메뉴 건너뛰기




Volumn 7, Issue , 2018, Pages 47-53

Methods and challenges in the analysis of single-cell RNA-sequencing data

Author keywords

Analyses and algorithms; Single cell RNA seq

Indexed keywords

ARTICLE; CELL DIFFERENTIATION; RNA SEQUENCE;

EID: 85045307286     PISSN: None     EISSN: 24523100     Source Type: Journal    
DOI: 10.1016/j.coisb.2017.12.007     Document Type: Review
Times cited : (20)

References (80)
  • 4
    • 84866953427 scopus 로고    scopus 로고
    • CEL-Seq: singlecell RNA-Seq by multiplexed linear amplification
    • Hashimshony T, Wagner F, Sher N, Yanai I: CEL-Seq: singlecell RNA-Seq by multiplexed linear amplification. Cell Rep 2012, 2:666-673.
    • (2012) Cell Rep , vol.2 , pp. 666-673
    • Hashimshony, T.1    Wagner, F.2    Sher, N.3    Yanai, I.4
  • 10
    • 84988884535 scopus 로고    scopus 로고
    • An automated microwell platform for largescale single cell RNA-seq
    • Yuan J, Sims PA: An automated microwell platform for largescale single cell RNA-seq. Sci Rep 2016, 6:33883.
    • (2016) Sci Rep , vol.6 , pp. 33883
    • Yuan, J.1    Sims, P.A.2
  • 14
    • 85037824073 scopus 로고    scopus 로고
    • Dissecting cell-type composition and activity-dependent transcriptional state in mammalian brains by massively parallel single-nucleus RNA-seq
    • Hu P, Fabyanic E, Kwon DY, Tang S, Zhou Z, Wu H: Dissecting cell-type composition and activity-dependent transcriptional state in mammalian brains by massively parallel single-nucleus RNA-seq. Mol Cell 2017, 68:1006-1015.
    • (2017) Mol Cell , vol.68 , pp. 1006-1015
    • Hu, P.1    Fabyanic, E.2    Kwon, D.Y.3    Tang, S.4    Zhou, Z.5    Wu, H.6
  • 20
    • 84946226911 scopus 로고    scopus 로고
    • Design and analysis of single-cell sequencing experiments
    • Grun D, van Oudenaarden A: Design and analysis of single-cell sequencing experiments. Cell 2015, 163:799-810.
    • (2015) Cell , vol.163 , pp. 799-810
    • Grun, D.1    van Oudenaarden, A.2
  • 21
    • 84923647450 scopus 로고    scopus 로고
    • Computational and analytical challenges in single-cell transcriptomics
    • Stegle O, Teichmann SA, Marioni JC: Computational and analytical challenges in single-cell transcriptomics. Nat Rev Genet 2015, 16:133-145.
    • (2015) Nat Rev Genet , vol.16 , pp. 133-145
    • Stegle, O.1    Teichmann, S.A.2    Marioni, J.C.3
  • 22
    • 84962658087 scopus 로고    scopus 로고
    • Design and computational analysis of single-cell RNA-sequencing experiments
    • Bacher R, Kendziorski C: Design and computational analysis of single-cell RNA-sequencing experiments. Genome Biol 2016, 17:63.
    • (2016) Genome Biol , vol.17 , pp. 63
    • Bacher, R.1    Kendziorski, C.2
  • 23
    • 84994860357 scopus 로고    scopus 로고
    • Revealing the vectors of cellular identity with single-cell genomics
    • Wagner A, Regev A, Yosef N: Revealing the vectors of cellular identity with single-cell genomics. Nat Biotechnol 2016, 34: 1145-1160.
    • (2016) Nat Biotechnol , vol.34 , pp. 1145-1160
    • Wagner, A.1    Regev, A.2    Yosef, N.3
  • 26
    • 84901831004 scopus 로고    scopus 로고
    • Validation of noise models for single-cell transcriptomics
    • Grun D, Kester L, van Oudenaarden A: Validation of noise models for single-cell transcriptomics. Nat Method 2014, 11: 637-640.
    • (2014) Nat Method , vol.11 , pp. 637-640
    • Grun, D.1    Kester, L.2    van Oudenaarden, A.3
  • 27
    • 85016502865 scopus 로고    scopus 로고
    • UMI-tools: modeling sequencing errors in Unique Molecular Identifiers to improve quantification accuracy
    • Smith T, Heger A, Sudbery I: UMI-tools: modeling sequencing errors in Unique Molecular Identifiers to improve quantification accuracy. Genome Res 2017, 27:491-499.
    • (2017) Genome Res , vol.27 , pp. 491-499
    • Smith, T.1    Heger, A.2    Sudbery, I.3
  • 28
    • 85045335860 scopus 로고    scopus 로고
    • scPipe: a flexible data preprocessing pipeline for single-cell RNA-sequencing data
    • bioRxiv, 175927.
    • Tian L, Su S, Amann-Zalcenstein D, Biben C, Naik SH, Ritchie ME: scPipe: a flexible data preprocessing pipeline for single-cell RNA-sequencing data. bioRxiv. 2017:175927.
    • (2017)
    • Tian, L.1    Su, S.2    Amann-Zalcenstein, D.3    Biben, C.4    Naik, S.H.5    Ritchie, M.E.6
  • 30
    • 84890060756 scopus 로고    scopus 로고
    • SAMstrt: statistical test for differential expression in single-cell transcriptome with spike-in normalization
    • Katayama S, Tohonen V, Linnarsson S, Kere J: SAMstrt: statistical test for differential expression in single-cell transcriptome with spike-in normalization. Bioinformatics 2013, 29: 2943-2945.
    • (2013) Bioinformatics , vol.29 , pp. 2943-2945
    • Katayama, S.1    Tohonen, V.2    Linnarsson, S.3    Kere, J.4
  • 31
    • 85010878111 scopus 로고    scopus 로고
    • Single-cell mRNA quantification and differential analysis with Census
    • Qiu X, Hill A, Packer J, Lin D, Ma YA, Trapnell C: Single-cell mRNA quantification and differential analysis with Census. Nat Method 2017, 14:309-315.
    • (2017) Nat Method , vol.14 , pp. 309-315
    • Qiu, X.1    Hill, A.2    Packer, J.3    Lin, D.4    Ma, Y.A.5    Trapnell, C.6
  • 33
    • 85021816036 scopus 로고    scopus 로고
    • Normalizing single-cell RNA sequencing data: challenges and opportunities
    • Vallejos CA, Risso D, Scialdone A, Dudoit S, Marioni JC: Normalizing single-cell RNA sequencing data: challenges and opportunities. Nat Method 2017, 14:565-571.
    • (2017) Nat Method , vol.14 , pp. 565-571
    • Vallejos, C.A.1    Risso, D.2    Scialdone, A.3    Dudoit, S.4    Marioni, J.C.5
  • 35
    • 19544379881 scopus 로고    scopus 로고
    • Stochasticity in gene expression: from theories to phenotypes
    • Kaern M, Elston TC, Blake WJ, Collins JJ: Stochasticity in gene expression: from theories to phenotypes. Nat Rev Genet 2005, 6:451-464.
    • (2005) Nat Rev Genet , vol.6 , pp. 451-464
    • Kaern, M.1    Elston, T.C.2    Blake, W.J.3    Collins, J.J.4
  • 36
    • 77958471357 scopus 로고    scopus 로고
    • Differential expression analysis for sequence count data
    • Anders S, Huber W: Differential expression analysis for sequence count data. Genome Biol 2010, 11:R106.
    • (2010) Genome Biol , vol.11 , pp. R106
    • Anders, S.1    Huber, W.2
  • 37
    • 77953176036 scopus 로고    scopus 로고
    • A scaling normalization method for differential expression analysis of RNA-seq data
    • Robinson MD, Oshlack A: A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol 2010, 11:R25.
    • (2010) Genome Biol , vol.11 , pp. R25
    • Robinson, M.D.1    Oshlack, A.2
  • 39
    • 84964556059 scopus 로고    scopus 로고
    • Pooling across cells to normalize single-cell RNA sequencing data with many zero counts
    • Lun AT, Bach K, Marioni JC: Pooling across cells to normalize single-cell RNA sequencing data with many zero counts. Genome Biol 2016, 17:75.
    • (2016) Genome Biol , vol.17 , pp. 75
    • Lun, A.T.1    Bach, K.2    Marioni, J.C.3
  • 43
    • 0000263239 scopus 로고
    • Distribution of eigenvalues for some sets of random matrices
    • Marchenko VA, Pastur LA: Distribution of eigenvalues for some sets of random matrices. Matematicheskii Sbornik 1967, 114:507-536.
    • (1967) Matematicheskii Sbornik , vol.114 , pp. 507-536
    • Marchenko, V.A.1    Pastur, L.A.2
  • 46
    • 85014528252 scopus 로고    scopus 로고
    • Visualization and analysis of single-cell RNA-seq data by kernelbased similarity learning
    • Wang B, Zhu J, Pierson E, Ramazzotti D, Batzoglou S: Visualization and analysis of single-cell RNA-seq data by kernelbased similarity learning. Nat Method 2017, 14:414-416.
    • (2017) Nat Method , vol.14 , pp. 414-416
    • Wang, B.1    Zhu, J.2    Pierson, E.3    Ramazzotti, D.4    Batzoglou, S.5
  • 47
    • 84955706109 scopus 로고    scopus 로고
    • ZIFA: dimensionality reduction for zeroinflated single-cell gene expression analysis
    • Pierson E, Yau C: ZIFA: dimensionality reduction for zeroinflated single-cell gene expression analysis. Genome Biol 2015, 16:241.
    • (2015) Genome Biol , vol.16 , pp. 241
    • Pierson, E.1    Yau, C.2
  • 48
    • 84903574951 scopus 로고    scopus 로고
    • Bayesian approach to single-cell differential expression analysis
    • Kharchenko PV, Silberstein L, Scadden DT: Bayesian approach to single-cell differential expression analysis. Nat Method 2014, 11:740-742.
    • (2014) Nat Method , vol.11 , pp. 740-742
    • Kharchenko, P.V.1    Silberstein, L.2    Scadden, D.T.3
  • 49
  • 50
    • 84977499231 scopus 로고    scopus 로고
    • pcaReduce: hierarchical clustering of single cell transcriptional profiles
    • Zurauskiene J, Yau C: pcaReduce: hierarchical clustering of single cell transcriptional profiles. BMC Bioinf 2016, 17:140.
    • (2016) BMC Bioinf , vol.17 , pp. 140
    • Zurauskiene, J.1    Yau, C.2
  • 51
    • 84931072284 scopus 로고    scopus 로고
    • Identification of cell types from single-cell transcriptomes using a novel clustering method
    • Xu C, Su Z: Identification of cell types from single-cell transcriptomes using a novel clustering method. Bioinformatics 2015, 31:1974-1980.
    • (2015) Bioinformatics , vol.31 , pp. 1974-1980
    • Xu, C.1    Su, Z.2
  • 54
  • 58
    • 0004022158 scopus 로고
    • Reprinted in memorie di metodologica statistica. Edited by Pizetti E, Salvemini T, Rome: Libreria Eredi Virgilio Veschi
    • Gini C: Variabilità e mutabilità. Reprinted in memorie di metodologica statistica. Edited by Pizetti E, Salvemini T, Rome: Libreria Eredi Virgilio Veschi; 1912.
    • (1912) Variabilità e mutabilità
    • Gini, C.1
  • 59
    • 84976875133 scopus 로고    scopus 로고
    • GiniClust: detecting rare cell types from single-cell gene expression data with Gini index
    • Jiang L, Chen H, Pinello L, Yuan GC: GiniClust: detecting rare cell types from single-cell gene expression data with Gini index. Genome Biol 2016, 17:144.
    • (2016) Genome Biol , vol.17 , pp. 144
    • Jiang, L.1    Chen, H.2    Pinello, L.3    Yuan, G.C.4
  • 60
    • 84962861088 scopus 로고    scopus 로고
    • Beyond comparisons of means: understanding changes in gene expression at the single-cell level
    • Vallejos CA, Richardson S, Marioni JC: Beyond comparisons of means: understanding changes in gene expression at the single-cell level. Genome Biol 2016, 17:70.
    • (2016) Genome Biol , vol.17 , pp. 70
    • Vallejos, C.A.1    Richardson, S.2    Marioni, J.C.3
  • 64
    • 84969505817 scopus 로고    scopus 로고
    • SLICER: inferring branched, nonlinear cellular trajectories from single cell RNA-seq data
    • Welch JD, Hartemink AJ, Prins JF: SLICER: inferring branched, nonlinear cellular trajectories from single cell RNA-seq data. Genome Biol 2016, 17:106.
    • (2016) Genome Biol , vol.17 , pp. 106
    • Welch, J.D.1    Hartemink, A.J.2    Prins, J.F.3
  • 68
    • 85045308562 scopus 로고    scopus 로고
    • Reconstruction of developmental landscapes by optimal-transport analysis of single-cell gene expression sheds light on cellular reprogramming
    • bioRxiv.:191056
    • Schiebinger G, Shu J, Tabaka M, Cleary B, Subramanian V, Solomon A, Liu S, Lin S, Berube P, Lee L, et al.: Reconstruction of developmental landscapes by optimal-transport analysis of single-cell gene expression sheds light on cellular reprogramming. bioRxiv. 2017:191056.
    • (2017)
    • Schiebinger, G.1    Shu, J.2    Tabaka, M.3    Cleary, B.4    Subramanian, V.5    Solomon, A.6    Liu, S.7    Lin, S.8    Berube, P.9    Lee, L.10
  • 70
    • 85076471198 scopus 로고    scopus 로고
    • Topological methods for the analysis of high dimensional data sets and 3D object recognition
    • In SPBG. Citeseer
    • Singh G, Mémoli F, Carlsson GE: Topological methods for the analysis of high dimensional data sets and 3D object recognition. In SPBG. Citeseer; 2007:91-100.
    • (2007) , pp. 91-100
    • Singh, G.1    Mémoli, F.2    Carlsson, G.E.3
  • 79
    • 85029212828 scopus 로고    scopus 로고
    • Splatter: simulation of singlecell RNA sequencing data
    • Zappia L, Phipson B, Oshlack A: Splatter: simulation of singlecell RNA sequencing data. Genome Biol 2017, 18:174.
    • (2017) Genome Biol , vol.18 , pp. 174
    • Zappia, L.1    Phipson, B.2    Oshlack, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.