-
1
-
-
84968903135
-
Coming of age: ten years of next-generation sequencing technologies
-
Goodwin S, McPherson JD, Richard McCombie W. Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet. 2016;17:333-51.
-
(2016)
Nat Rev Genet
, vol.17
, pp. 333-351
-
-
Goodwin, S.1
McPherson, J.D.2
Richard McCombie, W.3
-
2
-
-
78751570979
-
RNA sequencing: advances, challenges and opportunities
-
Ozsolak F, Milos PM. RNA sequencing: advances, challenges and opportunities. Nat Rev Genet. 2011;12:87-98.
-
(2011)
Nat Rev Genet
, vol.12
, pp. 87-98
-
-
Ozsolak, F.1
Milos, P.M.2
-
3
-
-
67349146589
-
mRNA-Seq whole-transcriptome analysis of a single cell
-
Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N, et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods. 2009;6:377-82.
-
(2009)
Nat Methods
, vol.6
, pp. 377-382
-
-
Tang, F.1
Barbacioru, C.2
Wang, Y.3
Nordman, E.4
Lee, C.5
Xu, N.6
-
4
-
-
85029214600
-
-
scRNA-tools. http://www.scrna-tools.org/.
-
-
-
-
5
-
-
85016121177
-
SC3: consensus clustering of single-cell RNA-seq data
-
Kiselev VY, Kirschner K, Schaub MT, Andrews T, Yiu A, Chandra T, et al. SC3: consensus clustering of single-cell RNA-seq data. Nat Methods. 2017;14;483-6.
-
(2017)
Nat Methods.
, vol.14
, pp. 483-486
-
-
Kiselev, V.Y.1
Kirschner, K.2
Schaub, M.T.3
Andrews, T.4
Yiu, A.5
Chandra, T.6
-
6
-
-
85016502564
-
CIDR: ultrafast and accurate clustering through imputation for single-cell RNA-seq data
-
Lin P, Troup M, Ho JWK. CIDR: ultrafast and accurate clustering through imputation for single-cell RNA-seq data. Genome Biol. 2017;18:59.
-
(2017)
Genome Biol
, vol.18
, pp. 59
-
-
Lin, P.1
Troup, M.2
Ho, J.W.K.3
-
7
-
-
84929151009
-
Spatial reconstruction of single-cell gene expression data
-
Satija R, Farrell JA, Gennert D, Schier AF, Regev A. Spatial reconstruction of single-cell gene expression data. Nat Biotechnol. 2015;33:495-502.
-
(2015)
Nat Biotechnol
, vol.33
, pp. 495-502
-
-
Satija, R.1
Farrell, J.A.2
Gennert, D.3
Schier, A.F.4
Regev, A.5
-
8
-
-
84900873950
-
The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells
-
Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol. 2014;32:381-6.
-
(2014)
Nat Biotechnol
, vol.32
, pp. 381-386
-
-
Trapnell, C.1
Cacchiarelli, D.2
Grimsby, J.3
Pokharel, P.4
Li, S.5
Morse, M.6
-
9
-
-
84987652887
-
Cell Tree: an R/bioconductor package to infer the hierarchical structure of cell populations from single-cell RNA-seq data
-
DuVerle DA, Yotsukura S, Nomura S, Aburatani H, Tsuda K. Cell Tree: an R/bioconductor package to infer the hierarchical structure of cell populations from single-cell RNA-seq data. BMC Bioinformatics. 2016;17:363.
-
(2016)
BMC Bioinformatics
, vol.17
, pp. 363
-
-
DuVerle, D.A.1
Yotsukura, S.2
Nomura, S.3
Aburatani, H.4
Tsuda, K.5
-
10
-
-
84947805126
-
Sincell: an R/Bioconductor package for statistical assessment of cell-state hierarchies from single-cell RNA-seq
-
Juliá M, Telenti A, Rausell A. Sincell: an R/Bioconductor package for statistical assessment of cell-state hierarchies from single-cell RNA-seq. Bioinformatics. 2015;31:3380-2.
-
(2015)
Bioinformatics
, vol.31
, pp. 3380-3382
-
-
Juliá, M.1
Telenti, A.2
Rausell, A.3
-
11
-
-
84955706109
-
ZIFA: dimensionality reduction for zero-inflated single-cell gene expression analysis
-
Pierson E, Yau C. ZIFA: dimensionality reduction for zero-inflated single-cell gene expression analysis. Genome Biol. 2015;16:241.
-
(2015)
Genome Biol
, vol.16
, pp. 241
-
-
Pierson, E.1
Yau, C.2
-
12
-
-
84951574149
-
MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data
-
Finak G, McDavid A, Yajima M, Deng J, Gersuk V, Shalek AK, et al. MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol. 2015;16:278.
-
(2015)
Genome Biol
, vol.16
, pp. 278
-
-
Finak, G.1
McDavid, A.2
Yajima, M.3
Deng, J.4
Gersuk, V.5
Shalek, A.K.6
-
13
-
-
85028020054
-
ZINB-WaVE: a general and flexible method for signal extraction from single-cell RNA-seq data
-
Risso D, Perraudeau F, Gribkova S, Dudoit S, Vert J-P. ZINB-WaVE: a general and flexible method for signal extraction from single-cell RNA-seq data. 2017. http://www.biorxiv.org/content/early/2017/04/06/125112.
-
(2017)
-
-
Risso, D.1
Perraudeau, F.2
Gribkova, S.3
Dudoit, S.4
Vert, J.-P.5
-
14
-
-
85028022371
-
MAGIC: a diffusion-based imputation method reveals gene-gene interactions in single-cell RNA-sequencing data
-
van Dijk D, Nainys J, Sharma R, Kathail P, Carr AJ, Moon KR, et al. MAGIC: a diffusion-based imputation method reveals gene-gene interactions in single-cell RNA-sequencing data. 2017. http://biorxiv.org/content/early/2017/02/25/111591.
-
(2017)
-
-
van Dijk, D.1
Nainys, J.2
Sharma, R.3
Kathail, P.4
Carr, A.J.5
Moon, K.R.6
-
15
-
-
85029229611
-
Gene expression recovery for single cell RNA sequencing
-
Huang M, Wang J, Torre E, Dueck H, Shaffer S, Bonasio R, et al. Gene expression recovery for single cell RNA sequencing. 2017. http://biorxiv.org/content/early/2017/05/17/138677.
-
(2017)
-
-
Huang, M.1
Wang, J.2
Torre, E.3
Dueck, H.4
Shaffer, S.5
Bonasio, R.6
-
16
-
-
85029209389
-
ScImpute: accurate and robust imputation for single cell RNA-Seq data
-
Li WV, Li JJ. scImpute: accurate and robust imputation for single cell RNA-Seq data. 2017. http://biorxiv.org/content/early/2017/05/24/141598.
-
(2017)
-
-
Li, W.V.1
Li, J.J.2
-
17
-
-
85019072518
-
Scater: pre-processing, quality control, normalization and visualization of single-cell RNA-seq data in R
-
McCarthy DJ, Campbell KR, Lun ATL, Wills QF. Scater: pre-processing, quality control, normalization and visualization of single-cell RNA-seq data in R. Bioinformatics. 2017;33:1179-86.
-
(2017)
Bioinformatics.
, vol.33
, pp. 1179-1186
-
-
McCarthy, D.J.1
Campbell, K.R.2
Lun, A.T.L.3
Wills, Q.F.4
-
18
-
-
84964556059
-
Pooling across cells to normalize single-cell RNA sequencing data with many zero counts
-
Lun ATL, Bach K, Marioni JC. Pooling across cells to normalize single-cell RNA sequencing data with many zero counts. Genome Biol. 2016;17:1-14.
-
(2016)
Genome Biol
, vol.17
, pp. 1-14
-
-
Lun, A.T.L.1
Bach, K.2
Marioni, J.C.3
-
19
-
-
85029226561
-
Overcoming confounding plate effects in differential expression analyses of single-cell RNA-seq data
-
Lun ATL, Marioni JC. Overcoming confounding plate effects in differential expression analyses of single-cell RNA-seq data. Biostatistics. 2017;18:451-64.
-
(2017)
Biostatistics.
, vol.18
, pp. 451-464
-
-
Lun, A.T.L.1
Marioni, J.C.2
-
20
-
-
84992327075
-
A statistical approach for identifying differential distributions in single-cell RNA-seq experiments
-
Korthauer KD, Chu L-F, Newton MA, Li Y, Thomson J, Stewart R, et al. A statistical approach for identifying differential distributions in single-cell RNA-seq experiments. Genome Biol. 2016;17:222.
-
(2016)
Genome Biol
, vol.17
, pp. 222
-
-
Korthauer, K.D.1
Chu, L.-F.2
Newton, M.A.3
Li, Y.4
Thomson, J.5
Stewart, R.6
-
22
-
-
75249087100
-
edgeR: a Bioconductor package for differential expression analysis of digital gene expression data
-
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139-40.
-
(2010)
Bioinformatics
, vol.26
, pp. 139-140
-
-
Robinson, M.D.1
McCarthy, D.J.2
Smyth, G.K.3
-
23
-
-
77958471357
-
Differential expression analysis for sequence count data
-
Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11:R106.
-
(2010)
Genome Biol
, vol.11
, pp. R106
-
-
Anders, S.1
Huber, W.2
-
24
-
-
85029226411
-
-
Korthauer K. scDD vignette. 2017. https://bioconductor.org/packages/release/bioc/vignettes/scDD/inst/doc/scDD.pdf.
-
(2017)
scDD vignette
-
-
Korthauer, K.1
-
25
-
-
84962861088
-
Beyond comparisons of means: understanding changes in gene expression at the single-cell level
-
Vallejos CA, Richardson S, Marioni JC. Beyond comparisons of means: understanding changes in gene expression at the single-cell level. Genome Biol. 2016;17:70.
-
(2016)
Genome Biol
, vol.17
, pp. 70
-
-
Vallejos, C.A.1
Richardson, S.2
Marioni, J.C.3
-
26
-
-
84858041341
-
Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation
-
McCarthy DJ, Chen Y, Smyth GK. Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res. 2012;40:4288-97.
-
(2012)
Nucleic Acids Res
, vol.40
, pp. 4288-4297
-
-
McCarthy, D.J.1
Chen, Y.2
Smyth, G.K.3
-
27
-
-
84896735766
-
voom: Precision weights unlock linear model analysis tools for RNA-seq read counts
-
Law CW, Chen Y, Shi W, Smyth GK. voom: Precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 2014;15:R29.
-
(2014)
Genome Biol
, vol.15
, pp. R29
-
-
Law, C.W.1
Chen, Y.2
Shi, W.3
Smyth, G.K.4
-
28
-
-
85008384488
-
Batch effects and the effective design of single-cell gene expression studies
-
Tung P-Y, Blischak JD, Hsiao CJ, Knowles DA, Burnett JE, Pritchard JK, et al. Batch effects and the effective design of single-cell gene expression studies. Sci Rep. 2017;7:39921.
-
(2017)
Sci Rep
, vol.7
, pp. 39921
-
-
Tung, P.-Y.1
Blischak, J.D.2
Hsiao, C.J.3
Knowles, D.A.4
Burnett, J.E.5
Pritchard, J.K.6
-
29
-
-
85029221521
-
Modelling dropouts allows for unbiased identification of marker genes in scRNASeq experiments
-
Andrews TS, Hemberg M. Modelling dropouts allows for unbiased identification of marker genes in scRNASeq experiments. 2016. http://biorxiv.org/content/early/2016/07/21/065094.
-
(2016)
-
-
Andrews, T.S.1
Hemberg, M.2
-
30
-
-
84856484968
-
Counting absolute numbers of molecules using unique molecular identifiers
-
Kivioja T, Vähärautio A, Karlsson K, Bonke M, Enge M, Linnarsson S, et al. Counting absolute numbers of molecules using unique molecular identifiers. Nat Methods. 2012;9:72-4.
-
(2012)
Nat Methods
, vol.9
, pp. 72-74
-
-
Kivioja, T.1
Vähärautio, A.2
Karlsson, K.3
Bonke, M.4
Enge, M.5
Linnarsson, S.6
-
31
-
-
0014857654
-
A new method of interpolation and smooth curve fitting based on local procedures
-
Akima H. A new method of interpolation and smooth curve fitting based on local procedures. JACM. 1970;17:589-602.
-
(1970)
JACM
, vol.17
, pp. 589-602
-
-
Akima, H.1
-
32
-
-
85021416579
-
akima: interpolation of irregularly and regularly spaced data
-
Akima H, Gebhardt A. akima: interpolation of irregularly and regularly spaced data. 2016. https://CRAN.R-project.org/package=akima.
-
(2016)
-
-
Akima, H.1
Gebhardt, A.2
-
33
-
-
84961289551
-
Orchestrating high-throughput genomic analysis with Bioconductor
-
Huber W, Carey JV, Gentleman R, et al. Orchestrating high-throughput genomic analysis with Bioconductor. Nat Methods. 2015;12:115-21.
-
(2015)
Nat Methods
, vol.12
, pp. 115-121
-
-
Huber, W.1
Carey, J.V.2
Gentleman, R.3
-
34
-
-
85019646718
-
Gene length and detection bias in single cell RNA sequencing protocols
-
Phipson B, Zappia L, Oshlack A. Gene length and detection bias in single cell RNA sequencing protocols. F1000Res. 2017;6:595.
-
(2017)
F1000Res
, vol.6
, pp. 595
-
-
Phipson, B.1
Zappia, L.2
Oshlack, A.3
-
35
-
-
84925685098
-
fitdistrplus: an R package for fitting distributions
-
Delignette-Muller M, Dutang C. fitdistrplus: an R package for fitting distributions. J Stat Softw. 2015;64:1-34.
-
(2015)
J Stat Softw
, vol.64
, pp. 1-34
-
-
Delignette-Muller, M.1
Dutang, C.2
-
36
-
-
84861746974
-
Bpipe: a tool for running and managing bioinformatics pipelines
-
Sadedin SP, Pope B, Oshlack A. Bpipe: a tool for running and managing bioinformatics pipelines. Bioinformatics. 2012;28:1525-6.
-
(2012)
Bioinformatics
, vol.28
, pp. 1525-1526
-
-
Sadedin, S.P.1
Pope, B.2
Oshlack, A.3
-
37
-
-
84871809302
-
STAR: ultrafast universal RNA-seq aligner
-
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15-21.
-
(2013)
Bioinformatics
, vol.29
, pp. 15-21
-
-
Dobin, A.1
Davis, C.A.2
Schlesinger, F.3
Drenkow, J.4
Zaleski, C.5
Jha, S.6
-
38
-
-
84897397058
-
featureCounts: an efficient general purpose program for assigning sequence reads to genomic features
-
Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30:923-30.
-
(2014)
Bioinformatics
, vol.30
, pp. 923-930
-
-
Liao, Y.1
Smyth, G.K.2
Shi, W.3
-
39
-
-
85014549629
-
Salmon provides fast and bias-aware quantification of transcript expression
-
Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods. 2017;14:417-9.
-
(2017)
Nat Methods
, vol.14
, pp. 417-419
-
-
Patro, R.1
Duggal, G.2
Love, M.I.3
Irizarry, R.A.4
Kingsford, C.5
-
40
-
-
85010908291
-
Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences
-
Soneson C, Love MI, Robinson MD. Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Res. 2015;4:1521.
-
(2015)
F1000Res
, vol.4
, pp. 1521
-
-
Soneson, C.1
Love, M.I.2
Robinson, M.D.3
-
42
-
-
77953146322
-
clues: an R package for nonparametric clustering based on local shrinking
-
Chang F, Qiu W, Zamar R, Lazarus R, Wang X. clues: an R package for nonparametric clustering based on local shrinking. J Stat Softw. 2010;33:1-16.
-
(2010)
J Stat Softw
, vol.33
, pp. 1-16
-
-
Chang, F.1
Qiu, W.2
Zamar, R.3
Lazarus, R.4
Wang, X.5
-
44
-
-
84952674076
-
Human cerebral organoids recapitulate gene expression programs of fetal neocortex development
-
Camp JG, Badsha F, Florio M, Kanton S, Gerber T, Wilsch-Bräuninger M, et al. Human cerebral organoids recapitulate gene expression programs of fetal neocortex development. Proc Natl Acad Sci U S A. 2015;112:15672-7.
-
(2015)
Proc Natl Acad Sci U S A
, vol.112
, pp. 15672-15677
-
-
Camp, J.G.1
Badsha, F.2
Florio, M.3
Kanton, S.4
Gerber, T.5
Wilsch-Bräuninger, M.6
-
45
-
-
84964344737
-
Innate-like functions of natural killer T cell subsets result from highly divergent gene programs
-
Engel I, Seumois G, Chavez L, Samaniego-Castruita D, White B, Chawla A, et al. Innate-like functions of natural killer T cell subsets result from highly divergent gene programs. Nat Immunol. 2016;17:728-39.
-
(2016)
Nat Immunol
, vol.17
, pp. 728-739
-
-
Engel, I.1
Seumois, G.2
Chavez, L.3
Samaniego-Castruita, D.4
White, B.5
Chawla, A.6
-
46
-
-
84929684998
-
Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells
-
Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A, Li V, et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell. 2015;161:1187-201.
-
(2015)
Cell
, vol.161
, pp. 1187-1201
-
-
Klein, A.M.1
Mazutis, L.2
Akartuna, I.3
Tallapragada, N.4
Veres, A.5
Li, V.6
-
47
-
-
84924565530
-
Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq
-
Zeisel A, Muñoz-Manchado AB, Codeluppi S, Lönnerberg P, La Manno G, Juréus A, et al. Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science. 2015;347:1138-42.
-
(2015)
Science
, vol.347
, pp. 1138-1142
-
-
Zeisel, A.1
Muñoz-Manchado, A.B.2
Codeluppi, S.3
Lönnerberg, P.4
Manno, G.5
Juréus, A.6
|