.
    • (2010) Nature , vol.468 , pp. 839-843
    • Ko, M.1
  • 35
    • 84948446391 scopus 로고    scopus 로고
    • Acute loss of TET function results in aggressive myeloid cancer in mice
    • An, J., et al. Acute loss of TET function results in aggressive myeloid cancer in mice. Nat. Commun., 6, 2015, 10071.
    • (2015) Nat. Commun. , vol.6 , pp. 10071
    • An, J.1
  • 36
    • 0032143821 scopus 로고    scopus 로고
    • Helper T cell differentiation is controlled by the cell cycle
    • Bird, J.J., et al. Helper T cell differentiation is controlled by the cell cycle. Immunity 9 (1998), 229–237.
    • (1998) Immunity , vol.9 , pp. 229-237
    • Bird, J.J.1
  • 37
    • 84975709184 scopus 로고    scopus 로고
    • Epigenetics of T lymphocytes in health and disease
    • Leoni, C., et al. Epigenetics of T lymphocytes in health and disease. Swiss Med. Wkly., 145, 2015, w14191.
    • (2015) Swiss Med. Wkly. , vol.145 , pp. w14191
    • Leoni, C.1
  • 38
    • 18244365863 scopus 로고    scopus 로고
    • A critical role for Dnmt1 and DNA methylation in T cell development, function, and survival
    • Lee, P.P., et al. A critical role for Dnmt1 and DNA methylation in T cell development, function, and survival. Immunity 15 (2001), 763–774.
    • (2001) Immunity , vol.15 , pp. 763-774
    • Lee, P.P.1
  • 39
    • 70149103640 scopus 로고    scopus 로고
    • Identification of DNA methyltransferase 3a as a T cell receptor-induced regulator of Th1 and Th2 differentiation
    • Gamper, C.J., et al. Identification of DNA methyltransferase 3a as a T cell receptor-induced regulator of Th1 and Th2 differentiation. J. Immunol. 183 (2009), 2267–2276.
    • (2009) J. Immunol. , vol.183 , pp. 2267-2276
    • Gamper, C.J.1
  • 40
    • 34250773899 scopus 로고    scopus 로고
    • Comprehensive epigenetic profiling identifies multiple distal regulatory elements directing transcription of the gene encoding interferon-gamma
    • Schoenborn, J.R., et al. Comprehensive epigenetic profiling identifies multiple distal regulatory elements directing transcription of the gene encoding interferon-gamma. Nat. Immunol. 8 (2007), 732–742.
    • (2007) Nat. Immunol. , vol.8 , pp. 732-742
    • Schoenborn, J.R.1
  • 41
    • 84999836163 scopus 로고    scopus 로고
    • + T cells supports a linear differentiation model and highlights molecular regulators of memory development
    • + T cells supports a linear differentiation model and highlights molecular regulators of memory development. Immunity 45 (2016), 1148–1161.
    • (2016) Immunity , vol.45 , pp. 1148-1161
    • Durek, P.1
  • 42
    • 84922567219 scopus 로고    scopus 로고
    • Defining CD4 T cell memory by the epigenetic landscape of CpG DNA methylation
    • Komori, H.K., et al. Defining CD4 T cell memory by the epigenetic landscape of CpG DNA methylation. J. Immunol. 194 (2015), 1565–1579.
    • (2015) J. Immunol. , vol.194 , pp. 1565-1579
    • Komori, H.K.1
  • 43
    • 84928184771 scopus 로고    scopus 로고
    • The methylcytosine dioxygenase Tet2 promotes DNA demethylation and activation of cytokine gene expression in T cells
    • Ichiyama, K., et al. The methylcytosine dioxygenase Tet2 promotes DNA demethylation and activation of cytokine gene expression in T cells. Immunity 42 (2015), 613–626.
    • (2015) Immunity , vol.42 , pp. 613-626
    • Ichiyama, K.1
  • 44
    • 84905988908 scopus 로고    scopus 로고
    • Dissecting the dynamic changes of 5-hydroxymethylcytosine in T-cell development and differentiation
    • E3306-15
    • Tsagaratou, A., et al. Dissecting the dynamic changes of 5-hydroxymethylcytosine in T-cell development and differentiation. Proc. Natl. Acad. Sci. U. S. A., 111, 2014 E3306-15.
    • (2014) Proc. Natl. Acad. Sci. U. S. A. , vol.111
    • Tsagaratou, A.1
  • 45
    • 84992504084 scopus 로고    scopus 로고
    • + T cells
    • + T cells. Cell Rep. 16 (2016), 559–570.
    • (2016) Cell Rep. , vol.16 , pp. 559-570
    • Nestor, C.E.1
  • 46
    • 80052284526 scopus 로고    scopus 로고
    • Ten-eleven-translocation 2 (TET2) negatively regulates homeostasis and differentiation of hematopoietic stem cells in mice
    • Ko, M., et al. Ten-eleven-translocation 2 (TET2) negatively regulates homeostasis and differentiation of hematopoietic stem cells in mice. Proc. Natl. Acad. Sci. U. S. A. 108 (2011), 14566–14571.
    • (2011) Proc. Natl. Acad. Sci. U. S. A. , vol.108 , pp. 14566-14571
    • Ko, M.1
  • 47
    • 85038574329 scopus 로고    scopus 로고
    • + T cell memory differentiation
    • + T cell memory differentiation. J. Immunol. 200 (2018), 82–91.
    • (2018) J. Immunol. , vol.200 , pp. 82-91
    • Carty, S.A.1
  • 48
    • 84996836078 scopus 로고    scopus 로고
    • TET proteins regulate the lineage specification and TCR-mediated expansion of iNKT cells
    • Tsagaratou, A., et al. TET proteins regulate the lineage specification and TCR-mediated expansion of iNKT cells. Nat. Immunol. 18 (2017), 45–53.
    • (2017) Nat. Immunol. , vol.18 , pp. 45-53
    • Tsagaratou, A.1
  • 49
    • 84961213356 scopus 로고    scopus 로고
    • Control of Foxp3 stability through modulation of TET activity
    • Yue, X., et al. Control of Foxp3 stability through modulation of TET activity. J. Exp. Med. 213 (2016), 377–397.
    • (2016) J. Exp. Med. , vol.213 , pp. 377-397
    • Yue, X.1
  • 50
    • 84940971884 scopus 로고    scopus 로고
    • Hydrogen sulfide promotes Tet1- and Tet2-mediated Foxp3 demethylation to drive regulatory T cell differentiation and maintain immune homeostasis
    • Yang, R., et al. Hydrogen sulfide promotes Tet1- and Tet2-mediated Foxp3 demethylation to drive regulatory T cell differentiation and maintain immune homeostasis. Immunity 43 (2015), 251–263.
    • (2015) Immunity , vol.43 , pp. 251-263
    • Yang, R.1
  • 51
    • 84988592852 scopus 로고    scopus 로고
    • Inheritable silencing of endogenous genes by hit-and-run targeted epigenetic editing
    • Amabile, A., et al. Inheritable silencing of endogenous genes by hit-and-run targeted epigenetic editing. Cell 167 (2016), 219–232.
    • (2016) Cell , vol.167 , pp. 219-232
    • Amabile, A.1
  • 52
    • 85050234806 scopus 로고    scopus 로고
    • Reprogramming human T cell function and specificity with non-viral genome targeting
    • Roth, T.L., et al. Reprogramming human T cell function and specificity with non-viral genome targeting. Nature 559 (2018), 405–409.
    • (2018) Nature , vol.559 , pp. 405-409
    • Roth, T.L.1
  • 53
    • 85042852783 scopus 로고    scopus 로고
    • Optimized RNP transfection for highly efficient CRISPR/Cas9-mediated gene knockout in primary T cells
    • Seki, A., Rutz, S., Optimized RNP transfection for highly efficient CRISPR/Cas9-mediated gene knockout in primary T cells. J. Exp. Med. 215 (2018), 985–997.
    • (2018) J. Exp. Med. , vol.215 , pp. 985-997
    • Seki, A.1    Rutz, S.2
  • 54
    • 85048762253 scopus 로고    scopus 로고
    • Impaired DNA demethylation of C/EBP sites causes premature aging
    • Schafer, A., et al. Impaired DNA demethylation of C/EBP sites causes premature aging. Genes Dev. 32 (2018), 742–762.
    • (2018) Genes Dev. , vol.32 , pp. 742-762
    • Schafer, A.1
  • 55
    • 84876836223 scopus 로고    scopus 로고
    • Modification of enhancer chromatin: what, how, and why?
    • Calo, E., Wysocka, J., Modification of enhancer chromatin: what, how, and why?. Mol. Cell 49 (2013), 825–837.
    • (2013) Mol. Cell , vol.49 , pp. 825-837
    • Calo, E.1    Wysocka, J.2
  • 56
    • 84923999745 scopus 로고    scopus 로고
    • Single-base resolution analysis of active DNA demethylation using methylase-assisted bisulfite sequencing
    • Wu, H., et al. Single-base resolution analysis of active DNA demethylation using methylase-assisted bisulfite sequencing. Nat. Biotechnol. 32 (2014), 1231–1240.
    • (2014) Nat. Biotechnol. , vol.32 , pp. 1231-1240
    • Wu, H.1
  • 57
    • 84911493925 scopus 로고    scopus 로고
    • 5-Hydroxymethylcytosine is a predominantly stable DNA modification
    • Bachman, M., et al. 5-Hydroxymethylcytosine is a predominantly stable DNA modification. Nat. Chem. 6 (2014), 1049–1055.
    • (2014) Nat. Chem. , vol.6 , pp. 1049-1055
    • Bachman, M.1
  • 58
    • 84879663784 scopus 로고    scopus 로고
    • Global epigenomic reconfiguration during mammalian brain development
    • Lister, R., et al. Global epigenomic reconfiguration during mammalian brain development. Science, 341, 2013, 1237905.
    • (2013) Science , vol.341 , pp. 1237905
    • Lister, R.1
  • 59
    • 85045992515 scopus 로고    scopus 로고
    • Pluripotency factors functionally premark cell-type-restricted enhancers in ES cells
    • Kim, H.S., et al. Pluripotency factors functionally premark cell-type-restricted enhancers in ES cells. Nature 556 (2018), 510–514.
    • (2018) Nature , vol.556 , pp. 510-514
    • Kim, H.S.1
  • 60
    • 85036582852 scopus 로고    scopus 로고
    • TET proteins safeguard bivalent promoters from de novo methylation in human embryonic stem cells
    • Verma, N., et al. TET proteins safeguard bivalent promoters from de novo methylation in human embryonic stem cells. Nat. Genet. 50 (2018), 83–95.
    • (2018) Nat. Genet. , vol.50 , pp. 83-95
    • Verma, N.1
  • 61
    • 85050020811 scopus 로고    scopus 로고
    • DNMT3A and TET1 cooperate to regulate promoter epigenetic landscapes in mouse embryonic stem cells
    • Gu, T., et al. DNMT3A and TET1 cooperate to regulate promoter epigenetic landscapes in mouse embryonic stem cells. Genome Biol., 19, 2018, 88.
    • (2018) Genome Biol. , vol.19 , pp. 88
    • Gu, T.1
  • 62
    • 85047463592 scopus 로고    scopus 로고
    • DNA modifications: naturally more error prone?
    • Tomkova, M., Schuster-Bockler, B., DNA modifications: naturally more error prone?. Trends Genet. 34 (2018), 627–638.
    • (2018) Trends Genet. , vol.34 , pp. 627-638
    • Tomkova, M.1    Schuster-Bockler, B.2
  • 63
    • 84979608014 scopus 로고    scopus 로고
    • 5-Hydroxymethylcytosine marks regions with reduced mutation frequency in human DNA
    • Tomkova, M., et al. 5-Hydroxymethylcytosine marks regions with reduced mutation frequency in human DNA. eLife, 5, 2016, e17082.
    • (2016) eLife , vol.5
    • Tomkova, M.1
  • 64
    • 84964963496 scopus 로고    scopus 로고
    • TET2 regulates mast cell differentiation and proliferation through catalytic and non-catalytic activities
    • Montagner, S., et al. TET2 regulates mast cell differentiation and proliferation through catalytic and non-catalytic activities. Cell Rep. 15 (2016), 1566–1579.
    • (2016) Cell Rep. , vol.15 , pp. 1566-1579
    • Montagner, S.1
  • 65
    • 79956302047 scopus 로고    scopus 로고
    • TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity
    • Williams, K., et al. TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity. Nature 473 (2011), 343–348.
    • (2011) Nature , vol.473 , pp. 343-348
    • Williams, K.1
  • 66
    • 84942050633 scopus 로고    scopus 로고
    • Tet2 is required to resolve inflammation by recruiting Hdac2 to specifically repress IL-6
    • Zhang, Q., et al. Tet2 is required to resolve inflammation by recruiting Hdac2 to specifically repress IL-6. Nature 525 (2015), 389–393.
    • (2015) Nature , vol.525 , pp. 389-393
    • Zhang, Q.1
  • 67
    • 85028042548 scopus 로고    scopus 로고
    • DNMT3A and TET2 dominate clonal hematopoiesis and demonstrate benign phenotypes and different genetic predispositions
    • Buscarlet, M., et al. DNMT3A and TET2 dominate clonal hematopoiesis and demonstrate benign phenotypes and different genetic predispositions. Blood 130 (2017), 753–762.
    • (2017) Blood , vol.130 , pp. 753-762
    • Buscarlet, M.1
  • 68
    • 85026675493 scopus 로고    scopus 로고
    • Mutations in 5-methylcytosine oxidase TET2 and RhoA cooperatively disrupt T cell homeostasis
    • Zang, S., et al. Mutations in 5-methylcytosine oxidase TET2 and RhoA cooperatively disrupt T cell homeostasis. J. Clin. Invest. 127 (2017), 2998–3012.
    • (2017) J. Clin. Invest. , vol.127 , pp. 2998-3012
    • Zang, S.1
  • 69
    • 33744936286 scopus 로고    scopus 로고
    • The epigenetic face of systemic lupus erythematosus
    • Ballestar, E., et al. The epigenetic face of systemic lupus erythematosus. J. Immunol. 176 (2006), 7143–7147.
    • (2006) J. Immunol. , vol.176 , pp. 7143-7147
    • Ballestar, E.1
  • 70
    • 77957937011 scopus 로고    scopus 로고
    • Quantitative comparison of genome-wide DNA methylation mapping technologies
    • Bock, C., et al. Quantitative comparison of genome-wide DNA methylation mapping technologies. Nat. Biotechnol. 28 (2010), 1106–1114.
    • (2010) Nat. Biotechnol. , vol.28 , pp. 1106-1114
    • Bock, C.1
  • 71
    • 85048977998 scopus 로고    scopus 로고
    • A reassessment of DNA-immunoprecipitation-based genomic profiling
    • Lentini, A., et al. A reassessment of DNA-immunoprecipitation-based genomic profiling. Nat. Methods 15 (2018), 499–504.
    • (2018) Nat. Methods , vol.15 , pp. 499-504
    • Lentini, A.1
  • 72
    • 84861990517 scopus 로고    scopus 로고
    • Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome
    • Yu, M., et al. Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome. Cell 149 (2012), 1368–1380.
    • (2012) Cell , vol.149 , pp. 1368-1380
    • Yu, M.1
  • 73
    • 84861221693 scopus 로고    scopus 로고
    • Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution
    • Booth, M.J., et al. Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution. Science 336 (2012), 934–937.
    • (2012) Science , vol.336 , pp. 934-937
    • Booth, M.J.1
  • 74
    • 84904887535 scopus 로고    scopus 로고
    • TET proteins and 5-methylcytosine oxidation in the immune system
    • Tsagaratou, A., Rao, A., TET proteins and 5-methylcytosine oxidation in the immune system. Cold Spring Harb. Symp. Quant. Biol. 78 (2013), 1–10.
    • (2013) Cold Spring Harb. Symp. Quant. Biol. , vol.78 , pp. 1-10
    • Tsagaratou, A.1    Rao, A.2
  • 75
    • 85056416219 scopus 로고    scopus 로고
    • Nondestructive, base-resolution sequencing of 5-hydroxymethylcytosine using a DNA deaminase
    • Published online October 8, 2018
    • Schutsky, E.K., et al. Nondestructive, base-resolution sequencing of 5-hydroxymethylcytosine using a DNA deaminase. Nat. Biotechnol., 2018, 10.1038/nbt.4204 Published online October 8, 2018.
    • (2018) Nat. Biotechnol.
    • Schutsky, E.K.1
  • 76
    • 85046346648 scopus 로고    scopus 로고
    • Single-cell DNA methylation profiling: technologies and biological applications
    • Karemaker, I.D., Vermeulen, M., Single-cell DNA methylation profiling: technologies and biological applications. Trends Biotechnol. 36 (2018), 952–965.
    • (2018) Trends Biotechnol. , vol.36 , pp. 952-965
    • Karemaker, I.D.1    Vermeulen, M.2
  • 77
    • 84995804537 scopus 로고    scopus 로고
    • From profiles to function in epigenomics
    • Stricker, S.H., et al. From profiles to function in epigenomics. Nat. Rev. Genet. 18 (2017), 51–66.
    • (2017) Nat. Rev. Genet. , vol.18 , pp. 51-66
    • Stricker, S.H.1
  • 78
    • 84988569121 scopus 로고    scopus 로고
    • Editing DNA methylation in the mammalian genome
    • Liu, X.S., et al. Editing DNA methylation in the mammalian genome. Cell 167 (2016), 233–247.
    • (2016) Cell , vol.167 , pp. 233-247
    • Liu, X.S.1
  • 79
    • 84979034770 scopus 로고    scopus 로고
    • Repurposing the CRISPR–Cas9 system for targeted DNA methylation
    • Vojta, A., et al. Repurposing the CRISPR–Cas9 system for targeted DNA methylation. Nucleic Acids Res. 44 (2016), 5615–5628.
    • (2016) Nucleic Acids Res. , vol.44 , pp. 5615-5628
    • Vojta, A.1
  • 80
    • 85044908210 scopus 로고    scopus 로고
    • Genome-wide tracking of dCas9-methyltransferase footprints
    • Galonska, C., et al. Genome-wide tracking of dCas9-methyltransferase footprints. Nat. Commun., 9, 2018, 597.
    • (2018) Nat. Commun. , vol.9 , pp. 597
    • Galonska, C.1
  • 81
    • 85042000832 scopus 로고    scopus 로고
    • Rescue of fragile X syndrome neurons by DNA methylation editing of the FMR1 gene
    • Liu, X.S., et al. Rescue of fragile X syndrome neurons by DNA methylation editing of the FMR1 gene. Cell 172 (2018), 979–992.
    • (2018) Cell , vol.172 , pp. 979-992
    • Liu, X.S.1
  • 82
    • 85044202990 scopus 로고    scopus 로고
    • A user's guide to the ambiguous word ‘epigenetics’
    • Greally, J.M., A user's guide to the ambiguous word ‘epigenetics’. Nat. Rev. Mol. Cell Biol. 19 (2018), 207–208.
    • (2018) Nat. Rev. Mol. Cell Biol. , vol.19 , pp. 207-208
    • Greally, J.M.1
  • 83
    • 85061256792 scopus 로고    scopus 로고
    • et al.(2019) The contribution of active and passive mechanisms of 5mC and 5hmC removal in human T lymphocytes is differentiation- and activation-dependent. Published online January 30.
    • Vincenzetti, L.et al.(2019) The contribution of active and passive mechanisms of 5mC and 5hmC removal in human T lymphocytes is differentiation- and activation-dependent. Published online January 30, 2019. https://doi.org/10.1002/eji.201847967.
    • (2019)
    • Vincenzetti, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.