메뉴 건너뛰기




Volumn 36, Issue 9, 2018, Pages 952-965

Single-Cell DNA Methylation Profiling: Technologies and Biological Applications

Author keywords

DNA methylation; epigenetics; gene expression; single cell technologies

Indexed keywords

ALKYLATION; CYTOLOGY; DNA; GENE EXPRESSION; METHYLATION;

EID: 85046346648     PISSN: 01677799     EISSN: 18793096     Source Type: Journal    
DOI: 10.1016/j.tibtech.2018.04.002     Document Type: Review
Times cited : (121)

References (62)
  • 1
    • 0014712796 scopus 로고
    • Methylated bases in DNA of animal origin
    • Culp, L.A., et al. Methylated bases in DNA of animal origin. Arch. Biochem. Biophys. 136 (1970), 73–79.
    • (1970) Arch. Biochem. Biophys. , vol.136 , pp. 73-79
    • Culp, L.A.1
  • 2
    • 0022540321 scopus 로고
    • CpG-rich islands and the function of DNA methylation
    • Bird, A.P., CpG-rich islands and the function of DNA methylation. Nature 321 (1986), 209–213.
    • (1986) Nature , vol.321 , pp. 209-213
    • Bird, A.P.1
  • 3
    • 79956330964 scopus 로고    scopus 로고
    • CpG islands and the regulation of transcription
    • Deaton, A.M., Bird, A., CpG islands and the regulation of transcription. Genes Dev. 25 (2011), 1010–1022.
    • (2011) Genes Dev. , vol.25 , pp. 1010-1022
    • Deaton, A.M.1    Bird, A.2
  • 4
    • 0019510628 scopus 로고
    • Reactivation of an inactive human X chromosome: evidence for X inactivation by DNA methylation
    • Mohandas, T., et al. Reactivation of an inactive human X chromosome: evidence for X inactivation by DNA methylation. Science 211 (1981), 393–396.
    • (1981) Science , vol.211 , pp. 393-396
    • Mohandas, T.1
  • 5
    • 0027378582 scopus 로고
    • Role for DNA methylation in genomic imprinting
    • Li, E., et al. Role for DNA methylation in genomic imprinting. Nature 366 (1993), 362–365.
    • (1993) Nature , vol.366 , pp. 362-365
    • Li, E.1
  • 6
    • 0031662164 scopus 로고    scopus 로고
    • Transcription of IAP endogenous retroviruses is constrained by cytosine methylation
    • Walsh, C., et al. Transcription of IAP endogenous retroviruses is constrained by cytosine methylation. Nat. Genet. 20 (1998), 116–117.
    • (1998) Nat. Genet. , vol.20 , pp. 116-117
    • Walsh, C.1
  • 7
    • 22844457491 scopus 로고    scopus 로고
    • DNA methylation and human disease
    • Robertson, K.D., DNA methylation and human disease. Nat. Rev. Genet. 6 (2005), 597–610.
    • (2005) Nat. Rev. Genet. , vol.6 , pp. 597-610
    • Robertson, K.D.1
  • 8
    • 84947617259 scopus 로고    scopus 로고
    • Single-cell epigenomics: techniques and emerging applications
    • Schwartzman, O., Tanay, A., Single-cell epigenomics: techniques and emerging applications. Nat. Rev. Genet. 16 (2015), 716–726.
    • (2015) Nat. Rev. Genet. , vol.16 , pp. 716-726
    • Schwartzman, O.1    Tanay, A.2
  • 9
    • 84963632004 scopus 로고    scopus 로고
    • Single-cell epigenomics: powerful new methods for understanding gene regulation and cell identity
    • Clark, S.J., et al. Single-cell epigenomics: powerful new methods for understanding gene regulation and cell identity. Genome Biol., 17, 2016, 72.
    • (2016) Genome Biol. , vol.17 , pp. 72
    • Clark, S.J.1
  • 10
    • 77249137168 scopus 로고    scopus 로고
    • Principles and challenges of genome-wide DNA methylation analysis
    • Laird, P.W., Principles and challenges of genome-wide DNA methylation analysis. Nat. Rev. Genet. 11 (2010), 191–203.
    • (2010) Nat. Rev. Genet. , vol.11 , pp. 191-203
    • Laird, P.W.1
  • 11
    • 84954460266 scopus 로고    scopus 로고
    • DNA methylation analysis: choosing the right method
    • Kurdyukov, S., Bullock, M., DNA methylation analysis: choosing the right method. Biology (Basel), 5, 2016, 3.
    • (2016) Biology (Basel) , vol.5 , pp. 3
    • Kurdyukov, S.1    Bullock, M.2
  • 12
    • 84964407520 scopus 로고    scopus 로고
    • Simultaneous single-molecule epigenetic imaging of DNA methylation and hydroxymethylation
    • Song, C.-X., et al. Simultaneous single-molecule epigenetic imaging of DNA methylation and hydroxymethylation. Proc. Natl. Acad. Sci. U. S. A. 113 (2016), 4338–4343.
    • (2016) Proc. Natl. Acad. Sci. U. S. A. , vol.113 , pp. 4338-4343
    • Song, C.-X.1
  • 13
    • 85013157844 scopus 로고    scopus 로고
    • Mapping DNA methylation with high-throughput nanopore sequencing
    • Rand, A.C., et al. Mapping DNA methylation with high-throughput nanopore sequencing. Nat. Methods 14 (2017), 411–413.
    • (2017) Nat. Methods , vol.14 , pp. 411-413
    • Rand, A.C.1
  • 14
    • 0026546877 scopus 로고
    • A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands
    • Frommer, M., et al. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc. Natl. Acad. Sci. U. S. A. 89 (1992), 1827–1831.
    • (1992) Proc. Natl. Acad. Sci. U. S. A. , vol.89 , pp. 1827-1831
    • Frommer, M.1
  • 15
    • 40749109894 scopus 로고    scopus 로고
    • Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning
    • Cokus, S.J., et al. Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452 (2008), 215–219.
    • (2008) Nature , vol.452 , pp. 215-219
    • Cokus, S.J.1
  • 16
    • 42749087226 scopus 로고    scopus 로고
    • Highly integrated single-base resolution maps of the epigenome in Arabidopsis
    • Lister, R., et al. Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133 (2008), 523–536.
    • (2008) Cell , vol.133 , pp. 523-536
    • Lister, R.1
  • 17
    • 77957932941 scopus 로고    scopus 로고
    • Comparison of sequencing-based methods to profile DNA methylation and identification of monoallelic epigenetic modifications
    • Harris, R.A., et al. Comparison of sequencing-based methods to profile DNA methylation and identification of monoallelic epigenetic modifications. Nat. Biotechnol. 28 (2010), 1097–1105.
    • (2010) Nat. Biotechnol. , vol.28 , pp. 1097-1105
    • Harris, R.A.1
  • 18
    • 77957948773 scopus 로고    scopus 로고
    • Taking the measure of the methylome
    • Beck, S., Taking the measure of the methylome. Nat. Biotechnol. 28 (2010), 199–218.
    • (2010) Nat. Biotechnol. , vol.28 , pp. 199-218
    • Beck, S.1
  • 19
    • 27144500218 scopus 로고    scopus 로고
    • Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis
    • Meissner, A., et al. Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis. Nucleic Acids Res. 33 (2005), 5868–5877.
    • (2005) Nucleic Acids Res. , vol.33 , pp. 5868-5877
    • Meissner, A.1
  • 20
    • 79952788617 scopus 로고    scopus 로고
    • Preparation of reduced representation bisulfite sequencing libraries for genome-scale DNA methylation profiling
    • Gu, H., et al. Preparation of reduced representation bisulfite sequencing libraries for genome-scale DNA methylation profiling. Nat. Protoc. 6 (2011), 468–481.
    • (2011) Nat. Protoc. , vol.6 , pp. 468-481
    • Gu, H.1
  • 21
    • 84959197325 scopus 로고    scopus 로고
    • Active DNA demethylation at enhancers during the vertebrate phylotypic period
    • Bogdanović, O., et al. Active DNA demethylation at enhancers during the vertebrate phylotypic period. Nat. Genet. 48 (2016), 417–426.
    • (2016) Nat. Genet. , vol.48 , pp. 417-426
    • Bogdanović, O.1
  • 22
    • 84890526238 scopus 로고    scopus 로고
    • Single-cell methylome landscapes of mouse embryonic stem cells and early embryos analyzed using reduced representation bisulfite sequencing
    • Guo, H., et al. Single-cell methylome landscapes of mouse embryonic stem cells and early embryos analyzed using reduced representation bisulfite sequencing. Genome Res. 23 (2013), 2126–2135.
    • (2013) Genome Res. , vol.23 , pp. 2126-2135
    • Guo, H.1
  • 23
    • 84929463154 scopus 로고    scopus 로고
    • Profiling DNA methylome landscapes of mammalian cells with single-cell reduced-representation bisulfite sequencing
    • Guo, H., et al. Profiling DNA methylome landscapes of mammalian cells with single-cell reduced-representation bisulfite sequencing. Nat. Protoc. 10 (2015), 645–659.
    • (2015) Nat. Protoc. , vol.10 , pp. 645-659
    • Guo, H.1
  • 24
    • 84954475744 scopus 로고    scopus 로고
    • Q-RRBS: a quantitative reduced representation bisulfite sequencing method for single-cell methylome analyses
    • Wang, K., et al. Q-RRBS: a quantitative reduced representation bisulfite sequencing method for single-cell methylome analyses. Epigenetics 10 (2015), 775–783.
    • (2015) Epigenetics , vol.10 , pp. 775-783
    • Wang, K.1
  • 25
    • 84866919003 scopus 로고    scopus 로고
    • Amplification-free whole-genome bisulfite sequencing by post-bisulfite adaptor tagging
    • Miura, F., et al. Amplification-free whole-genome bisulfite sequencing by post-bisulfite adaptor tagging. Nucleic Acids Res., 40, 2012, e136.
    • (2012) Nucleic Acids Res. , vol.40 , pp. e136
    • Miura, F.1
  • 26
    • 84905405443 scopus 로고    scopus 로고
    • Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity
    • Smallwood, S.A., et al. Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity. Nat. Methods 11 (2014), 817–820.
    • (2014) Nat. Methods , vol.11 , pp. 817-820
    • Smallwood, S.A.1
  • 27
    • 85013827376 scopus 로고    scopus 로고
    • Genome-wide base-resolution mapping of DNA methylation in single cells using single-cell bisulfite sequencing (scBS-seq)
    • Clark, S.J., et al. Genome-wide base-resolution mapping of DNA methylation in single cells using single-cell bisulfite sequencing (scBS-seq). Nat. Protoc. 12 (2017), 534–547.
    • (2017) Nat. Protoc. , vol.12 , pp. 534-547
    • Clark, S.J.1
  • 28
    • 84924601067 scopus 로고    scopus 로고
    • Single-cell DNA methylome sequencing and bioinformatic inference of epigenomic cell-state dynamics
    • Farlik, M., et al. Single-cell DNA methylome sequencing and bioinformatic inference of epigenomic cell-state dynamics. Cell Rep. 10 (2015), 1386–1397.
    • (2015) Cell Rep. , vol.10 , pp. 1386-1397
    • Farlik, M.1
  • 29
    • 84990186341 scopus 로고    scopus 로고
    • Repetitive DNA methylome analysis by small-scale and single-cell shotgun bisulfite sequencing
    • Kobayashi, H., et al. Repetitive DNA methylome analysis by small-scale and single-cell shotgun bisulfite sequencing. Genes Cells 21 (2016), 1209–1222.
    • (2016) Genes Cells , vol.21 , pp. 1209-1222
    • Kobayashi, H.1
  • 30
    • 84941562055 scopus 로고    scopus 로고
    • Highly sensitive targeted methylome sequencing by post-bisulfite adaptor tagging
    • Miura, F., Ito, T., Highly sensitive targeted methylome sequencing by post-bisulfite adaptor tagging. DNA Res. 22 (2015), 13–18.
    • (2015) DNA Res. , vol.22 , pp. 13-18
    • Miura, F.1    Ito, T.2
  • 31
    • 85027126307 scopus 로고    scopus 로고
    • Single-cell methylomes identify neuronal subtypes and regulatory elements in mammalian cortex
    • Luo, C., et al. Single-cell methylomes identify neuronal subtypes and regulatory elements in mammalian cortex. Science 604 (2017), 600–604.
    • (2017) Science , vol.604 , pp. 600-604
    • Luo, C.1
  • 32
    • 85040688027 scopus 로고    scopus 로고
    • Scalable and efficient single-cell DNA methylation sequencing by combinatorial indexing
    • Mulqueen, R.M., et al. Scalable and efficient single-cell DNA methylation sequencing by combinatorial indexing. BioRxiv, 2017, 10.1101/157230.
    • (2017) BioRxiv
    • Mulqueen, R.M.1
  • 33
    • 85043486119 scopus 로고    scopus 로고
    • Global delay in nascent strand DNA methylation
    • Charlton, J., et al. Global delay in nascent strand DNA methylation. Nat. Struct. Mol. Biol. 25 (2018), 327–332.
    • (2018) Nat. Struct. Mol. Biol. , vol.25 , pp. 327-332
    • Charlton, J.1
  • 34
    • 85048261931 scopus 로고    scopus 로고
    • Cell-type-specific brain methylomes profiled via ultralow-input microfluidics
    • Ma, S., et al. Cell-type-specific brain methylomes profiled via ultralow-input microfluidics. Nat. Biomed. Eng. 2 (2018), 183–194.
    • (2018) Nat. Biomed. Eng. , vol.2 , pp. 183-194
    • Ma, S.1
  • 35
    • 85018466550 scopus 로고    scopus 로고
    • DeepCpG: accurate prediction of single-cell DNA methylation states using deep learning
    • Angermueller, C., et al. DeepCpG: accurate prediction of single-cell DNA methylation states using deep learning. Genome Biol., 18, 2017, 67.
    • (2017) Genome Biol. , vol.18 , pp. 67
    • Angermueller, C.1
  • 36
    • 84965083281 scopus 로고    scopus 로고
    • Single-cell, locus-specific bisulfite sequencing (SLBS) for direct detection of epimutations in DNA methylation patterns
    • Gravina, S., et al. Single-cell, locus-specific bisulfite sequencing (SLBS) for direct detection of epimutations in DNA methylation patterns. Nucleic Acids Res., 43, 2015, e93.
    • (2015) Nucleic Acids Res. , vol.43 , pp. e93
    • Gravina, S.1
  • 37
    • 79954614277 scopus 로고    scopus 로고
    • A high-throughput DNA methylation analysis of a single cell
    • Kantlehner, M., et al. A high-throughput DNA methylation analysis of a single cell. Nucleic Acids Res., 39, 2011, e44.
    • (2011) Nucleic Acids Res. , vol.39 , pp. e44
    • Kantlehner, M.1
  • 38
    • 84883474570 scopus 로고    scopus 로고
    • Single-cell DNA-methylation analysis reveals epigenetic chimerism in preimplantation embryos
    • Lorthongpanich, C., et al. Single-cell DNA-methylation analysis reveals epigenetic chimerism in preimplantation embryos. Science 341 (2013), 1110–1112.
    • (2013) Science , vol.341 , pp. 1110-1112
    • Lorthongpanich, C.1
  • 39
    • 84925856871 scopus 로고    scopus 로고
    • Multiplexed locus-specific analysis of DNA methylation in single cells
    • Cheow, L.F., et al. Multiplexed locus-specific analysis of DNA methylation in single cells. Nat. Protoc. 10 (2015), 619–631.
    • (2015) Nat. Protoc. , vol.10 , pp. 619-631
    • Cheow, L.F.1
  • 40
    • 85022014754 scopus 로고    scopus 로고
    • Bisulfite-independent analysis of CpG island methylation enables genome-scale stratification of single cells
    • Han, L., et al. Bisulfite-independent analysis of CpG island methylation enables genome-scale stratification of single cells. Nucleic Acids Res., 45, 2017, e77.
    • (2017) Nucleic Acids Res. , vol.45 , pp. e77
    • Han, L.1
  • 41
    • 84948451913 scopus 로고    scopus 로고
    • Tracing dynamic changes of DNA methylation at single-cell resolution
    • Stelzer, Y., et al. Tracing dynamic changes of DNA methylation at single-cell resolution. Cell 163 (2015), 218–229.
    • (2015) Cell , vol.163 , pp. 218-229
    • Stelzer, Y.1
  • 42
    • 0034598784 scopus 로고    scopus 로고
    • Demethylation of the zygotic paternal genome
    • Mayer, W., et al. Demethylation of the zygotic paternal genome. Nature 403 (2000), 501–502.
    • (2000) Nature , vol.403 , pp. 501-502
    • Mayer, W.1
  • 43
    • 84858770341 scopus 로고    scopus 로고
    • Trim28 is required for epigenetic stability during mouse oocyte to embryo transition
    • Messerschmidt, D.M., et al. Trim28 is required for epigenetic stability during mouse oocyte to embryo transition. Science 335 (2012), 1499–1502.
    • (2012) Science , vol.335 , pp. 1499-1502
    • Messerschmidt, D.M.1
  • 44
    • 0036205914 scopus 로고    scopus 로고
    • Methylation dynamics of imprinted genes in mouse germ cells
    • Lucifero, D., et al. Methylation dynamics of imprinted genes in mouse germ cells. Genomics 79 (2002), 530–538.
    • (2002) Genomics , vol.79 , pp. 530-538
    • Lucifero, D.1
  • 45
    • 84884164554 scopus 로고    scopus 로고
    • FGF signaling inhibition in ESCs drives rapid genome-wide demethylation to the epigenetic ground state of pluripotency
    • Ficz, G., et al. FGF signaling inhibition in ESCs drives rapid genome-wide demethylation to the epigenetic ground state of pluripotency. Cell Stem Cell 13 (2013), 351–359.
    • (2013) Cell Stem Cell , vol.13 , pp. 351-359
    • Ficz, G.1
  • 46
    • 85021120967 scopus 로고    scopus 로고
    • Genome-wide, single-cell DNA methylomics reveals increased non-CpG methylation during human oocyte maturation
    • Yu, B., et al. Genome-wide, single-cell DNA methylomics reveals increased non-CpG methylation during human oocyte maturation. Stem Cell Rep. 9 (2017), 397–407.
    • (2017) Stem Cell Rep. , vol.9 , pp. 397-407
    • Yu, B.1
  • 47
    • 84905030212 scopus 로고    scopus 로고
    • The DNA methylation landscape of human early embryos
    • Guo, H., et al. The DNA methylation landscape of human early embryos. Nature 511 (2014), 606–610.
    • (2014) Nature , vol.511 , pp. 606-610
    • Guo, H.1
  • 48
    • 85038399084 scopus 로고    scopus 로고
    • Single-cell DNA methylome sequencing of human preimplantation embryos
    • Zhu, P., et al. Single-cell DNA methylome sequencing of human preimplantation embryos. Nat. Genet. 50 (2017), 12–19.
    • (2017) Nat. Genet. , vol.50 , pp. 12-19
    • Zhu, P.1
  • 49
    • 84977525598 scopus 로고    scopus 로고
    • Single-cell genome-wide bisulfite sequencing uncovers extensive heterogeneity in the mouse liver methylome
    • Gravina, S., et al. Single-cell genome-wide bisulfite sequencing uncovers extensive heterogeneity in the mouse liver methylome. Genome Biol., 17, 2016, 150.
    • (2016) Genome Biol. , vol.17 , pp. 150
    • Gravina, S.1
  • 50
    • 84960091878 scopus 로고    scopus 로고
    • Single-cell triple omics sequencing reveals genetic, epigenetic, and transcriptomic heterogeneity in hepatocellular carcinomas
    • Hou, Y., et al. Single-cell triple omics sequencing reveals genetic, epigenetic, and transcriptomic heterogeneity in hepatocellular carcinomas. Cell Res. 26 (2016), 304–319.
    • (2016) Cell Res. , vol.26 , pp. 304-319
    • Hou, Y.1
  • 51
    • 85025076124 scopus 로고    scopus 로고
    • Heterogeneous DNA methylation status in same-cell subpopulations of ovarian cancer tissues
    • Li, Q., et al. Heterogeneous DNA methylation status in same-cell subpopulations of ovarian cancer tissues. Tumor Biol. 39 (2017), 1–7.
    • (2017) Tumor Biol. , vol.39 , pp. 1-7
    • Li, Q.1
  • 52
    • 66149146320 scopus 로고    scopus 로고
    • Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1
    • Tahiliani, M., et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324 (2009), 930–935.
    • (2009) Science , vol.324 , pp. 930-935
    • Tahiliani, M.1
  • 53
    • 77956189495 scopus 로고    scopus 로고
    • Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification
    • Ito, S., et al. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 466 (2010), 1129–1133.
    • (2010) Nature , vol.466 , pp. 1129-1133
    • Ito, S.1
  • 54
    • 84981312051 scopus 로고    scopus 로고
    • Single-cell 5hmC sequencing reveals chromosome-wide cell-to-cell variability and enables lineage reconstruction
    • Mooijman, D., et al. Single-cell 5hmC sequencing reveals chromosome-wide cell-to-cell variability and enables lineage reconstruction. Nat. Biotechnol. 34 (2016), 852–856.
    • (2016) Nat. Biotechnol. , vol.34 , pp. 852-856
    • Mooijman, D.1
  • 55
    • 85017246672 scopus 로고    scopus 로고
    • Simultaneous mapping of active DNA demethylation and sister chromatid exchange in single cells
    • Wu, X., et al. Simultaneous mapping of active DNA demethylation and sister chromatid exchange in single cells. Genes Dev. 31 (2017), 511–523.
    • (2017) Genes Dev. , vol.31 , pp. 511-523
    • Wu, X.1
  • 56
    • 84959255113 scopus 로고    scopus 로고
    • Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity
    • Angermueller, C., et al. Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity. Nat. Methods 13 (2016), 229–232.
    • (2016) Nat. Methods , vol.13 , pp. 229-232
    • Angermueller, C.1
  • 57
    • 84965048064 scopus 로고    scopus 로고
    • Simultaneous profiling of transcriptome and DNA methylome from a single cell
    • Hu, Y., et al. Simultaneous profiling of transcriptome and DNA methylome from a single cell. Genome Biol., 17, 2016, 88.
    • (2016) Genome Biol. , vol.17 , pp. 88
    • Hu, Y.1
  • 58
    • 85022345215 scopus 로고    scopus 로고
    • Simultaneous measurement of chromatin accessibility, DNA methylation, and nucleosome phasing in single cells
    • Pott, S., Simultaneous measurement of chromatin accessibility, DNA methylation, and nucleosome phasing in single cells. Elife, 6, 2017, e23203.
    • (2017) Elife , vol.6
    • Pott, S.1
  • 59
    • 85042554322 scopus 로고    scopus 로고
    • scNMT-seq enables joint profiling of chromatin accessibility DNA methylation and transcription in single cells
    • Clark, S.J., et al. scNMT-seq enables joint profiling of chromatin accessibility DNA methylation and transcription in single cells. Nat. Commun., 9, 2017, 781.
    • (2017) Nat. Commun. , vol.9 , pp. 781
    • Clark, S.J.1
  • 60
    • 84982161976 scopus 로고    scopus 로고
    • Single-cell multimodal profiling reveals cellular epigenetic heterogeneity
    • Cheow, L.F., et al. Single-cell multimodal profiling reveals cellular epigenetic heterogeneity. Nat. Methods 13 (2016), 833–836.
    • (2016) Nat. Methods , vol.13 , pp. 833-836
    • Cheow, L.F.1
  • 61
    • 85026666749 scopus 로고    scopus 로고
    • Single-cell multi-omics sequencing of mouse early embryos and embryonic stem cells
    • Guo, F., et al. Single-cell multi-omics sequencing of mouse early embryos and embryonic stem cells. Cell Res. 27 (2017), 1–22.
    • (2017) Cell Res. , vol.27 , pp. 1-22
    • Guo, F.1
  • 62
    • 85025599203 scopus 로고    scopus 로고
    • MATCHER: Manifold alignment reveals correspondence between single cell transcriptome and epigenome dynamics
    • Welch, J.D., et al. MATCHER: Manifold alignment reveals correspondence between single cell transcriptome and epigenome dynamics. Genome Biol., 18, 2017, 138.
    • (2017) Genome Biol. , vol.18 , pp. 138
    • Welch, J.D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.