메뉴 건너뛰기




Volumn 18, Issue 1, 2017, Pages

Splatter: Simulation of single-cell RNA sequencing data

Author keywords

RNA seq; Simulation; Single cell; Software

Indexed keywords

DIFFERENTIATION; HUMAN; POISSON DISTRIBUTION; RNA SEQUENCE; SIMULATION; SOFTWARE; ANIMAL; BIOLOGICAL MODEL; CLUSTER ANALYSIS; COMPUTER SIMULATION; INFORMATION PROCESSING; PROCEDURES; REPRODUCIBILITY; SEQUENCE ANALYSIS; SINGLE CELL ANALYSIS;

EID: 85029212828     PISSN: 14747596     EISSN: 1474760X     Source Type: Journal    
DOI: 10.1186/s13059-017-1305-0     Document Type: Article
Times cited : (568)

References (47)
  • 1
    • 84968903135 scopus 로고    scopus 로고
    • Coming of age: ten years of next-generation sequencing technologies
    • Goodwin S, McPherson JD, Richard McCombie W. Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet. 2016;17:333-51.
    • (2016) Nat Rev Genet , vol.17 , pp. 333-351
    • Goodwin, S.1    McPherson, J.D.2    Richard McCombie, W.3
  • 2
    • 78751570979 scopus 로고    scopus 로고
    • RNA sequencing: advances, challenges and opportunities
    • Ozsolak F, Milos PM. RNA sequencing: advances, challenges and opportunities. Nat Rev Genet. 2011;12:87-98.
    • (2011) Nat Rev Genet , vol.12 , pp. 87-98
    • Ozsolak, F.1    Milos, P.M.2
  • 4
    • 85029214600 scopus 로고    scopus 로고
    • scRNA-tools. http://www.scrna-tools.org/.
  • 6
    • 85016502564 scopus 로고    scopus 로고
    • CIDR: ultrafast and accurate clustering through imputation for single-cell RNA-seq data
    • Lin P, Troup M, Ho JWK. CIDR: ultrafast and accurate clustering through imputation for single-cell RNA-seq data. Genome Biol. 2017;18:59.
    • (2017) Genome Biol , vol.18 , pp. 59
    • Lin, P.1    Troup, M.2    Ho, J.W.K.3
  • 8
    • 84900873950 scopus 로고    scopus 로고
    • The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells
    • Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, et al. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol. 2014;32:381-6.
    • (2014) Nat Biotechnol , vol.32 , pp. 381-386
    • Trapnell, C.1    Cacchiarelli, D.2    Grimsby, J.3    Pokharel, P.4    Li, S.5    Morse, M.6
  • 9
    • 84987652887 scopus 로고    scopus 로고
    • Cell Tree: an R/bioconductor package to infer the hierarchical structure of cell populations from single-cell RNA-seq data
    • DuVerle DA, Yotsukura S, Nomura S, Aburatani H, Tsuda K. Cell Tree: an R/bioconductor package to infer the hierarchical structure of cell populations from single-cell RNA-seq data. BMC Bioinformatics. 2016;17:363.
    • (2016) BMC Bioinformatics , vol.17 , pp. 363
    • DuVerle, D.A.1    Yotsukura, S.2    Nomura, S.3    Aburatani, H.4    Tsuda, K.5
  • 10
    • 84947805126 scopus 로고    scopus 로고
    • Sincell: an R/Bioconductor package for statistical assessment of cell-state hierarchies from single-cell RNA-seq
    • Juliá M, Telenti A, Rausell A. Sincell: an R/Bioconductor package for statistical assessment of cell-state hierarchies from single-cell RNA-seq. Bioinformatics. 2015;31:3380-2.
    • (2015) Bioinformatics , vol.31 , pp. 3380-3382
    • Juliá, M.1    Telenti, A.2    Rausell, A.3
  • 11
    • 84955706109 scopus 로고    scopus 로고
    • ZIFA: dimensionality reduction for zero-inflated single-cell gene expression analysis
    • Pierson E, Yau C. ZIFA: dimensionality reduction for zero-inflated single-cell gene expression analysis. Genome Biol. 2015;16:241.
    • (2015) Genome Biol , vol.16 , pp. 241
    • Pierson, E.1    Yau, C.2
  • 12
    • 84951574149 scopus 로고    scopus 로고
    • MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data
    • Finak G, McDavid A, Yajima M, Deng J, Gersuk V, Shalek AK, et al. MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol. 2015;16:278.
    • (2015) Genome Biol , vol.16 , pp. 278
    • Finak, G.1    McDavid, A.2    Yajima, M.3    Deng, J.4    Gersuk, V.5    Shalek, A.K.6
  • 13
    • 85028020054 scopus 로고    scopus 로고
    • ZINB-WaVE: a general and flexible method for signal extraction from single-cell RNA-seq data
    • Risso D, Perraudeau F, Gribkova S, Dudoit S, Vert J-P. ZINB-WaVE: a general and flexible method for signal extraction from single-cell RNA-seq data. 2017. http://www.biorxiv.org/content/early/2017/04/06/125112.
    • (2017)
    • Risso, D.1    Perraudeau, F.2    Gribkova, S.3    Dudoit, S.4    Vert, J.-P.5
  • 14
    • 85028022371 scopus 로고    scopus 로고
    • MAGIC: a diffusion-based imputation method reveals gene-gene interactions in single-cell RNA-sequencing data
    • van Dijk D, Nainys J, Sharma R, Kathail P, Carr AJ, Moon KR, et al. MAGIC: a diffusion-based imputation method reveals gene-gene interactions in single-cell RNA-sequencing data. 2017. http://biorxiv.org/content/early/2017/02/25/111591.
    • (2017)
    • van Dijk, D.1    Nainys, J.2    Sharma, R.3    Kathail, P.4    Carr, A.J.5    Moon, K.R.6
  • 15
    • 85029229611 scopus 로고    scopus 로고
    • Gene expression recovery for single cell RNA sequencing
    • Huang M, Wang J, Torre E, Dueck H, Shaffer S, Bonasio R, et al. Gene expression recovery for single cell RNA sequencing. 2017. http://biorxiv.org/content/early/2017/05/17/138677.
    • (2017)
    • Huang, M.1    Wang, J.2    Torre, E.3    Dueck, H.4    Shaffer, S.5    Bonasio, R.6
  • 16
    • 85029209389 scopus 로고    scopus 로고
    • ScImpute: accurate and robust imputation for single cell RNA-Seq data
    • Li WV, Li JJ. scImpute: accurate and robust imputation for single cell RNA-Seq data. 2017. http://biorxiv.org/content/early/2017/05/24/141598.
    • (2017)
    • Li, W.V.1    Li, J.J.2
  • 17
    • 85019072518 scopus 로고    scopus 로고
    • Scater: pre-processing, quality control, normalization and visualization of single-cell RNA-seq data in R
    • McCarthy DJ, Campbell KR, Lun ATL, Wills QF. Scater: pre-processing, quality control, normalization and visualization of single-cell RNA-seq data in R. Bioinformatics. 2017;33:1179-86.
    • (2017) Bioinformatics. , vol.33 , pp. 1179-1186
    • McCarthy, D.J.1    Campbell, K.R.2    Lun, A.T.L.3    Wills, Q.F.4
  • 18
    • 84964556059 scopus 로고    scopus 로고
    • Pooling across cells to normalize single-cell RNA sequencing data with many zero counts
    • Lun ATL, Bach K, Marioni JC. Pooling across cells to normalize single-cell RNA sequencing data with many zero counts. Genome Biol. 2016;17:1-14.
    • (2016) Genome Biol , vol.17 , pp. 1-14
    • Lun, A.T.L.1    Bach, K.2    Marioni, J.C.3
  • 19
    • 85029226561 scopus 로고    scopus 로고
    • Overcoming confounding plate effects in differential expression analyses of single-cell RNA-seq data
    • Lun ATL, Marioni JC. Overcoming confounding plate effects in differential expression analyses of single-cell RNA-seq data. Biostatistics. 2017;18:451-64.
    • (2017) Biostatistics. , vol.18 , pp. 451-464
    • Lun, A.T.L.1    Marioni, J.C.2
  • 20
    • 84992327075 scopus 로고    scopus 로고
    • A statistical approach for identifying differential distributions in single-cell RNA-seq experiments
    • Korthauer KD, Chu L-F, Newton MA, Li Y, Thomson J, Stewart R, et al. A statistical approach for identifying differential distributions in single-cell RNA-seq experiments. Genome Biol. 2016;17:222.
    • (2016) Genome Biol , vol.17 , pp. 222
    • Korthauer, K.D.1    Chu, L.-F.2    Newton, M.A.3    Li, Y.4    Thomson, J.5    Stewart, R.6
  • 22
    • 75249087100 scopus 로고    scopus 로고
    • edgeR: a Bioconductor package for differential expression analysis of digital gene expression data
    • Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139-40.
    • (2010) Bioinformatics , vol.26 , pp. 139-140
    • Robinson, M.D.1    McCarthy, D.J.2    Smyth, G.K.3
  • 23
    • 77958471357 scopus 로고    scopus 로고
    • Differential expression analysis for sequence count data
    • Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11:R106.
    • (2010) Genome Biol , vol.11 , pp. R106
    • Anders, S.1    Huber, W.2
  • 24
    • 85029226411 scopus 로고    scopus 로고
    • Korthauer K. scDD vignette. 2017. https://bioconductor.org/packages/release/bioc/vignettes/scDD/inst/doc/scDD.pdf.
    • (2017) scDD vignette
    • Korthauer, K.1
  • 25
    • 84962861088 scopus 로고    scopus 로고
    • Beyond comparisons of means: understanding changes in gene expression at the single-cell level
    • Vallejos CA, Richardson S, Marioni JC. Beyond comparisons of means: understanding changes in gene expression at the single-cell level. Genome Biol. 2016;17:70.
    • (2016) Genome Biol , vol.17 , pp. 70
    • Vallejos, C.A.1    Richardson, S.2    Marioni, J.C.3
  • 26
    • 84858041341 scopus 로고    scopus 로고
    • Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation
    • McCarthy DJ, Chen Y, Smyth GK. Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res. 2012;40:4288-97.
    • (2012) Nucleic Acids Res , vol.40 , pp. 4288-4297
    • McCarthy, D.J.1    Chen, Y.2    Smyth, G.K.3
  • 27
    • 84896735766 scopus 로고    scopus 로고
    • voom: Precision weights unlock linear model analysis tools for RNA-seq read counts
    • Law CW, Chen Y, Shi W, Smyth GK. voom: Precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 2014;15:R29.
    • (2014) Genome Biol , vol.15 , pp. R29
    • Law, C.W.1    Chen, Y.2    Shi, W.3    Smyth, G.K.4
  • 29
    • 85029221521 scopus 로고    scopus 로고
    • Modelling dropouts allows for unbiased identification of marker genes in scRNASeq experiments
    • Andrews TS, Hemberg M. Modelling dropouts allows for unbiased identification of marker genes in scRNASeq experiments. 2016. http://biorxiv.org/content/early/2016/07/21/065094.
    • (2016)
    • Andrews, T.S.1    Hemberg, M.2
  • 31
    • 0014857654 scopus 로고
    • A new method of interpolation and smooth curve fitting based on local procedures
    • Akima H. A new method of interpolation and smooth curve fitting based on local procedures. JACM. 1970;17:589-602.
    • (1970) JACM , vol.17 , pp. 589-602
    • Akima, H.1
  • 32
    • 85021416579 scopus 로고    scopus 로고
    • akima: interpolation of irregularly and regularly spaced data
    • Akima H, Gebhardt A. akima: interpolation of irregularly and regularly spaced data. 2016. https://CRAN.R-project.org/package=akima.
    • (2016)
    • Akima, H.1    Gebhardt, A.2
  • 33
    • 84961289551 scopus 로고    scopus 로고
    • Orchestrating high-throughput genomic analysis with Bioconductor
    • Huber W, Carey JV, Gentleman R, et al. Orchestrating high-throughput genomic analysis with Bioconductor. Nat Methods. 2015;12:115-21.
    • (2015) Nat Methods , vol.12 , pp. 115-121
    • Huber, W.1    Carey, J.V.2    Gentleman, R.3
  • 34
    • 85019646718 scopus 로고    scopus 로고
    • Gene length and detection bias in single cell RNA sequencing protocols
    • Phipson B, Zappia L, Oshlack A. Gene length and detection bias in single cell RNA sequencing protocols. F1000Res. 2017;6:595.
    • (2017) F1000Res , vol.6 , pp. 595
    • Phipson, B.1    Zappia, L.2    Oshlack, A.3
  • 35
    • 84925685098 scopus 로고    scopus 로고
    • fitdistrplus: an R package for fitting distributions
    • Delignette-Muller M, Dutang C. fitdistrplus: an R package for fitting distributions. J Stat Softw. 2015;64:1-34.
    • (2015) J Stat Softw , vol.64 , pp. 1-34
    • Delignette-Muller, M.1    Dutang, C.2
  • 36
    • 84861746974 scopus 로고    scopus 로고
    • Bpipe: a tool for running and managing bioinformatics pipelines
    • Sadedin SP, Pope B, Oshlack A. Bpipe: a tool for running and managing bioinformatics pipelines. Bioinformatics. 2012;28:1525-6.
    • (2012) Bioinformatics , vol.28 , pp. 1525-1526
    • Sadedin, S.P.1    Pope, B.2    Oshlack, A.3
  • 38
    • 84897397058 scopus 로고    scopus 로고
    • featureCounts: an efficient general purpose program for assigning sequence reads to genomic features
    • Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30:923-30.
    • (2014) Bioinformatics , vol.30 , pp. 923-930
    • Liao, Y.1    Smyth, G.K.2    Shi, W.3
  • 39
    • 85014549629 scopus 로고    scopus 로고
    • Salmon provides fast and bias-aware quantification of transcript expression
    • Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods. 2017;14:417-9.
    • (2017) Nat Methods , vol.14 , pp. 417-419
    • Patro, R.1    Duggal, G.2    Love, M.I.3    Irizarry, R.A.4    Kingsford, C.5
  • 40
    • 85010908291 scopus 로고    scopus 로고
    • Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences
    • Soneson C, Love MI, Robinson MD. Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Res. 2015;4:1521.
    • (2015) F1000Res , vol.4 , pp. 1521
    • Soneson, C.1    Love, M.I.2    Robinson, M.D.3
  • 42
    • 77953146322 scopus 로고    scopus 로고
    • clues: an R package for nonparametric clustering based on local shrinking
    • Chang F, Qiu W, Zamar R, Lazarus R, Wang X. clues: an R package for nonparametric clustering based on local shrinking. J Stat Softw. 2010;33:1-16.
    • (2010) J Stat Softw , vol.33 , pp. 1-16
    • Chang, F.1    Qiu, W.2    Zamar, R.3    Lazarus, R.4    Wang, X.5
  • 45
    • 84964344737 scopus 로고    scopus 로고
    • Innate-like functions of natural killer T cell subsets result from highly divergent gene programs
    • Engel I, Seumois G, Chavez L, Samaniego-Castruita D, White B, Chawla A, et al. Innate-like functions of natural killer T cell subsets result from highly divergent gene programs. Nat Immunol. 2016;17:728-39.
    • (2016) Nat Immunol , vol.17 , pp. 728-739
    • Engel, I.1    Seumois, G.2    Chavez, L.3    Samaniego-Castruita, D.4    White, B.5    Chawla, A.6
  • 46
    • 84929684998 scopus 로고    scopus 로고
    • Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells
    • Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A, Li V, et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell. 2015;161:1187-201.
    • (2015) Cell , vol.161 , pp. 1187-1201
    • Klein, A.M.1    Mazutis, L.2    Akartuna, I.3    Tallapragada, N.4    Veres, A.5    Li, V.6
  • 47
    • 84924565530 scopus 로고    scopus 로고
    • Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq
    • Zeisel A, Muñoz-Manchado AB, Codeluppi S, Lönnerberg P, La Manno G, Juréus A, et al. Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science. 2015;347:1138-42.
    • (2015) Science , vol.347 , pp. 1138-1142
    • Zeisel, A.1    Muñoz-Manchado, A.B.2    Codeluppi, S.3    Lönnerberg, P.4    Manno, G.5    Juréus, A.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.