-
1
-
-
84859401055
-
Transcriptional and epigenetic control of T helper cell specification: molecular mechanisms underlying commitment and plasticity
-
Kanno, Y., et al. Transcriptional and epigenetic control of T helper cell specification: molecular mechanisms underlying commitment and plasticity. Annu. Rev. Immunol. 30 (2012), 707–731.
-
(2012)
Annu. Rev. Immunol.
, vol.30
, pp. 707-731
-
-
Kanno, Y.1
-
2
-
-
58849092225
-
Epigenetic control of T-helper-cell differentiation
-
Wilson, C.B., et al. Epigenetic control of T-helper-cell differentiation. Nat. Rev. Immunol. 9 (2009), 91–105.
-
(2009)
Nat. Rev. Immunol.
, vol.9
, pp. 91-105
-
-
Wilson, C.B.1
-
3
-
-
84888884346
-
The many faces of CD4 T cells: roles in immunity and disease
-
Sallusto, F., Monticelli, S., The many faces of CD4 T cells: roles in immunity and disease. Semin. Immunol. 25 (2013), 249–251.
-
(2013)
Semin. Immunol.
, vol.25
, pp. 249-251
-
-
Sallusto, F.1
Monticelli, S.2
-
4
-
-
84888884174
-
MicroRNAs in T helper cell differentiation and plasticity
-
Monticelli, S., MicroRNAs in T helper cell differentiation and plasticity. Semin. Immunol. 25 (2013), 291–298.
-
(2013)
Semin. Immunol.
, vol.25
, pp. 291-298
-
-
Monticelli, S.1
-
5
-
-
0035070195
-
Early transcription and silencing of cytokine genes underlie polarization of T helper cell subsets
-
Grogan, J.L., et al. Early transcription and silencing of cytokine genes underlie polarization of T helper cell subsets. Immunity 14 (2001), 205–215.
-
(2001)
Immunity
, vol.14
, pp. 205-215
-
-
Grogan, J.L.1
-
6
-
-
85017192307
-
Heritable gene regulation in the CD4:CD8 T cell lineage choice
-
Issuree, P.D., et al. Heritable gene regulation in the CD4:CD8 T cell lineage choice. Front. Immunol., 8, 2017, 291.
-
(2017)
Front. Immunol.
, vol.8
, pp. 291
-
-
Issuree, P.D.1
-
8
-
-
84895801889
-
Genomic patterns and context specific interpretation of DNA methylation
-
Baubec, T., Schubeler, D., Genomic patterns and context specific interpretation of DNA methylation. Curr. Opin. Genet. Dev. 25 (2014), 85–92.
-
(2014)
Curr. Opin. Genet. Dev.
, vol.25
, pp. 85-92
-
-
Baubec, T.1
Schubeler, D.2
-
9
-
-
70450217879
-
Human DNA methylomes at base resolution show widespread epigenomic differences
-
Lister, R., et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462 (2009), 315–322.
-
(2009)
Nature
, vol.462
, pp. 315-322
-
-
Lister, R.1
-
10
-
-
84355163093
-
DNA-binding factors shape the mouse methylome at distal regulatory regions
-
Stadler, M.B., et al. DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature 480 (2011), 490–495.
-
(2011)
Nature
, vol.480
, pp. 490-495
-
-
Stadler, M.B.1
-
11
-
-
0033615717
-
DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development
-
Okano, M., et al. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99 (1999), 247–257.
-
(1999)
Cell
, vol.99
, pp. 247-257
-
-
Okano, M.1
-
12
-
-
0036144048
-
DNA methylation patterns and epigenetic memory
-
Bird, A., DNA methylation patterns and epigenetic memory. Genes Dev. 16 (2002), 6–21.
-
(2002)
Genes Dev.
, vol.16
, pp. 6-21
-
-
Bird, A.1
-
13
-
-
0026708177
-
Targeted mutation of the DNA methyltransferase gene results in embryonic lethality
-
Li, E., et al. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69 (1992), 915–926.
-
(1992)
Cell
, vol.69
, pp. 915-926
-
-
Li, E.1
-
14
-
-
84923580247
-
DNMT3A in haematological malignancies
-
Yang, L., et al. DNMT3A in haematological malignancies. Nat. Rev. Cancer 15 (2015), 152–165.
-
(2015)
Nat. Rev. Cancer
, vol.15
, pp. 152-165
-
-
Yang, L.1
-
15
-
-
0033547330
-
Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene
-
Xu, G.L., et al. Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature 402 (1999), 187–191.
-
(1999)
Nature
, vol.402
, pp. 187-191
-
-
Xu, G.L.1
-
16
-
-
84898057327
-
Mutations in the DNA methyltransferase gene DNMT3A cause an overgrowth syndrome with intellectual disability
-
Tatton-Brown, K., et al. Mutations in the DNA methyltransferase gene DNMT3A cause an overgrowth syndrome with intellectual disability. Nat. Genet. 46 (2014), 385–388.
-
(2014)
Nat. Genet.
, vol.46
, pp. 385-388
-
-
Tatton-Brown, K.1
-
17
-
-
78649906060
-
DNMT3A mutations in acute myeloid leukemia
-
Ley, T.J., et al. DNMT3A mutations in acute myeloid leukemia. N. Engl. J. Med. 363 (2010), 2424–2433.
-
(2010)
N. Engl. J. Med.
, vol.363
, pp. 2424-2433
-
-
Ley, T.J.1
-
18
-
-
84874194072
-
DNA methylation: roles in mammalian development
-
Smith, Z.D., Meissner, A., DNA methylation: roles in mammalian development. Nat. Rev. Genet. 14 (2013), 204–220.
-
(2013)
Nat. Rev. Genet.
, vol.14
, pp. 204-220
-
-
Smith, Z.D.1
Meissner, A.2
-
19
-
-
85027516743
-
TET-mediated active DNA demethylation: mechanism, function and beyond
-
Wu, X., Zhang, Y., TET-mediated active DNA demethylation: mechanism, function and beyond. Nat. Rev. Genet. 18 (2017), 517–534.
-
(2017)
Nat. Rev. Genet.
, vol.18
, pp. 517-534
-
-
Wu, X.1
Zhang, Y.2
-
20
-
-
84923401742
-
ESCI award lecture: regulation, function and biomarker potential of DNA methylation
-
Schubeler, D., ESCI award lecture: regulation, function and biomarker potential of DNA methylation. Eur. J. Clin. Invest. 45 (2015), 288–293.
-
(2015)
Eur. J. Clin. Invest.
, vol.45
, pp. 288-293
-
-
Schubeler, D.1
-
21
-
-
0034713375
-
Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene
-
Bell, A.C., Felsenfeld, G., Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature 405 (2000), 482–485.
-
(2000)
Nature
, vol.405
, pp. 482-485
-
-
Bell, A.C.1
Felsenfeld, G.2
-
22
-
-
84951325892
-
Competition between DNA methylation and transcription factors determines binding of NRF1
-
Domcke, S., et al. Competition between DNA methylation and transcription factors determines binding of NRF1. Nature 528 (2015), 575–579.
-
(2015)
Nature
, vol.528
, pp. 575-579
-
-
Domcke, S.1
-
23
-
-
85018754019
-
Impact of cytosine methylation on DNA binding specificities of human transcription factors
-
Yin, Y., et al. Impact of cytosine methylation on DNA binding specificities of human transcription factors. Science, 356, 2017, eaaj2239.
-
(2017)
Science
, vol.356
-
-
Yin, Y.1
-
24
-
-
84875505675
-
A common mode of recognition for methylated CpG
-
Liu, Y., et al. A common mode of recognition for methylated CpG. Trends Biochem. Sci. 38 (2013), 177–183.
-
(2013)
Trends Biochem. Sci.
, vol.38
, pp. 177-183
-
-
Liu, Y.1
-
25
-
-
84874771985
-
Dynamic readers for 5-(hydroxy)methylcytosine and its oxidized derivatives
-
Spruijt, C.G., et al. Dynamic readers for 5-(hydroxy)methylcytosine and its oxidized derivatives. Cell 152 (2013), 1146–1159.
-
(2013)
Cell
, vol.152
, pp. 1146-1159
-
-
Spruijt, C.G.1
-
26
-
-
84886834154
-
Identification of active regulatory regions from DNA methylation data
-
Burger, L., et al. Identification of active regulatory regions from DNA methylation data. Nucleic Acids Res., 41, 2013, e155.
-
(2013)
Nucleic Acids Res.
, vol.41
, pp. e155
-
-
Burger, L.1
-
27
-
-
84923330509
-
Genomic profiling of DNA methyltransferases reveals a role for DNMT3B in genic methylation
-
Baubec, T., et al. Genomic profiling of DNA methyltransferases reveals a role for DNMT3B in genic methylation. Nature 520 (2015), 243–247.
-
(2015)
Nature
, vol.520
, pp. 243-247
-
-
Baubec, T.1
-
28
-
-
85014546354
-
Intragenic DNA methylation prevents spurious transcription initiation
-
Neri, F., et al. Intragenic DNA methylation prevents spurious transcription initiation. Nature 543 (2017), 72–77.
-
(2017)
Nature
, vol.543
, pp. 72-77
-
-
Neri, F.1
-
29
-
-
85067911080
-
An unmethylated 3′ promoter-proximal region is required for efficient transcription initiation
-
Appanah, R., et al. An unmethylated 3′ promoter-proximal region is required for efficient transcription initiation. PLoS Genet., 3, 2007, e27.
-
(2007)
PLoS Genet.
, vol.3
, pp. e27
-
-
Appanah, R.1
-
30
-
-
84880815366
-
Short-term memory of danger signals and environmental stimuli in immune cells
-
Monticelli, S., Natoli, G., Short-term memory of danger signals and environmental stimuli in immune cells. Nat. Immunol. 14 (2013), 777–784.
-
(2013)
Nat. Immunol.
, vol.14
, pp. 777-784
-
-
Monticelli, S.1
Natoli, G.2
-
31
-
-
84878260646
-
TETonic shift: biological roles of TET proteins in DNA demethylation and transcription
-
Pastor, W.A., et al. TETonic shift: biological roles of TET proteins in DNA demethylation and transcription. Nat. Rev. Mol. Cell Biol. 14 (2013), 341–356.
-
(2013)
Nat. Rev. Mol. Cell Biol.
, vol.14
, pp. 341-356
-
-
Pastor, W.A.1
-
32
-
-
66149146320
-
Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1
-
Tahiliani, M., et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324 (2009), 930–935.
-
(2009)
Science
, vol.324
, pp. 930-935
-
-
Tahiliani, M.1
-
33
-
-
85017132645
-
TET Methylcytosine oxidases in T cell and B cell development and function
-
Tsagaratou, A., et al. TET Methylcytosine oxidases in T cell and B cell development and function. Front. Immunol., 8, 2017, 220.
-
(2017)
Front. Immunol.
, vol.8
, pp. 220
-
-
Tsagaratou, A.1
-
34
-
-
78650175023
-
Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2
-
Ko, M., et al. Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature 468 (2010), 839–843.
-
(2010)
Nature
, vol.468
, pp. 839-843
-
-
Ko, M.1
-
35
-
-
84948446391
-
Acute loss of TET function results in aggressive myeloid cancer in mice
-
An, J., et al. Acute loss of TET function results in aggressive myeloid cancer in mice. Nat. Commun., 6, 2015, 10071.
-
(2015)
Nat. Commun.
, vol.6
, pp. 10071
-
-
An, J.1
-
36
-
-
0032143821
-
Helper T cell differentiation is controlled by the cell cycle
-
Bird, J.J., et al. Helper T cell differentiation is controlled by the cell cycle. Immunity 9 (1998), 229–237.
-
(1998)
Immunity
, vol.9
, pp. 229-237
-
-
Bird, J.J.1
-
37
-
-
84975709184
-
Epigenetics of T lymphocytes in health and disease
-
Leoni, C., et al. Epigenetics of T lymphocytes in health and disease. Swiss Med. Wkly., 145, 2015, w14191.
-
(2015)
Swiss Med. Wkly.
, vol.145
, pp. w14191
-
-
Leoni, C.1
-
38
-
-
18244365863
-
A critical role for Dnmt1 and DNA methylation in T cell development, function, and survival
-
Lee, P.P., et al. A critical role for Dnmt1 and DNA methylation in T cell development, function, and survival. Immunity 15 (2001), 763–774.
-
(2001)
Immunity
, vol.15
, pp. 763-774
-
-
Lee, P.P.1
-
39
-
-
70149103640
-
Identification of DNA methyltransferase 3a as a T cell receptor-induced regulator of Th1 and Th2 differentiation
-
Gamper, C.J., et al. Identification of DNA methyltransferase 3a as a T cell receptor-induced regulator of Th1 and Th2 differentiation. J. Immunol. 183 (2009), 2267–2276.
-
(2009)
J. Immunol.
, vol.183
, pp. 2267-2276
-
-
Gamper, C.J.1
-
40
-
-
34250773899
-
Comprehensive epigenetic profiling identifies multiple distal regulatory elements directing transcription of the gene encoding interferon-gamma
-
Schoenborn, J.R., et al. Comprehensive epigenetic profiling identifies multiple distal regulatory elements directing transcription of the gene encoding interferon-gamma. Nat. Immunol. 8 (2007), 732–742.
-
(2007)
Nat. Immunol.
, vol.8
, pp. 732-742
-
-
Schoenborn, J.R.1
-
41
-
-
84999836163
-
+ T cells supports a linear differentiation model and highlights molecular regulators of memory development
-
+ T cells supports a linear differentiation model and highlights molecular regulators of memory development. Immunity 45 (2016), 1148–1161.
-
(2016)
Immunity
, vol.45
, pp. 1148-1161
-
-
Durek, P.1
-
42
-
-
84922567219
-
Defining CD4 T cell memory by the epigenetic landscape of CpG DNA methylation
-
Komori, H.K., et al. Defining CD4 T cell memory by the epigenetic landscape of CpG DNA methylation. J. Immunol. 194 (2015), 1565–1579.
-
(2015)
J. Immunol.
, vol.194
, pp. 1565-1579
-
-
Komori, H.K.1
-
43
-
-
84928184771
-
The methylcytosine dioxygenase Tet2 promotes DNA demethylation and activation of cytokine gene expression in T cells
-
Ichiyama, K., et al. The methylcytosine dioxygenase Tet2 promotes DNA demethylation and activation of cytokine gene expression in T cells. Immunity 42 (2015), 613–626.
-
(2015)
Immunity
, vol.42
, pp. 613-626
-
-
Ichiyama, K.1
-
44
-
-
84905988908
-
Dissecting the dynamic changes of 5-hydroxymethylcytosine in T-cell development and differentiation
-
E3306-15
-
Tsagaratou, A., et al. Dissecting the dynamic changes of 5-hydroxymethylcytosine in T-cell development and differentiation. Proc. Natl. Acad. Sci. U. S. A., 111, 2014 E3306-15.
-
(2014)
Proc. Natl. Acad. Sci. U. S. A.
, vol.111
-
-
Tsagaratou, A.1
-
45
-
-
84992504084
-
+ T cells
-
+ T cells. Cell Rep. 16 (2016), 559–570.
-
(2016)
Cell Rep.
, vol.16
, pp. 559-570
-
-
Nestor, C.E.1
-
46
-
-
80052284526
-
Ten-eleven-translocation 2 (TET2) negatively regulates homeostasis and differentiation of hematopoietic stem cells in mice
-
Ko, M., et al. Ten-eleven-translocation 2 (TET2) negatively regulates homeostasis and differentiation of hematopoietic stem cells in mice. Proc. Natl. Acad. Sci. U. S. A. 108 (2011), 14566–14571.
-
(2011)
Proc. Natl. Acad. Sci. U. S. A.
, vol.108
, pp. 14566-14571
-
-
Ko, M.1
-
47
-
-
85038574329
-
+ T cell memory differentiation
-
+ T cell memory differentiation. J. Immunol. 200 (2018), 82–91.
-
(2018)
J. Immunol.
, vol.200
, pp. 82-91
-
-
Carty, S.A.1
-
48
-
-
84996836078
-
TET proteins regulate the lineage specification and TCR-mediated expansion of iNKT cells
-
Tsagaratou, A., et al. TET proteins regulate the lineage specification and TCR-mediated expansion of iNKT cells. Nat. Immunol. 18 (2017), 45–53.
-
(2017)
Nat. Immunol.
, vol.18
, pp. 45-53
-
-
Tsagaratou, A.1
-
49
-
-
84961213356
-
Control of Foxp3 stability through modulation of TET activity
-
Yue, X., et al. Control of Foxp3 stability through modulation of TET activity. J. Exp. Med. 213 (2016), 377–397.
-
(2016)
J. Exp. Med.
, vol.213
, pp. 377-397
-
-
Yue, X.1
-
50
-
-
84940971884
-
Hydrogen sulfide promotes Tet1- and Tet2-mediated Foxp3 demethylation to drive regulatory T cell differentiation and maintain immune homeostasis
-
Yang, R., et al. Hydrogen sulfide promotes Tet1- and Tet2-mediated Foxp3 demethylation to drive regulatory T cell differentiation and maintain immune homeostasis. Immunity 43 (2015), 251–263.
-
(2015)
Immunity
, vol.43
, pp. 251-263
-
-
Yang, R.1
-
51
-
-
84988592852
-
Inheritable silencing of endogenous genes by hit-and-run targeted epigenetic editing
-
Amabile, A., et al. Inheritable silencing of endogenous genes by hit-and-run targeted epigenetic editing. Cell 167 (2016), 219–232.
-
(2016)
Cell
, vol.167
, pp. 219-232
-
-
Amabile, A.1
-
52
-
-
85050234806
-
Reprogramming human T cell function and specificity with non-viral genome targeting
-
Roth, T.L., et al. Reprogramming human T cell function and specificity with non-viral genome targeting. Nature 559 (2018), 405–409.
-
(2018)
Nature
, vol.559
, pp. 405-409
-
-
Roth, T.L.1
-
53
-
-
85042852783
-
Optimized RNP transfection for highly efficient CRISPR/Cas9-mediated gene knockout in primary T cells
-
Seki, A., Rutz, S., Optimized RNP transfection for highly efficient CRISPR/Cas9-mediated gene knockout in primary T cells. J. Exp. Med. 215 (2018), 985–997.
-
(2018)
J. Exp. Med.
, vol.215
, pp. 985-997
-
-
Seki, A.1
Rutz, S.2
-
54
-
-
85048762253
-
Impaired DNA demethylation of C/EBP sites causes premature aging
-
Schafer, A., et al. Impaired DNA demethylation of C/EBP sites causes premature aging. Genes Dev. 32 (2018), 742–762.
-
(2018)
Genes Dev.
, vol.32
, pp. 742-762
-
-
Schafer, A.1
-
55
-
-
84876836223
-
Modification of enhancer chromatin: what, how, and why?
-
Calo, E., Wysocka, J., Modification of enhancer chromatin: what, how, and why?. Mol. Cell 49 (2013), 825–837.
-
(2013)
Mol. Cell
, vol.49
, pp. 825-837
-
-
Calo, E.1
Wysocka, J.2
-
56
-
-
84923999745
-
Single-base resolution analysis of active DNA demethylation using methylase-assisted bisulfite sequencing
-
Wu, H., et al. Single-base resolution analysis of active DNA demethylation using methylase-assisted bisulfite sequencing. Nat. Biotechnol. 32 (2014), 1231–1240.
-
(2014)
Nat. Biotechnol.
, vol.32
, pp. 1231-1240
-
-
Wu, H.1
-
57
-
-
84911493925
-
5-Hydroxymethylcytosine is a predominantly stable DNA modification
-
Bachman, M., et al. 5-Hydroxymethylcytosine is a predominantly stable DNA modification. Nat. Chem. 6 (2014), 1049–1055.
-
(2014)
Nat. Chem.
, vol.6
, pp. 1049-1055
-
-
Bachman, M.1
-
58
-
-
84879663784
-
Global epigenomic reconfiguration during mammalian brain development
-
Lister, R., et al. Global epigenomic reconfiguration during mammalian brain development. Science, 341, 2013, 1237905.
-
(2013)
Science
, vol.341
, pp. 1237905
-
-
Lister, R.1
-
59
-
-
85045992515
-
Pluripotency factors functionally premark cell-type-restricted enhancers in ES cells
-
Kim, H.S., et al. Pluripotency factors functionally premark cell-type-restricted enhancers in ES cells. Nature 556 (2018), 510–514.
-
(2018)
Nature
, vol.556
, pp. 510-514
-
-
Kim, H.S.1
-
60
-
-
85036582852
-
TET proteins safeguard bivalent promoters from de novo methylation in human embryonic stem cells
-
Verma, N., et al. TET proteins safeguard bivalent promoters from de novo methylation in human embryonic stem cells. Nat. Genet. 50 (2018), 83–95.
-
(2018)
Nat. Genet.
, vol.50
, pp. 83-95
-
-
Verma, N.1
-
61
-
-
85050020811
-
DNMT3A and TET1 cooperate to regulate promoter epigenetic landscapes in mouse embryonic stem cells
-
Gu, T., et al. DNMT3A and TET1 cooperate to regulate promoter epigenetic landscapes in mouse embryonic stem cells. Genome Biol., 19, 2018, 88.
-
(2018)
Genome Biol.
, vol.19
, pp. 88
-
-
Gu, T.1
-
62
-
-
85047463592
-
DNA modifications: naturally more error prone?
-
Tomkova, M., Schuster-Bockler, B., DNA modifications: naturally more error prone?. Trends Genet. 34 (2018), 627–638.
-
(2018)
Trends Genet.
, vol.34
, pp. 627-638
-
-
Tomkova, M.1
Schuster-Bockler, B.2
-
63
-
-
84979608014
-
5-Hydroxymethylcytosine marks regions with reduced mutation frequency in human DNA
-
Tomkova, M., et al. 5-Hydroxymethylcytosine marks regions with reduced mutation frequency in human DNA. eLife, 5, 2016, e17082.
-
(2016)
eLife
, vol.5
-
-
Tomkova, M.1
-
64
-
-
84964963496
-
TET2 regulates mast cell differentiation and proliferation through catalytic and non-catalytic activities
-
Montagner, S., et al. TET2 regulates mast cell differentiation and proliferation through catalytic and non-catalytic activities. Cell Rep. 15 (2016), 1566–1579.
-
(2016)
Cell Rep.
, vol.15
, pp. 1566-1579
-
-
Montagner, S.1
-
65
-
-
79956302047
-
TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity
-
Williams, K., et al. TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity. Nature 473 (2011), 343–348.
-
(2011)
Nature
, vol.473
, pp. 343-348
-
-
Williams, K.1
-
66
-
-
84942050633
-
Tet2 is required to resolve inflammation by recruiting Hdac2 to specifically repress IL-6
-
Zhang, Q., et al. Tet2 is required to resolve inflammation by recruiting Hdac2 to specifically repress IL-6. Nature 525 (2015), 389–393.
-
(2015)
Nature
, vol.525
, pp. 389-393
-
-
Zhang, Q.1
-
67
-
-
85028042548
-
DNMT3A and TET2 dominate clonal hematopoiesis and demonstrate benign phenotypes and different genetic predispositions
-
Buscarlet, M., et al. DNMT3A and TET2 dominate clonal hematopoiesis and demonstrate benign phenotypes and different genetic predispositions. Blood 130 (2017), 753–762.
-
(2017)
Blood
, vol.130
, pp. 753-762
-
-
Buscarlet, M.1
-
68
-
-
85026675493
-
Mutations in 5-methylcytosine oxidase TET2 and RhoA cooperatively disrupt T cell homeostasis
-
Zang, S., et al. Mutations in 5-methylcytosine oxidase TET2 and RhoA cooperatively disrupt T cell homeostasis. J. Clin. Invest. 127 (2017), 2998–3012.
-
(2017)
J. Clin. Invest.
, vol.127
, pp. 2998-3012
-
-
Zang, S.1
-
69
-
-
33744936286
-
The epigenetic face of systemic lupus erythematosus
-
Ballestar, E., et al. The epigenetic face of systemic lupus erythematosus. J. Immunol. 176 (2006), 7143–7147.
-
(2006)
J. Immunol.
, vol.176
, pp. 7143-7147
-
-
Ballestar, E.1
-
70
-
-
77957937011
-
Quantitative comparison of genome-wide DNA methylation mapping technologies
-
Bock, C., et al. Quantitative comparison of genome-wide DNA methylation mapping technologies. Nat. Biotechnol. 28 (2010), 1106–1114.
-
(2010)
Nat. Biotechnol.
, vol.28
, pp. 1106-1114
-
-
Bock, C.1
-
71
-
-
85048977998
-
A reassessment of DNA-immunoprecipitation-based genomic profiling
-
Lentini, A., et al. A reassessment of DNA-immunoprecipitation-based genomic profiling. Nat. Methods 15 (2018), 499–504.
-
(2018)
Nat. Methods
, vol.15
, pp. 499-504
-
-
Lentini, A.1
-
72
-
-
84861990517
-
Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome
-
Yu, M., et al. Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome. Cell 149 (2012), 1368–1380.
-
(2012)
Cell
, vol.149
, pp. 1368-1380
-
-
Yu, M.1
-
73
-
-
84861221693
-
Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution
-
Booth, M.J., et al. Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution. Science 336 (2012), 934–937.
-
(2012)
Science
, vol.336
, pp. 934-937
-
-
Booth, M.J.1
-
74
-
-
84904887535
-
TET proteins and 5-methylcytosine oxidation in the immune system
-
Tsagaratou, A., Rao, A., TET proteins and 5-methylcytosine oxidation in the immune system. Cold Spring Harb. Symp. Quant. Biol. 78 (2013), 1–10.
-
(2013)
Cold Spring Harb. Symp. Quant. Biol.
, vol.78
, pp. 1-10
-
-
Tsagaratou, A.1
Rao, A.2
-
75
-
-
85056416219
-
Nondestructive, base-resolution sequencing of 5-hydroxymethylcytosine using a DNA deaminase
-
Published online October 8, 2018
-
Schutsky, E.K., et al. Nondestructive, base-resolution sequencing of 5-hydroxymethylcytosine using a DNA deaminase. Nat. Biotechnol., 2018, 10.1038/nbt.4204 Published online October 8, 2018.
-
(2018)
Nat. Biotechnol.
-
-
Schutsky, E.K.1
-
76
-
-
85046346648
-
Single-cell DNA methylation profiling: technologies and biological applications
-
Karemaker, I.D., Vermeulen, M., Single-cell DNA methylation profiling: technologies and biological applications. Trends Biotechnol. 36 (2018), 952–965.
-
(2018)
Trends Biotechnol.
, vol.36
, pp. 952-965
-
-
Karemaker, I.D.1
Vermeulen, M.2
-
77
-
-
84995804537
-
From profiles to function in epigenomics
-
Stricker, S.H., et al. From profiles to function in epigenomics. Nat. Rev. Genet. 18 (2017), 51–66.
-
(2017)
Nat. Rev. Genet.
, vol.18
, pp. 51-66
-
-
Stricker, S.H.1
-
78
-
-
84988569121
-
Editing DNA methylation in the mammalian genome
-
Liu, X.S., et al. Editing DNA methylation in the mammalian genome. Cell 167 (2016), 233–247.
-
(2016)
Cell
, vol.167
, pp. 233-247
-
-
Liu, X.S.1
-
79
-
-
84979034770
-
Repurposing the CRISPR–Cas9 system for targeted DNA methylation
-
Vojta, A., et al. Repurposing the CRISPR–Cas9 system for targeted DNA methylation. Nucleic Acids Res. 44 (2016), 5615–5628.
-
(2016)
Nucleic Acids Res.
, vol.44
, pp. 5615-5628
-
-
Vojta, A.1
-
80
-
-
85044908210
-
Genome-wide tracking of dCas9-methyltransferase footprints
-
Galonska, C., et al. Genome-wide tracking of dCas9-methyltransferase footprints. Nat. Commun., 9, 2018, 597.
-
(2018)
Nat. Commun.
, vol.9
, pp. 597
-
-
Galonska, C.1
-
81
-
-
85042000832
-
Rescue of fragile X syndrome neurons by DNA methylation editing of the FMR1 gene
-
Liu, X.S., et al. Rescue of fragile X syndrome neurons by DNA methylation editing of the FMR1 gene. Cell 172 (2018), 979–992.
-
(2018)
Cell
, vol.172
, pp. 979-992
-
-
Liu, X.S.1
-
82
-
-
85044202990
-
A user's guide to the ambiguous word ‘epigenetics’
-
Greally, J.M., A user's guide to the ambiguous word ‘epigenetics’. Nat. Rev. Mol. Cell Biol. 19 (2018), 207–208.
-
(2018)
Nat. Rev. Mol. Cell Biol.
, vol.19
, pp. 207-208
-
-
Greally, J.M.1
-
83
-
-
85061256792
-
-
et al.(2019) The contribution of active and passive mechanisms of 5mC and 5hmC removal in human T lymphocytes is differentiation- and activation-dependent. Published online January 30.
-
Vincenzetti, L.et al.(2019) The contribution of active and passive mechanisms of 5mC and 5hmC removal in human T lymphocytes is differentiation- and activation-dependent. Published online January 30, 2019. https://doi.org/10.1002/eji.201847967.
-
(2019)
-
-
Vincenzetti, L.1
|