-
1
-
-
0023701018
-
Cloning and sequencing of a cDNA encoding DNA methyltransferase of mouse cells. The carboxyl-terminal domain of the mammalian enzymes is related to bacterial restriction methyltransferases
-
Bestor T., et al. Cloning and sequencing of a cDNA encoding DNA methyltransferase of mouse cells. The carboxyl-terminal domain of the mammalian enzymes is related to bacterial restriction methyltransferases. J. Mol. Biol. 1988, 203:971-983.
-
(1988)
J. Mol. Biol.
, vol.203
, pp. 971-983
-
-
Bestor, T.1
-
2
-
-
0031860739
-
Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases
-
Okano M., et al. Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat. Genet. 1998, 19:219-220.
-
(1998)
Nat. Genet.
, vol.19
, pp. 219-220
-
-
Okano, M.1
-
3
-
-
66149146320
-
Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1
-
Tahiliani M., et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 2009, 324:930-935.
-
(2009)
Science
, vol.324
, pp. 930-935
-
-
Tahiliani, M.1
-
4
-
-
80052461558
-
Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine
-
Ito S., et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 2011, 333:1300-1303.
-
(2011)
Science
, vol.333
, pp. 1300-1303
-
-
Ito, S.1
-
5
-
-
80052495940
-
Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA
-
He Y.F., et al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 2011, 333:1303-1307.
-
(2011)
Science
, vol.333
, pp. 1303-1307
-
-
He, Y.F.1
-
6
-
-
82655187105
-
Generation and replication-dependent dilution of 5fC and 5caC during mouse preimplantation development
-
Inoue A., et al. Generation and replication-dependent dilution of 5fC and 5caC during mouse preimplantation development. Cell Res. 2011, 21:1670-1676.
-
(2011)
Cell Res.
, vol.21
, pp. 1670-1676
-
-
Inoue, A.1
-
7
-
-
80054097425
-
Replication-dependent loss of 5-hydroxymethylcytosine in mouse preimplantation embryos
-
Inoue A., Zhang Y. Replication-dependent loss of 5-hydroxymethylcytosine in mouse preimplantation embryos. Science 2011, 334:194.
-
(2011)
Science
, vol.334
, pp. 194
-
-
Inoue, A.1
Zhang, Y.2
-
8
-
-
55949104585
-
The MBD protein family-reading an epigenetic mark?
-
Dhasarathy A., Wade P.A. The MBD protein family-reading an epigenetic mark?. Mutat. Res. 2008, 647:39-43.
-
(2008)
Mutat. Res.
, vol.647
, pp. 39-43
-
-
Dhasarathy, A.1
Wade, P.A.2
-
9
-
-
80054047383
-
The role of MeCP2 in the brain
-
Guy J., et al. The role of MeCP2 in the brain. Ann. Rev. Cell Dev. Biol. 2011, 27:631-652.
-
(2011)
Ann. Rev. Cell Dev. Biol.
, vol.27
, pp. 631-652
-
-
Guy, J.1
-
10
-
-
66349103332
-
UHRF1, a modular multi-domain protein, regulates replication-coupled crosstalk between DNA methylation and histone modifications
-
Hashimoto H., et al. UHRF1, a modular multi-domain protein, regulates replication-coupled crosstalk between DNA methylation and histone modifications. Epigenetics 2009, 4:8-14.
-
(2009)
Epigenetics
, vol.4
, pp. 8-14
-
-
Hashimoto, H.1
-
11
-
-
79955069748
-
Recruitment of Dnmt1: roles of the SRA protein Np95 (Uhrf1) and other factors
-
Sharif J., Koseki H. Recruitment of Dnmt1: roles of the SRA protein Np95 (Uhrf1) and other factors. Prog. Mol. Biol. Transl. Sci. 2011, 101:289-310.
-
(2011)
Prog. Mol. Biol. Transl. Sci.
, vol.101
, pp. 289-310
-
-
Sharif, J.1
Koseki, H.2
-
12
-
-
80052016907
-
Solution structure and dynamic analysis of chicken MBD2 methyl binding domain bound to a target-methylated DNA sequence
-
Scarsdale J.N., et al. Solution structure and dynamic analysis of chicken MBD2 methyl binding domain bound to a target-methylated DNA sequence. Nucleic Acids Res. 2011, 39:6741-6752.
-
(2011)
Nucleic Acids Res.
, vol.39
, pp. 6741-6752
-
-
Scarsdale, J.N.1
-
13
-
-
39549090166
-
MeCP2 binding to DNA depends upon hydration at methyl-CpG
-
Ho K.L., et al. MeCP2 binding to DNA depends upon hydration at methyl-CpG. Mol. Cell 2008, 29:525-531.
-
(2008)
Mol. Cell
, vol.29
, pp. 525-531
-
-
Ho, K.L.1
-
14
-
-
0035906936
-
Solution structure of the methyl-CpG binding domain of human MBD1 in complex with methylated DNA
-
Ohki I., et al. Solution structure of the methyl-CpG binding domain of human MBD1 in complex with methylated DNA. Cell 2001, 105:487-497.
-
(2001)
Cell
, vol.105
, pp. 487-497
-
-
Ohki, I.1
-
15
-
-
53649089723
-
The SRA domain of UHRF1 flips 5-methylcytosine out of the DNA helix
-
Hashimoto H., et al. The SRA domain of UHRF1 flips 5-methylcytosine out of the DNA helix. Nature 2008, 455:826-829.
-
(2008)
Nature
, vol.455
, pp. 826-829
-
-
Hashimoto, H.1
-
16
-
-
53649097070
-
Recognition of hemi-methylated DNA by the SRA protein UHRF1 by a base-flipping mechanism
-
Arita K., et al. Recognition of hemi-methylated DNA by the SRA protein UHRF1 by a base-flipping mechanism. Nature 2008, 455:818-821.
-
(2008)
Nature
, vol.455
, pp. 818-821
-
-
Arita, K.1
-
17
-
-
53649088595
-
Structural basis for recognition of hemi-methylated DNA by the SRA domain of human UHRF1
-
Avvakumov G.V., et al. Structural basis for recognition of hemi-methylated DNA by the SRA domain of human UHRF1. Nature 2008, 455:822-825.
-
(2008)
Nature
, vol.455
, pp. 822-825
-
-
Avvakumov, G.V.1
-
18
-
-
78651515883
-
A dual flip-out mechanism for 5mC recognition by the Arabidopsis SUVH5 SRA domain and its impact on DNA methylation and H3K9 dimethylation in vivo
-
Rajakumara E., et al. A dual flip-out mechanism for 5mC recognition by the Arabidopsis SUVH5 SRA domain and its impact on DNA methylation and H3K9 dimethylation in vivo. Genes Dev. 2011, 25:137-152.
-
(2011)
Genes Dev.
, vol.25
, pp. 137-152
-
-
Rajakumara, E.1
-
19
-
-
77956120147
-
Sequence-specific recognition of methylated DNA by human zinc-finger proteins
-
Sasai N., et al. Sequence-specific recognition of methylated DNA by human zinc-finger proteins. Nucleic Acids Res. 2010, 38:5015-5022.
-
(2010)
Nucleic Acids Res.
, vol.38
, pp. 5015-5022
-
-
Sasai, N.1
-
20
-
-
84866544521
-
Molecular basis for recognition of methylated and specific DNA sequences by the zinc finger protein Kaiso
-
Buck-Koehntop B.A., et al. Molecular basis for recognition of methylated and specific DNA sequences by the zinc finger protein Kaiso. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:15229-15234.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 15229-15234
-
-
Buck-Koehntop, B.A.1
-
21
-
-
84868556202
-
An atomic model of Zfp57 recognition of CpG methylation within a specific DNA sequence
-
Liu Y., et al. An atomic model of Zfp57 recognition of CpG methylation within a specific DNA sequence. Genes Dev. 2012, 26:2374-2379.
-
(2012)
Genes Dev.
, vol.26
, pp. 2374-2379
-
-
Liu, Y.1
-
22
-
-
0035394961
-
The p120 catenin partner Kaiso is a DNA methylation-dependent transcriptional repressor
-
Prokhortchouk A., et al. The p120 catenin partner Kaiso is a DNA methylation-dependent transcriptional repressor. Genes Dev. 2001, 15:1613-1618.
-
(2001)
Genes Dev.
, vol.15
, pp. 1613-1618
-
-
Prokhortchouk, A.1
-
23
-
-
48349092985
-
Hypomethylation of multiple imprinted loci in individuals with transient neonatal diabetes is associated with mutations in ZFP57
-
Mackay D.J., et al. Hypomethylation of multiple imprinted loci in individuals with transient neonatal diabetes is associated with mutations in ZFP57. Nat. Genet. 2008, 40:949-951.
-
(2008)
Nat. Genet.
, vol.40
, pp. 949-951
-
-
Mackay, D.J.1
-
24
-
-
0034999879
-
All in the family: the BTB/POZ, KRAB, and SCAN domains
-
Collins T., et al. All in the family: the BTB/POZ, KRAB, and SCAN domains. Mol. Cell. Biol. 2001, 21:3609-3615.
-
(2001)
Mol. Cell. Biol.
, vol.21
, pp. 3609-3615
-
-
Collins, T.1
-
25
-
-
79960687678
-
A gene-rich, transcriptionally active environment and the pre-deposition of repressive marks are predictive of susceptibility to KRAB/KAP1-mediated silencing
-
Meylan S., et al. A gene-rich, transcriptionally active environment and the pre-deposition of repressive marks are predictive of susceptibility to KRAB/KAP1-mediated silencing. BMC Genomics 2011, 12:378.
-
(2011)
BMC Genomics
, vol.12
, pp. 378
-
-
Meylan, S.1
-
26
-
-
84864240469
-
Human more complex than mouse at cellular level
-
Vinogradov A.E. Human more complex than mouse at cellular level. PLoS ONE 2012, 7:e41753.
-
(2012)
PLoS ONE
, vol.7
-
-
Vinogradov, A.E.1
-
27
-
-
33745179207
-
A comprehensive catalog of human KRAB-associated zinc finger genes: insights into the evolutionary history of a large family of transcriptional repressors
-
Huntley S., et al. A comprehensive catalog of human KRAB-associated zinc finger genes: insights into the evolutionary history of a large family of transcriptional repressors. Genome Res. 2006, 16:669-677.
-
(2006)
Genome Res.
, vol.16
, pp. 669-677
-
-
Huntley, S.1
-
28
-
-
64549105618
-
Evolution of C2H2-zinc finger genes revisited
-
Thomas J.H., Emerson R.O. Evolution of C2H2-zinc finger genes revisited. BMC Evol. Biol. 2009, 9:51.
-
(2009)
BMC Evol. Biol.
, vol.9
, pp. 51
-
-
Thomas, J.H.1
Emerson, R.O.2
-
29
-
-
79959668884
-
Gain, loss and divergence in primate zinc-finger genes: a rich resource for evolution of gene regulatory differences between species
-
Nowick K., et al. Gain, loss and divergence in primate zinc-finger genes: a rich resource for evolution of gene regulatory differences between species. PLoS ONE 2011, 6:e21553.
-
(2011)
PLoS ONE
, vol.6
-
-
Nowick, K.1
-
30
-
-
0033624684
-
DNA recognition by Cys2His2 zinc finger proteins
-
Wolfe S.A., et al. DNA recognition by Cys2His2 zinc finger proteins. Annu. Rev. Biophys. Biomol. Struct. 2000, 29:183-212.
-
(2000)
Annu. Rev. Biophys. Biomol. Struct.
, vol.29
, pp. 183-212
-
-
Wolfe, S.A.1
-
31
-
-
80555156105
-
In embryonic stem cells, ZFP57/KAP1 recognize a methylated hexanucleotide to affect chromatin and DNA methylation of imprinting control regions
-
Quenneville S., et al. In embryonic stem cells, ZFP57/KAP1 recognize a methylated hexanucleotide to affect chromatin and DNA methylation of imprinting control regions. Mol. Cell 2011, 44:361-372.
-
(2011)
Mol. Cell
, vol.44
, pp. 361-372
-
-
Quenneville, S.1
-
32
-
-
0036640736
-
The p120(ctn)-binding partner Kaiso is a bi-modal DNA-binding protein that recognizes both a sequence-specific consensus and methylated CpG dinucleotides
-
Daniel J.M., et al. The p120(ctn)-binding partner Kaiso is a bi-modal DNA-binding protein that recognizes both a sequence-specific consensus and methylated CpG dinucleotides. Nucleic Acids Res. 2002, 30:2911-2919.
-
(2002)
Nucleic Acids Res.
, vol.30
, pp. 2911-2919
-
-
Daniel, J.M.1
-
33
-
-
84859305463
-
Recognition of methylated DNA through methyl-CpG binding domain proteins
-
Zou X., et al. Recognition of methylated DNA through methyl-CpG binding domain proteins. Nucleic Acids Res. 2012, 40:2747-2758.
-
(2012)
Nucleic Acids Res.
, vol.40
, pp. 2747-2758
-
-
Zou, X.1
-
34
-
-
0346996697
-
Recognition of 5'-YpG-3' sequences by coupled stacking/hydrogen bonding interactions with amino acid residues
-
Lamoureux J.S., et al. Recognition of 5'-YpG-3' sequences by coupled stacking/hydrogen bonding interactions with amino acid residues. J. Mol. Biol. 2004, 335:399-408.
-
(2004)
J. Mol. Biol.
, vol.335
, pp. 399-408
-
-
Lamoureux, J.S.1
-
35
-
-
33644847999
-
Principles of protein-DNA recognition revealed in the structural analysis of Ndt80-MSE DNA complexes
-
Lamoureux J.S., Glover J.N. Principles of protein-DNA recognition revealed in the structural analysis of Ndt80-MSE DNA complexes. Structure 2006, 14:555-565.
-
(2006)
Structure
, vol.14
, pp. 555-565
-
-
Lamoureux, J.S.1
Glover, J.N.2
-
36
-
-
77955285002
-
Sex-specific parent-of-origin allelic expression in the mouse brain
-
Gregg C., et al. Sex-specific parent-of-origin allelic expression in the mouse brain. Science 2010, 329:682-685.
-
(2010)
Science
, vol.329
, pp. 682-685
-
-
Gregg, C.1
-
37
-
-
77955299096
-
High-resolution analysis of parent-of-origin allelic expression in the mouse brain
-
Gregg C., et al. High-resolution analysis of parent-of-origin allelic expression in the mouse brain. Science 2010, 329:643-648.
-
(2010)
Science
, vol.329
, pp. 643-648
-
-
Gregg, C.1
-
38
-
-
84868146548
-
The KRAB-ZFP/KAP1 system contributes to the early embryonic establishment of site-specific DNA methylation patterns maintained during development
-
Quenneville S., et al. The KRAB-ZFP/KAP1 system contributes to the early embryonic establishment of site-specific DNA methylation patterns maintained during development. Cell Rep. 2012, 2:766-773.
-
(2012)
Cell Rep.
, vol.2
, pp. 766-773
-
-
Quenneville, S.1
-
39
-
-
58149178574
-
SysZNF: the C2H2 zinc finger gene database
-
Ding G., et al. SysZNF: the C2H2 zinc finger gene database. Nucleic Acids Res. 2009, 37:267-273.
-
(2009)
Nucleic Acids Res.
, vol.37
, pp. 267-273
-
-
Ding, G.1
-
40
-
-
33745134398
-
Evolutionary expansion and divergence in the ZNF91 subfamily of primate-specific zinc finger genes
-
Hamilton A.T., et al. Evolutionary expansion and divergence in the ZNF91 subfamily of primate-specific zinc finger genes. Genome Res. 2006, 16:584-594.
-
(2006)
Genome Res.
, vol.16
, pp. 584-594
-
-
Hamilton, A.T.1
-
41
-
-
84862908822
-
Zinc finger protein ZFP57 requires its co-factor to recruit DNA methyltransferases and maintains DNA methylation imprint in embryonic stem cells via its transcriptional repression domain
-
Zuo X., et al. Zinc finger protein ZFP57 requires its co-factor to recruit DNA methyltransferases and maintains DNA methylation imprint in embryonic stem cells via its transcriptional repression domain. J. Biol. Chem. 2012, 287:2107-2118.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 2107-2118
-
-
Zuo, X.1
-
42
-
-
78650081714
-
ZNF274 recruits the histone methyltransferase SETDB1 to the 3' ends of ZNF genes
-
Frietze S., et al. ZNF274 recruits the histone methyltransferase SETDB1 to the 3' ends of ZNF genes. PLoS ONE 2010, 5:e15082.
-
(2010)
PLoS ONE
, vol.5
-
-
Frietze, S.1
-
43
-
-
84858770341
-
Trim28 is required for epigenetic stability during mouse oocyte to embryo transition
-
Messerschmidt D.M., et al. Trim28 is required for epigenetic stability during mouse oocyte to embryo transition. Science 2012, 335:1499-1502.
-
(2012)
Science
, vol.335
, pp. 1499-1502
-
-
Messerschmidt, D.M.1
-
44
-
-
58449092929
-
A mouse speciation gene encodes a meiotic histone H3 methyltransferase
-
Mihola O., et al. A mouse speciation gene encodes a meiotic histone H3 methyltransferase. Science 2009, 323:373-375.
-
(2009)
Science
, vol.323
, pp. 373-375
-
-
Mihola, O.1
-
45
-
-
77950678085
-
Coordinated chromatin control: structural and functional linkage of DNA and histone methylation
-
Cheng X., Blumenthal R.M. Coordinated chromatin control: structural and functional linkage of DNA and histone methylation. Biochemistry 2010, 49:2999-3008.
-
(2010)
Biochemistry
, vol.49
, pp. 2999-3008
-
-
Cheng, X.1
Blumenthal, R.M.2
-
46
-
-
58149111109
-
Chato, a KRAB zinc-finger protein, regulates convergent extension in the mouse embryo
-
Garcia-Garcia M.J., et al. Chato, a KRAB zinc-finger protein, regulates convergent extension in the mouse embryo. Development 2008, 135:3053-3062.
-
(2008)
Development
, vol.135
, pp. 3053-3062
-
-
Garcia-Garcia, M.J.1
-
47
-
-
67349170854
-
Embryonic stem cells use ZFP809 to silence retroviral DNAs
-
Wolf D., Goff S.P. Embryonic stem cells use ZFP809 to silence retroviral DNAs. Nature 2009, 458:1201-1204.
-
(2009)
Nature
, vol.458
, pp. 1201-1204
-
-
Wolf, D.1
Goff, S.P.2
-
48
-
-
80555142988
-
Coevolution of retroelements and tandem zinc finger genes
-
Thomas J.H., Schneider S. Coevolution of retroelements and tandem zinc finger genes. Genome Res. 2011, 21:1800-1812.
-
(2011)
Genome Res.
, vol.21
, pp. 1800-1812
-
-
Thomas, J.H.1
Schneider, S.2
-
49
-
-
84866402289
-
The KRAB zinc finger protein RSL1 regulates sex- and tissue-specific promoter methylation and dynamic hormone-responsive chromatin configuration
-
Krebs C.J., et al. The KRAB zinc finger protein RSL1 regulates sex- and tissue-specific promoter methylation and dynamic hormone-responsive chromatin configuration. Mol. Cell. Biol. 2012, 32:3732-3742.
-
(2012)
Mol. Cell. Biol.
, vol.32
, pp. 3732-3742
-
-
Krebs, C.J.1
-
50
-
-
78650826181
-
Tissue distribution of 5-hydroxymethylcytosine and search for active demethylation intermediates
-
Globisch D., et al. Tissue distribution of 5-hydroxymethylcytosine and search for active demethylation intermediates. PLoS ONE 2010, 5:e15367.
-
(2010)
PLoS ONE
, vol.5
-
-
Globisch, D.1
-
51
-
-
66149123748
-
The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain
-
Kriaucionis S., Heintz N. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 2009, 324:929-930.
-
(2009)
Science
, vol.324
, pp. 929-930
-
-
Kriaucionis, S.1
Heintz, N.2
-
52
-
-
84867230056
-
5-hmC in the brain is abundant in synaptic genes and shows differences at the exon-intron boundary
-
Khare T., et al. 5-hmC in the brain is abundant in synaptic genes and shows differences at the exon-intron boundary. Nat. Struct. Mol. Biol. 2012, 19:1037-1043.
-
(2012)
Nat. Struct. Mol. Biol.
, vol.19
, pp. 1037-1043
-
-
Khare, T.1
-
53
-
-
0029115782
-
Isolation and characterization of a novel zinc-finger protein with transcription repressor activity
-
Williams A.J., et al. Isolation and characterization of a novel zinc-finger protein with transcription repressor activity. J. Biol. Chem. 1995, 270:22143-22152.
-
(1995)
J. Biol. Chem.
, vol.270
, pp. 22143-22152
-
-
Williams, A.J.1
-
54
-
-
0031984480
-
SET domain proteins modulate chromatin domains in eu- and heterochromatin
-
Jenuwein T., et al. SET domain proteins modulate chromatin domains in eu- and heterochromatin. Cell. Mol. Life Sci. 1998, 54:80-93.
-
(1998)
Cell. Mol. Life Sci.
, vol.54
, pp. 80-93
-
-
Jenuwein, T.1
|