메뉴 건너뛰기




Volumn 17, Issue 1, 2016, Pages

Beyond comparisons of means: Understanding changes in gene expression at the single-cell level

Author keywords

Cellular heterogeneity; Differential expression; Single cell RNA seq

Indexed keywords

CELL HETEROGENEITY; CELL LEVEL; GENE EXPRESSION; GENE EXPRESSION REGULATION; ANIMAL; BAYES THEOREM; CYTOLOGY; GENE EXPRESSION PROFILING; GENETIC HETEROGENEITY; HUMAN; MOUSE; MOUSE EMBRYONIC STEM CELL; PROCEDURES; SEQUENCE ANALYSIS; SINGLE CELL ANALYSIS; WEB BROWSER;

EID: 84962861088     PISSN: 14747596     EISSN: 1474760X     Source Type: Journal    
DOI: 10.1186/s13059-016-0930-3     Document Type: Article
Times cited : (80)

References (28)
  • 2
    • 84893905629 scopus 로고    scopus 로고
    • Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types
    • Jaitin DA, Kenigsberg E, Keren-Shaul H, Elefant N, Paul F, Zaretsky I, et al. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science. 2014; 343(6172):776-9.
    • (2014) Science , vol.343 , Issue.6172 , pp. 776-779
    • Jaitin, D.A.1    Kenigsberg, E.2    Keren-Shaul, H.3    Elefant, N.4    Paul, F.5    Zaretsky, I.6
  • 3
    • 84902668801 scopus 로고    scopus 로고
    • Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma
    • Patel AP, Tirosh I, Trombetta JJ, Shalek AK, Gillespie SM, Wakimoto H, et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science. 2014; 344(6190):1396-401.
    • (2014) Science , vol.344 , Issue.6190 , pp. 1396-1401
    • Patel, A.P.1    Tirosh, I.2    Trombetta, J.J.3    Shalek, A.K.4    Gillespie, S.M.5    Wakimoto, H.6
  • 5
    • 75249087100 scopus 로고    scopus 로고
    • edgeR: a Bioconductor package for differential expression analysis of digital gene expression data
    • Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010; 26(1):139-40.
    • (2010) Bioinformatics , vol.26 , Issue.1 , pp. 139-140
    • Robinson, M.D.1    McCarthy, D.J.2    Smyth, G.K.3
  • 6
    • 84924629414 scopus 로고    scopus 로고
    • Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
    • Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014; 15(12):550.
    • (2014) Genome Biol , vol.15 , Issue.12 , pp. 550
    • Love, M.I.1    Huber, W.2    Anders, S.3
  • 7
    • 84903574951 scopus 로고    scopus 로고
    • Bayesian approach to single-cell differential expression analysis
    • Kharchenko PV, Silberstein L, Scadden DT. Bayesian approach to single-cell differential expression analysis. Nat Methods. 2014; 11(7):740-2.
    • (2014) Nat Methods , vol.11 , Issue.7 , pp. 740-742
    • Kharchenko, P.V.1    Silberstein, L.2    Scadden, D.T.3
  • 8
    • 84953226880 scopus 로고    scopus 로고
    • BASiCS: Bayesian analysis of single-cell sequencing data
    • Vallejos CA, Marioni JC, Richardson S. BASiCS: Bayesian analysis of single-cell sequencing data. PLoS Comput Biol. 2015; 11(6):1004333.
    • (2015) PLoS Comput Biol , vol.11 , Issue.6 , pp. 1004333
    • Vallejos, C.A.1    Marioni, J.C.2    Richardson, S.3
  • 10
    • 84858041341 scopus 로고    scopus 로고
    • Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation
    • Nucleic Acids Res.
    • McCarthy DJ, Chen Y, Smyth GK. Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res. 2012;40(10).
    • (2012) , vol.40 , Issue.10
    • McCarthy, D.J.1    Chen, Y.2    Smyth, G.K.3
  • 13
    • 4444235995 scopus 로고    scopus 로고
    • Detecting differential gene expression with a semiparametric hierarchical mixture method
    • Newton MA, Noueiry A, Sarkar D, Ahlquist P. Detecting differential gene expression with a semiparametric hierarchical mixture method. Biostatistics. 2004; 5(2):155-76.
    • (2004) Biostatistics , vol.5 , Issue.2 , pp. 155-176
    • Newton, M.A.1    Noueiry, A.2    Sarkar, D.3    Ahlquist, P.4
  • 14
    • 62549109118 scopus 로고    scopus 로고
    • Testing significance relative to a fold-change threshold is a treat
    • McCarthy DJ, Smyth GK. Testing significance relative to a fold-change threshold is a treat. Bioinformatics. 2009; 25(6):765-71.
    • (2009) Bioinformatics , vol.25 , Issue.6 , pp. 765-771
    • McCarthy, D.J.1    Smyth, G.K.2
  • 15
    • 84951574149 scopus 로고    scopus 로고
    • Mast: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data
    • Finak G, McDavid A, Yajima M, Deng J, Gersuk V, Shalek AK, et al.Mast: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol. 2015; 16(1):1-13.
    • (2015) Genome Biol , vol.16 , Issue.1 , pp. 1-13
    • Finak, G.1    McDavid, A.2    Yajima, M.3    Deng, J.4    Gersuk, V.5    Shalek, A.K.6
  • 16
    • 84923292191 scopus 로고    scopus 로고
    • Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells
    • Buettner F, Natarajan KN, Casale FP, Proserpio V, Scialdone A, Theis FJ, et al.Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells. Nat Biotechnol. 2015; 33:155-60.
    • (2015) Nat Biotechnol , vol.33 , pp. 155-160
    • Buettner, F.1    Natarajan, K.N.2    Casale, F.P.3    Proserpio, V.4    Scialdone, A.5    Theis, F.J.6
  • 17
    • 84901831004 scopus 로고    scopus 로고
    • Validation of noise models for single-cell transcriptomics
    • Grün D, Kester L, van Oudenaarden A. Validation of noise models for single-cell transcriptomics. Nat Methods. 2014; 11(6):637-40.
    • (2014) Nat Methods , vol.11 , Issue.6 , pp. 637-640
    • Grün, D.1    Kester, L.2    van Oudenaarden, A.3
  • 18
    • 84895069488 scopus 로고    scopus 로고
    • Quantitative single-cell RNA-seq with unique molecular identifiers
    • Islam S, Zeisel A, Joost S, La Manno G, Zajac P, Kasper M, et al.Quantitative single-cell RNA-seq with unique molecular identifiers. Nat Methods. 2014; 11(2):163-6.
    • (2014) Nat Methods , vol.11 , Issue.2 , pp. 163-166
    • Islam, S.1    Zeisel, A.2    Joost, S.3    La Manno, G.4    Zajac, P.5    Kasper, M.6
  • 20
    • 0004661053 scopus 로고    scopus 로고
    • Protein phosphorylation in cell growth regulation
    • 1st ed. Amsterdam: Harwood Academic Publishers
    • Clemens A. Protein phosphorylation in cell growth regulation, 1st ed. Amsterdam: Harwood Academic Publishers; 1996.
    • (1996)
    • Clemens, A.1
  • 21
    • 0000502113 scopus 로고    scopus 로고
    • DNA replication checkpoint
    • Boddy MN, Russell P. DNA replication checkpoint. Curr Biol. 2001; 11(23):953-6.
    • (2001) Curr Biol , vol.11 , Issue.23 , pp. 953-956
    • Boddy, M.N.1    Russell, P.2
  • 22
    • 84929684998 scopus 로고    scopus 로고
    • Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells
    • Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A, Li V, et al.Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell. 2015; 161(5):1187-201.
    • (2015) Cell , vol.161 , Issue.5 , pp. 1187-1201
    • Klein, A.M.1    Mazutis, L.2    Akartuna, I.3    Tallapragada, N.4    Veres, A.5    Li, V.6
  • 23
    • 84929684999 scopus 로고    scopus 로고
    • Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets
    • Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, et al.Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell. 2015; 161(5):1202-14.
    • (2015) Cell , vol.161 , Issue.5 , pp. 1202-1214
    • Macosko, E.Z.1    Basu, A.2    Satija, R.3    Nemesh, J.4    Shekhar, K.5    Goldman, M.6
  • 24
    • 62849120031 scopus 로고    scopus 로고
    • Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations
    • Rue H, Martino S, Chopin N. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J R Stat Soc Ser B Methodol. 2009; 71(2):319-92.
    • (2009) J R Stat Soc Ser B Methodol , vol.71 , Issue.2 , pp. 319-392
    • Rue, H.1    Martino, S.2    Chopin, N.3
  • 26
    • 36749032690 scopus 로고    scopus 로고
    • Tail posterior probability for inference in pairwise and multiclass gene expression data
    • Bochkina N, Richardson S. Tail posterior probability for inference in pairwise and multiclass gene expression data. Biometrics. 2007; 63(4):1117-25.
    • (2007) Biometrics , vol.63 , Issue.4 , pp. 1117-1125
    • Bochkina, N.1    Richardson, S.2
  • 27
    • 84962913696 scopus 로고    scopus 로고
    • R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing
    • R Core Team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2014.
    • (2014)


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.