-
1
-
-
84908037236
-
mTOR pathway: A current, up-to-date mini-review (Review)
-
et al
-
Zarogoulidis P, Lampaki S, Turner JF, Huang H, Kakolyris S, Syrigos K, et al.: mTOR pathway: A current, up-to-date mini-review (Review). Oncol Lett 8, 2367–2370, 2014.
-
(2014)
Oncol Lett
, vol.8
, pp. 2367-2370
-
-
Zarogoulidis, P.1
Lampaki, S.2
Turner, J.F.3
Huang, H.4
Kakolyris, S.5
Syrigos, K.6
-
2
-
-
84912072020
-
The structural basis for mTOR function
-
Baretić D, and Williams RL, : The structural basis for mTOR function. Semin Cell Dev Biol 36, 91–101, 2014. doi:10.1016/j.semcdb.2014.09.024.
-
(2014)
Semin Cell Dev Biol
, vol.36
, pp. 91-101
-
-
Baretić, D.1
Williams, R.L.2
-
3
-
-
82555166000
-
mTOR signaling in disease
-
Review, and
-
Dazert E, and Hall MN, : mTOR signaling in disease. Curr Opin Cell Biol 23, 744–55, 2011. Review doi:10.1016/j.ceb.2011.09.003.
-
(2011)
Curr Opin Cell Biol
, vol.23
, pp. 744-755
-
-
Dazert, E.1
Hall, M.N.2
-
4
-
-
78650510609
-
mTOR: From growth signal integration to cancer, diabetes and ageing
-
Review, and
-
Zoncu R, Efeyan A, and Sabatini DM, : mTOR: From growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 12, 21–35, 2011. Review doi:10.1038/nrm3025.
-
(2011)
Nat Rev Mol Cell Biol
, vol.12
, pp. 21-35
-
-
Zoncu, R.1
Efeyan, A.2
Sabatini, D.M.3
-
5
-
-
33846569938
-
Targeting mammalian target of rapamycin (mTOR) for health and diseases
-
Review, and
-
Tsang CK, Qi H, Liu LF, and Zheng XF, : Targeting mammalian target of rapamycin (mTOR) for health and diseases. Drug Discov Today 12, 112–24, 2007. Review.
-
(2007)
Drug Discov Today
, vol.12
, pp. 112-124
-
-
Tsang, C.K.1
Qi, H.2
Liu, L.F.3
Zheng, X.F.4
-
6
-
-
85008194321
-
Molecular neurobiology of mTOR
-
Review, and
-
Switon K, Kotulska K, Janusz-Kaminska A, Zmorzynska J, and Jaworski J, : Molecular neurobiology of mTOR. Neuroscience 341, 112–153, 2017. Review. doi:10.1016/j.neuroscience.2016.11.017.
-
(2017)
Neuroscience
, vol.341
, pp. 112-153
-
-
Switon, K.1
Kotulska, K.2
Janusz-Kaminska, A.3
Zmorzynska, J.4
Jaworski, J.5
-
7
-
-
34347220473
-
Defining the role of mTOR in cancer
-
Guertin DA, and Sabatini DM, : Defining the role of mTOR in cancer. Cancer Cell 12, 9–22, 2007.
-
(2007)
Cancer Cell
, vol.12
, pp. 9-22
-
-
Guertin, D.A.1
Sabatini, D.M.2
-
8
-
-
67349241955
-
DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival
-
et al
-
Peterson TR, Laplante M, Thoreen CC, Sancak Y, Kang SA, Kuehl WM, et al.: DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell 137, 873–86, 2009. doi:10.1016/j.cell.2009.03.046.
-
(2009)
Cell
, vol.137
, pp. 873-886
-
-
Peterson, T.R.1
Laplante, M.2
Thoreen, C.C.3
Sancak, Y.4
Kang, S.A.5
Kuehl, W.M.6
-
9
-
-
70350418625
-
mTOR signaling at a glance
-
Review, and
-
Laplante M, and Sabatini DM, : mTOR signaling at a glance. J Cell Sci 122, 3589–94, 2009. Review. doi:10.1242/jcs.051011.
-
(2009)
J Cell Sci
, vol.122
, pp. 3589-3594
-
-
Laplante, M.1
Sabatini, D.M.2
-
10
-
-
79960470913
-
mTOR complex 2 signaling and functions
-
Oh WJ, and Jacinto E, : mTOR complex 2 signaling and functions. Cell Cycle 10, 2305–16, 2011.
-
(2011)
Cell Cycle
, vol.10
, pp. 2305-2316
-
-
Oh, W.J.1
Jacinto, E.2
-
11
-
-
0037097863
-
Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E
-
Fingar DC, Salama S, Tsou C, Harlow E, and Blenis J, : Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E. Genes Dev 16, 1472–87, 2002.
-
(2002)
Genes Dev
, vol.16
, pp. 1472-1487
-
-
Fingar, D.C.1
Salama, S.2
Tsou, C.3
Harlow, E.4
Blenis, J.5
-
12
-
-
0037507252
-
The mammalian target of rapamycin (mTOR) partner, raptor, binds the mTOR substrates p70 S6 kinase and 4E-BP1 through their TOR signaling (TOS) motif
-
et al
-
Nojima H, Tokunaga C, Eguchi S, Oshiro N, Hidayat S, Yoshino K, et al.: The mammalian target of rapamycin (mTOR) partner, raptor, binds the mTOR substrates p70 S6 kinase and 4E-BP1 through their TOR signaling (TOS) motif. J Biol Chem 278, 15461–4, 2003.
-
(2003)
J Biol Chem
, vol.278
, pp. 15461-15464
-
-
Nojima, H.1
Tokunaga, C.2
Eguchi, S.3
Oshiro, N.4
Hidayat, S.5
Yoshino, K.6
-
13
-
-
78650239404
-
Functions and regulation of the 70kDa ribosomal S6 kinases
-
Review, and
-
Fenton TR, and Gout IT, : Functions and regulation of the 70kDa ribosomal S6 kinases. Int J Biochem Cell Biol 43, 47–59, 2011. Review. doi:10.1016/j.biocel.2010.09.018.
-
(2011)
Int J Biochem Cell Biol
, vol.43
, pp. 47-59
-
-
Fenton, T.R.1
Gout, I.T.2
-
14
-
-
0033604521
-
Ribosomal S6 kinase signaling and the control of translation
-
Dufner A, and Thomas G, : Ribosomal S6 kinase signaling and the control of translation. Experimental Cell Research 253, 100–109, 1999.
-
(1999)
Experimental Cell Research
, vol.253
, pp. 100-109
-
-
Dufner, A.1
Thomas, G.2
-
15
-
-
0035225023
-
The p70 S6 kinase integrates nutrient and growth signals to control translational capacity
-
Review, and
-
Avruch J, Belham C, Weng Q, Hara K, and Yonezawa K, : The p70 S6 kinase integrates nutrient and growth signals to control translational capacity. ProgMolSubcell Biol 26, 115–54, 2001. Review.
-
(2001)
ProgMolSubcell Biol
, vol.26
, pp. 115-154
-
-
Avruch, J.1
Belham, C.2
Weng, Q.3
Hara, K.4
Yonezawa, K.5
-
16
-
-
79959568260
-
Hydrophobic motif phosphorylation is not required for activation loop phosphorylation of p70 ribosomal protein S6 kinase 1 (S6K1)
-
Keshwani MM, von Daake S, Newton AC, Harris TK, and Taylor SS, : Hydrophobic motif phosphorylation is not required for activation loop phosphorylation of p70 ribosomal protein S6 kinase 1 (S6K1). J Biol Chem 286, 23552–8, 2011. doi:10.1074/jbc.M111.258004.
-
(2011)
J Biol Chem
, vol.286
, pp. 23552-23558
-
-
Keshwani, M.M.1
von Daake, S.2
Newton, A.C.3
Harris, T.K.4
Taylor, S.S.5
-
17
-
-
70349669095
-
Ribosomal protein S6 kinase 1 signaling regulates mammalian life span
-
et al
-
Selman C, Tullet JM, Wieser D, Irvine E, Lingard SJ, Choudhury AI, et al.: Ribosomal protein S6 kinase 1 signaling regulates mammalian life span. Science 326, 140–4, 2009. doi:10.1126/science.1177221.
-
(2009)
Science
, vol.326
, pp. 140-144
-
-
Selman, C.1
Tullet, J.M.2
Wieser, D.3
Irvine, E.4
Lingard, S.J.5
Choudhury, A.I.6
-
18
-
-
84864833164
-
-
Review, and
-
Ming XF, Montani JP, and Yang Z, : Perspectives of targeting mTORC1–S6K1 in cardiovascular aging Frontiers in physiology. 5, 1–11, 2012. Review doi:10.3389/fphys.2012.00005.
-
(2012)
Perspectives of targeting mTORC1–S6K1 in cardiovascular aging Frontiers in physiology
, vol.5
, pp. 1-11
-
-
Ming, X.F.1
Montani, J.P.2
Yang, Z.3
-
19
-
-
34249679614
-
mTORComplex1-S6K1 signaling: At the crossroads of obesity, diabetes and cancer
-
Dann SG, Selvaraj A, and Thomas G, : mTORComplex1-S6K1 signaling: At the crossroads of obesity, diabetes and cancer. TrendsMol 13, 252–259, 2007.
-
(2007)
TrendsMol
, vol.13
, pp. 252-259
-
-
Dann, S.G.1
Selvaraj, A.2
Thomas, G.3
-
20
-
-
84871233832
-
eIF4E/4E-BP Ratio Predicts the Efficacy of mTOR Targeted Therapies
-
et al
-
Alain T, Morita M, Fonseca BD, Yanagiya A, Siddiqui N, Bhat M, et al.: eIF4E/4E-BP Ratio Predicts the Efficacy of mTOR Targeted Therapies. Cancer Research 72, 6468–6476, 2012. doi:10.1158/0008-5472.CAN-12-2395.
-
(2012)
Cancer Research
, vol.72
, pp. 6468-6476
-
-
Alain, T.1
Morita, M.2
Fonseca, B.D.3
Yanagiya, A.4
Siddiqui, N.5
Bhat, M.6
-
21
-
-
0032520009
-
4E-BP1, a repressor of mRNA translation, is phosphorylated and inactivated by the Akt(PKB) signaling pathway
-
Gingras AC, Kennedy SG, O'Leary MA, Sonenberg N, and Hay N, : 4E-BP1, a repressor of mRNA translation, is phosphorylated and inactivated by the Akt(PKB) signaling pathway. Genes Dev 12, 502–13, 1998.
-
(1998)
Genes Dev
, vol.12
, pp. 502-513
-
-
Gingras, A.C.1
Kennedy, S.G.2
O'Leary, M.A.3
Sonenberg, N.4
Hay, N.5
-
22
-
-
0037718389
-
TOS motif-mediated raptor binding regulates 4E-BP1 multisite phosphorylation and function
-
Schalm SS, Fingar DC, Sabatini DM, and Blenis J, : TOS motif-mediated raptor binding regulates 4E-BP1 multisite phosphorylation and function. Curr. Biol 13, 797–806, 2003.
-
(2003)
Curr. Biol
, vol.13
, pp. 797-806
-
-
Schalm, S.S.1
Fingar, D.C.2
Sabatini, D.M.3
Blenis, J.4
-
23
-
-
77953844482
-
mTOR signaling in cancer cell motility and tumor metastasis
-
Review, and
-
Zhou H, and Huang S, : mTOR signaling in cancer cell motility and tumor metastasis. Crit Rev Eukaryot Gene Expr 20, 1–16, 2010. Review.
-
(2010)
Crit Rev Eukaryot Gene Expr
, vol.20
, pp. 1-16
-
-
Zhou, H.1
Huang, S.2
-
24
-
-
84883146054
-
The evolution of the TOR pathway and its role in cancer
-
Review, and
-
Beauchamp EM, and Platanias LC, : The evolution of the TOR pathway and its role in cancer. Oncogene 32, 3923–32, 2013. doi:10.1038/onc.2012.567. Review.
-
(2013)
Oncogene
, vol.32
, pp. 3923-3932
-
-
Beauchamp, E.M.1
Platanias, L.C.2
-
25
-
-
65249190250
-
S6 kinase 1 regulates estrogen receptor alpha in control of breast cancer cell proliferation
-
Yamnik RL, Digilova A, Davis DC, Brodt ZN, Murphy CJ, and Holz MK, : S6 kinase 1 regulates estrogen receptor alpha in control of breast cancer cell proliferation. J Biol Chem 284, 6361–9, 2009. doi:10.1074/jbc.M807532200.
-
(2009)
J Biol Chem
, vol.284
, pp. 6361-6369
-
-
Yamnik, R.L.1
Digilova, A.2
Davis, D.C.3
Brodt, Z.N.4
Murphy, C.J.5
Holz, M.K.6
-
26
-
-
84861090959
-
Overexpression of s6 kinase 1 in brain tumours is associated with induction of hypoxia-responsive genes and predicts patients' survival
-
Ismail HM, : Overexpression of s6 kinase 1 in brain tumours is associated with induction of hypoxia-responsive genes and predicts patients' survival. J Oncol 2012, 416927, 2012. doi:10.1155/2012/416927.
-
(2012)
J Oncol
, vol.2012
, pp. 416927
-
-
Ismail, H.M.1
-
27
-
-
33846276209
-
4E-binding protein 1, a cell signaling hallmark in breast cancer that correlates with pathologic grade and prognosis
-
et al
-
Rojo F, Najera L, Lirola J, Jiménez J, Guzmán M, Sabadell MD, et al.: 4E-binding protein 1, a cell signaling hallmark in breast cancer that correlates with pathologic grade and prognosis. Clin Cancer Res 13, 81–9, 2007.
-
(2007)
Clin Cancer Res
, vol.13
, pp. 81-89
-
-
Rojo, F.1
Najera, L.2
Lirola, J.3
Jiménez, J.4
Guzmán, M.5
Sabadell, M.D.6
-
28
-
-
77954296394
-
4E-BP1 is a key effector of the oncogenic activation of the AKT and ERK signaling pathways that integrates their function in tumors
-
et al
-
She QB, Halilovic E, Ye Q, Zhen W, Shirasawa S, Sasazuki T, et al.: 4E-BP1 is a key effector of the oncogenic activation of the AKT and ERK signaling pathways that integrates their function in tumors. Cancer Cell 18, 39–51, 2010. doi:10.1016/j.ccr.2010.05.023.
-
(2010)
Cancer Cell
, vol.18
, pp. 39-51
-
-
She, Q.B.1
Halilovic, E.2
Ye, Q.3
Zhen, W.4
Shirasawa, S.5
Sasazuki, T.6
-
29
-
-
2442648845
-
The translation factor eIF-4E promotes tumor formation and cooperates with c-Myc in lymphomagenesis
-
et al
-
Ruggero D, Montanaro L, Ma L, Xu W, Londei P, et al.: The translation factor eIF-4E promotes tumor formation and cooperates with c-Myc in lymphomagenesis. Nat Med 10, 484–6, 2004.
-
(2004)
Nat Med
, vol.10
, pp. 484-486
-
-
Ruggero, D.1
Montanaro, L.2
Ma, L.3
Xu, W.4
Londei, P.5
-
30
-
-
1642586272
-
Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy
-
et al
-
Wendel HG, De Stanchina E, Fridman JS, Malina A, Ray S, et al.: Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy. Nature 428, 332–7, 2004.
-
(2004)
Nature
, vol.428
, pp. 332-337
-
-
Wendel, H.G.1
De Stanchina, E.2
Fridman, J.S.3
Malina, A.4
Ray, S.5
-
31
-
-
4043171462
-
Upstream and downstream of mTOR
-
Review, and
-
Hay N, and Sonenberg N, : Upstream and downstream of mTOR. Genes Dev 18, 1926–45, 2004. Review.
-
(2004)
Genes Dev
, vol.18
, pp. 1926-1945
-
-
Hay, N.1
Sonenberg, N.2
-
32
-
-
0034969478
-
mTOR inhibitors: An overview
-
Neuhaus P, Klupp J, and Langrehr JM, : mTOR inhibitors: An overview. Liver Transpl 7, 473–84, 2001.
-
(2001)
Liver Transpl
, vol.7
, pp. 473-484
-
-
Neuhaus, P.1
Klupp, J.2
Langrehr, J.M.3
-
33
-
-
68149096799
-
The pharmacology of mTOR inhibition
-
Guertin DA, and Sabatini DM, : The pharmacology of mTOR inhibition. Sci Signaling 2, pe24, 2009. doi:10.1126/scisignal.267pe24.
-
(2009)
Sci Signaling
, vol.2
, pp. pe24
-
-
Guertin, D.A.1
Sabatini, D.M.2
-
34
-
-
84906842272
-
The mTORsignalling pathway in cancer and the potential mTOR inhibitory activities of natural phytochemicals
-
Tan HK, Moad AI, and Tan ML, : The mTORsignalling pathway in cancer and the potential mTOR inhibitory activities of natural phytochemicals. Asian Pac J Cancer Prev 15, 6463–75, 2014.
-
(2014)
Asian Pac J Cancer Prev
, vol.15
, pp. 6463-6475
-
-
Tan, H.K.1
Moad, A.I.2
Tan, M.L.3
-
35
-
-
0038433304
-
Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signaling, is inhibited by TSC1 and 2
-
et al
-
Garami A, Zwartkruis FJ, Nobukuni T, Joaquin M, Roccio M, Stocker H, et al.: Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signaling, is inhibited by TSC1 and 2. Mol Cell 11, 1457–66, 2003.
-
(2003)
Mol Cell
, vol.11
, pp. 1457-1466
-
-
Garami, A.1
Zwartkruis, F.J.2
Nobukuni, T.3
Joaquin, M.4
Roccio, M.5
Stocker, H.6
-
36
-
-
79955785100
-
Pushing the envelope in the mTOR pathway: The second generation of inhibitors
-
Review, and
-
Vilar E, Perez-Garcia J, and Tabernero J, : Pushing the envelope in the mTOR pathway: The second generation of inhibitors. Mol Cancer Ther 10, 395–403, 2011. Review doi:10.1158/1535-7163.MCT-10-0905.
-
(2011)
Mol Cancer Ther
, vol.10
, pp. 395-403
-
-
Vilar, E.1
Perez-Garcia, J.2
Tabernero, J.3
-
37
-
-
84890547679
-
The contentious history of sirtuin debates
-
Naiman S, and Cohen HY, : The contentious history of sirtuin debates. Rambam Maimonides Med Journal 3, e0022, 2012. doi:10.5041/RMMJ.10093.
-
(2012)
Rambam Maimonides Med Journal
, vol.3
, pp. e0022
-
-
Naiman, S.1
Cohen, H.Y.2
-
38
-
-
84858797950
-
Sirtuins as regulators of metabolism and healthspan
-
Houtkooper RH, Pirinen E, and Auwerx J, : Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol 13, 225–38, 2012. doi:10.1038/nrm3293.
-
(2012)
Nat Rev Mol Cell Biol
, vol.13
, pp. 225-238
-
-
Houtkooper, R.H.1
Pirinen, E.2
Auwerx, J.3
-
39
-
-
84894352303
-
SIRT1 and other sirtuins in metabolism
-
Chang HC, and Guarente L, : SIRT1 and other sirtuins in metabolism. Trends EndocrinolMetab 25, 138–45, 2014. doi:10.1016/j.tem.2013.12.001.
-
(2014)
Trends EndocrinolMetab
, vol.25
, pp. 138-145
-
-
Chang, H.C.1
Guarente, L.2
-
40
-
-
84892495970
-
Structural and functional analysis of human SIRT1
-
Davenport AM, Huber FM, and Hoelz A, : Structural and functional analysis of human SIRT1. J Mol Biol 426, 526–41, 2014. doi:10.1016/j.jmb.2013.10.009.
-
(2014)
J Mol Biol
, vol.426
, pp. 526-541
-
-
Davenport, A.M.1
Huber, F.M.2
Hoelz, A.3
-
41
-
-
34547413569
-
Sirtuin functions in health and disease
-
Yakamoto H, Schoonjans L, and Auwerx J, : Sirtuin functions in health and disease. MolEndocrinol 21, 1745–55, 2007.
-
(2007)
MolEndocrinol
, vol.21
, pp. 1745-1755
-
-
Yakamoto, H.1
Schoonjans, L.2
Auwerx, J.3
-
42
-
-
54249107873
-
The ups and downs of SIRT1
-
Kwon HS, and Ott M, : The ups and downs of SIRT1. Trends Biochem Sci 33, 517–25, 2008. doi:10.1016/j.tibs.2008.08.001.
-
(2008)
Trends Biochem Sci
, vol.33
, pp. 517-525
-
-
Kwon, H.S.1
Ott, M.2
-
43
-
-
67349276169
-
AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity
-
et al
-
Cantó C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L, et al.: AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458, 1050–60, 2009. doi:10.1038/nature07813.
-
(2009)
Nature
, vol.458
, pp. 1050-1060
-
-
Cantó, C.1
Gerhart-Hines, Z.2
Feige, J.N.3
Lagouge, M.4
Noriega, L.5
-
44
-
-
41649094992
-
SIRT1 acts as a nutrient-sensitive growth suppressor and its loss is associated with increased AMPK and telomerase activity
-
et al
-
Narala SR, Allsopp RC, Wells TB, Zhang G, Prasad P, Coussens MJ, et al.: SIRT1 acts as a nutrient-sensitive growth suppressor and its loss is associated with increased AMPK and telomerase activity. MolBiol Cell 19, 1210–9, 2008. doi:10.1091/mbc.E07-09-0965.
-
(2008)
MolBiol Cell
, vol.19
, pp. 1210-1219
-
-
Narala, S.R.1
Allsopp, R.C.2
Wells, T.B.3
Zhang, G.4
Prasad, P.5
Coussens, M.J.6
-
45
-
-
55549096745
-
SIRT1 modulation of the acetylation status, cytosolic localization, and activity of LKB1. Possible role in AMP-activated protein kinase activation
-
Lan F, Cacicedo JM, Ruderman N, and Ido Y, : SIRT1 modulation of the acetylation status, cytosolic localization, and activity of LKB1. Possible role in AMP-activated protein kinase activation. J Biol Chem 283, 27628–35, 2008. doi:10.1074/jbc.M805711200.
-
(2008)
J Biol Chem
, vol.283
, pp. 27628-27635
-
-
Lan, F.1
Cacicedo, J.M.2
Ruderman, N.3
Ido, Y.4
-
46
-
-
84907545906
-
AMPK: Positive and negative regulation, and its role in whole-body energy homeostasis
-
Hardie DG, : AMPK: Positive and negative regulation, and its role in whole-body energy homeostasis. CurrOpin Cell Biol 33, 1–7, 2015. doi:10.1016/j.ceb.2014.09.004.
-
(2015)
CurrOpin Cell Biol
, vol.33
, pp. 1-7
-
-
Hardie, D.G.1
-
47
-
-
84901825397
-
AMPK: A cellular metabolic and redox sensor. A minireview
-
Review, and
-
Shirwany NA, and Zou MH, : AMPK: A cellular metabolic and redox sensor. A minireview. Front Biosci 19, 447–74, 2014. Review.
-
(2014)
Front Biosci
, vol.19
, pp. 447-474
-
-
Shirwany, N.A.1
Zou, M.H.2
-
48
-
-
84906482561
-
Pharmacological activation of AMPK ameliorates perivascular adipose/endothelial dysfunction in a manner interdependent on AMPK and SIRT1
-
et al
-
Sun Y, Li J, Xiao N, Wang M, Kou J, Qi L, et al.: Pharmacological activation of AMPK ameliorates perivascular adipose/endothelial dysfunction in a manner interdependent on AMPK and SIRT1. Pharmacol Res 89, 19–28, 2014. doi:10.1016/j.phrs.2014.07.006.
-
(2014)
Pharmacol Res
, vol.89
, pp. 19-28
-
-
Sun, Y.1
Li, J.2
Xiao, N.3
Wang, M.4
Kou, J.5
Qi, L.6
-
49
-
-
84863850485
-
Chitooligosaccharide induces mitochondrial biogenesis and increases exercise endurance through the activation of Sirt1 and AMPK in rats
-
et al
-
Jeong HW, Cho SY, Kim SY, Shin ES, Kim JM, et al.: Chitooligosaccharide induces mitochondrial biogenesis and increases exercise endurance through the activation of Sirt1 and AMPK in rats. PLoS One 7, 2012. doi:10.1371/journal.pone.0040073.
-
(2012)
PLoS One
, vol.7
-
-
Jeong, H.W.1
Cho, S.Y.2
Kim, S.Y.3
Shin, E.S.4
Kim, J.M.5
-
50
-
-
79959391159
-
NAD blocks high glucose induced mesangial hypertrophy via activation of the sirtuins-AMPK-mTOR pathway
-
et al
-
Zhuo L, Fu B, Bai X, Zhang B, Wu L, et al.: NAD blocks high glucose induced mesangial hypertrophy via activation of the sirtuins-AMPK-mTOR pathway. Cell PhysiolBiochem 27, 681–90, 2011. doi:10.1159/000330077.
-
(2011)
Cell PhysiolBiochem
, vol.27
, pp. 681-690
-
-
Zhuo, L.1
Fu, B.2
Bai, X.3
Zhang, B.4
Wu, L.5
-
51
-
-
84856045492
-
Resveratrol engages AMPK to attenuate ERK and mTOR signaling in sensory neurons and inhibits incision-induced acute and chronic pain
-
et al
-
Tillu DV, Melemedjian OK, Asiedu MN, Qu N, De Felice M, Dussor G, et al.: Resveratrol engages AMPK to attenuate ERK and mTOR signaling in sensory neurons and inhibits incision-induced acute and chronic pain. Mol Pain 8, 5, 2012. doi:10.1186/1744-8069-8-5.
-
(2012)
Mol Pain
, vol.8
, pp. 5
-
-
Tillu, D.V.1
Melemedjian, O.K.2
Asiedu, M.N.3
Qu, N.4
De Felice, M.5
Dussor, G.6
-
52
-
-
0037276069
-
A possible linkage between AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) signaling pathway
-
et al
-
Kimura N, Tokunaga C, Dalal S, Richardson C, Yoshino K, et al.: A possible linkage between AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) signaling pathway. Genes Cells 8, 65–79, 2003.
-
(2003)
Genes Cells
, vol.8
, pp. 65-79
-
-
Kimura, N.1
Tokunaga, C.2
Dalal, S.3
Richardson, C.4
Yoshino, K.5
-
53
-
-
77950127881
-
SIRT1 negatively regulates the mammalian target of rapamycin
-
Ghosh HS, McBurney M, and Robbins PD, : SIRT1 negatively regulates the mammalian target of rapamycin. PLoS One 5, e9199, 2010. doi:10.1371/journal.pone.0009199.
-
(2010)
PLoS One
, vol.5
-
-
Ghosh, H.S.1
McBurney, M.2
Robbins, P.D.3
-
54
-
-
42949139481
-
AMPK phosphorylation of raptor mediates a metabolic checkpoint
-
et al
-
Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, et al.: AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 30, 214–26, 2008. doi:10.1016/j.molcel.2008.03.003.
-
(2008)
Mol Cell
, vol.30
, pp. 214-226
-
-
Gwinn, D.M.1
Shackelford, D.B.2
Egan, D.F.3
Mihaylova, M.M.4
Mery, A.5
-
55
-
-
77957975705
-
A review of the Sirtuin system, its Clinical Implications, and the Potential Role of Dietary Activators: Part 1
-
Kelly G, : A review of the Sirtuin system, its Clinical Implications, and the Potential Role of Dietary Activators: Part 1. Altern Med Rev 15, 245–263, 2010.
-
(2010)
Altern Med Rev
, vol.15
, pp. 245-263
-
-
Kelly, G.1
-
56
-
-
77951249175
-
Sirtuins–modulation of their activity as a novel therapeutic target
-
Kucińska M, Piotrowska H, and Murias M, : Sirtuins–modulation of their activity as a novel therapeutic target. Pol MerkurLekarski 28, 231–5, 2010.
-
(2010)
Pol MerkurLekarski
, vol.28
, pp. 231-235
-
-
Kucińska, M.1
Piotrowska, H.2
Murias, M.3
-
57
-
-
33745203038
-
The biochemistry of sirtuins
-
Sauve AA, Wolberger C, Schramm VL, and Boeke JD, : The biochemistry of sirtuins. Annu Rev Biochem 435–465, 2006.
-
(2006)
Annu Rev Biochem
, pp. 435-465
-
-
Sauve, A.A.1
Wolberger, C.2
Schramm, V.L.3
Boeke, J.D.4
-
58
-
-
85009075027
-
Role of nutraceutical SIRT1 modulators in AMPK and mTOR pathway: Evidence of a synergistic effect
-
Giovannini L, and Bianchi S, : Role of nutraceutical SIRT1 modulators in AMPK and mTOR pathway: Evidence of a synergistic effect. Nutrition 34, 82–96, 2017. doi:10.1016/j.nut.2016.09.008.
-
(2017)
Nutrition
, vol.34
, pp. 82-96
-
-
Giovannini, L.1
Bianchi, S.2
-
59
-
-
84878014129
-
A dietary polyphenol resveratrol acts to provide neuroprotection in recurrent stroke models by regulating AMPK and SIRT1 signaling, thereby reducing energy requirements during ischemia
-
et al
-
Wang LM, Wang YJ, Cui M, Luo WJ, Wang XJ, et al.: A dietary polyphenol resveratrol acts to provide neuroprotection in recurrent stroke models by regulating AMPK and SIRT1 signaling, thereby reducing energy requirements during ischemia. Eur J Neurosci 37(10), 1669–81, 2013 May. doi:10.1111/ejn.12162.
-
(2013)
Eur J Neurosci
, vol.37
, Issue.10
, pp. 1669-1681
-
-
Wang, L.M.1
Wang, Y.J.2
Cui, M.3
Luo, W.J.4
Wang, X.J.5
-
60
-
-
85014079313
-
Salmonella Typhimurium disrupts Sirt1/AMPK checkpoint control of mTOR to impair autophagy
-
et al
-
Ganesan R, Hos NJ, Gutierrez S, Fischer J, Stepek JM, et al.: Salmonella Typhimurium disrupts Sirt1/AMPK checkpoint control of mTOR to impair autophagy. PLoSPathog 13, e1006227, 2017. doi:10.1371/journal.ppat.1006227.
-
(2017)
PLoSPathog
, vol.13
, pp. e1006227
-
-
Ganesan, R.1
Hos, N.J.2
Gutierrez, S.3
Fischer, J.4
Stepek, J.M.5
-
61
-
-
77949817711
-
AMPK and SIRT1: A long-standing partnership?
-
Review, et al
-
Ruderman NB, Xu XJ, Nelson L, Cacicedo JM, Saha AK, et al.: AMPK and SIRT1: A long-standing partnership? Am J PhysiolEndocrinolMetab 298, E751–60, 2010. Review doi:10.1152/ajpendo.00745.2009.
-
(2010)
Am J PhysiolEndocrinolMetab
, vol.298
, pp. E751-E760
-
-
Ruderman, N.B.1
Xu, X.J.2
Nelson, L.3
Cacicedo, J.M.4
Saha, A.K.5
-
62
-
-
84889564987
-
Novel insights of dietary polyphenols and obesity
-
et al
-
Wang S, Moustaid-Moussa N, Chen L, Mo H, Shastri A, et al.: Novel insights of dietary polyphenols and obesity. J NutrBiochem 25, 1–18, 2014. doi:10.1016/j.jnutbio.2013.09.001.
-
(2014)
J NutrBiochem
, vol.25
, pp. 1-18
-
-
Wang, S.1
Moustaid-Moussa, N.2
Chen, L.3
Mo, H.4
Shastri, A.5
-
63
-
-
84907470716
-
The anti-atherogenic effects of berberine on foam cell formation are mediated through the upregulation of sirtuin 1
-
Chi L, Peng L, Pan N, Hu X, and Zhang Y, : The anti-atherogenic effects of berberine on foam cell formation are mediated through the upregulation of sirtuin 1. Int J Mol Med 34, 1087–93, 2014. doi:10.3892/ijmm.2014.1868.
-
(2014)
Int J Mol Med
, vol.34
, pp. 1087-1093
-
-
Chi, L.1
Peng, L.2
Pan, N.3
Hu, X.4
Zhang, Y.5
-
64
-
-
84874943989
-
Hepatoprotection of berberine against hydrogen peroxide-induced apoptosis by upregulation of Sirtuin 1
-
et al
-
Zhu X, Guo X, Mao G, Gao Z, Wang H, et al.: Hepatoprotection of berberine against hydrogen peroxide-induced apoptosis by upregulation of Sirtuin 1. Phytother Res 27, 417–21, 2013. doi:10.1002/ptr.4728.
-
(2013)
Phytother Res
, vol.27
, pp. 417-421
-
-
Zhu, X.1
Guo, X.2
Mao, G.3
Gao, Z.4
Wang, H.5
-
65
-
-
83255163155
-
Berberine protects against high fat diet-induced dysfunction in muscle mitochondria by inducing SIRT1-dependent mitochondrial biogenesis
-
et al
-
Gomes AP, Duarte FV, Nunes P, Hubbard BP, Teodoro JS, et al.: Berberine protects against high fat diet-induced dysfunction in muscle mitochondria by inducing SIRT1-dependent mitochondrial biogenesis. BiochimBiophysActa 1822, 185–95, 2012. doi:10.1016/j.bbadis.2011.10.008.
-
(2012)
BiochimBiophysActa
, vol.1822
, pp. 185-195
-
-
Gomes, A.P.1
Duarte, F.V.2
Nunes, P.3
Hubbard, B.P.4
Teodoro, J.S.5
-
66
-
-
55549113236
-
Akt/FOXO3a/SIRT1-mediated cardioprotection by n-tyrosol against ischemic stress in rat in vivo model of myocardial infarction: switching gears toward survival and longevity
-
Samuel SM, Thirunavukkarasu M, Penumathsa SV, Paul D, and Maulik N, : Akt/FOXO3a/SIRT1-mediated cardioprotection by n-tyrosol against ischemic stress in rat in vivo model of myocardial infarction: switching gears toward survival and longevity. J Agric Food Chem 56, 9692–8, 2008. doi:10.1021/jf802050h.
-
(2008)
J Agric Food Chem
, vol.56
, pp. 9692-9698
-
-
Samuel, S.M.1
Thirunavukkarasu, M.2
Penumathsa, S.V.3
Paul, D.4
Maulik, N.5
-
67
-
-
59249084680
-
Expression of the longevity proteins by both red and white wines and their cardioprotective components, resveratrol, tyrosol, and hydroxytyrosol
-
Mukherjee S, Lekli I, Gurusamy N, Bertelli AA, and Das DK, : Expression of the longevity proteins by both red and white wines and their cardioprotective components, resveratrol, tyrosol, and hydroxytyrosol. Free RadicBiol Med 46, 573–8, 2009. doi:10.1016/j.freeradbiomed.2008.11.005.
-
(2009)
Free RadicBiol Med
, vol.46
, pp. 573-578
-
-
Mukherjee, S.1
Lekli, I.2
Gurusamy, N.3
Bertelli, A.A.4
Das, D.K.5
-
68
-
-
84895893720
-
Synergistic effects of polyphenols and methylxanthines with Leucine on AMPK/Sirtuin-mediated metabolism in muscle cells and adipocytes
-
Bruckbauer A, and Zemel MB, : Synergistic effects of polyphenols and methylxanthines with Leucine on AMPK/Sirtuin-mediated metabolism in muscle cells and adipocytes. PLoS One 2014. doi:10.1371/journal.pone.0089166.
-
(2014)
PLoS One
-
-
Bruckbauer, A.1
Zemel, M.B.2
-
69
-
-
52449116009
-
Ferulic acid, but not tetramethylpyrazine, significantly attenuates retinal ischemia/reperfusion-induced alterations by acting as a hydroxyl radical scavenger
-
et al
-
Chao HM, Lin DE, Chang Y, Hsu WM, Lee SM, et al.: Ferulic acid, but not tetramethylpyrazine, significantly attenuates retinal ischemia/reperfusion-induced alterations by acting as a hydroxyl radical scavenger. J OculPharmacol Ther 24, 461–72, 2008. doi:10.1089/jop.2008.0005.
-
(2008)
J OculPharmacol Ther
, vol.24
, pp. 461-472
-
-
Chao, H.M.1
Lin, D.E.2
Chang, Y.3
Hsu, W.M.4
Lee, S.M.5
-
70
-
-
52649169191
-
Iron-generated hydroxyl radicals kill retinal cells in vivo: effect of ferulic acid
-
et al
-
Chao HM, Chen YH, Liu JH, Hsu WM, Lee SM, et al.: Iron-generated hydroxyl radicals kill retinal cells in vivo: effect of ferulic acid. Hum Exp Toxicol 27, 327–39, 2008. doi:10.1089/jop.2008.0005.
-
(2008)
Hum Exp Toxicol
, vol.27
, pp. 327-339
-
-
Chao, H.M.1
Chen, Y.H.2
Liu, J.H.3
Hsu, W.M.4
Lee, S.M.5
-
71
-
-
1842615936
-
Effect of ferulic acid on the proliferation of nerve cells of retinas in vitro
-
Li GL, Wang JJ, Wang JZ, Liu YY, and Jin Y, : Effect of ferulic acid on the proliferation of nerve cells of retinas in vitro. Zhonghua Yan KeZaZhi 39, 650–4, 2003.
-
(2003)
Zhonghua Yan KeZaZhi
, vol.39
, pp. 650-654
-
-
Li, G.L.1
Wang, J.J.2
Wang, J.Z.3
Liu, Y.Y.4
Jin, Y.5
-
72
-
-
84903289244
-
A PPARγ, NF-κB and AMPK-dependent mechanism may be involved in the beneficial effects of curcumin in the diabetic db/db mice liver
-
Jiménez-Flores LM, López-Briones S, Macías-Cervantes MH, Ramírez-Emiliano J, and Pérez-Vázquez V, : A PPARγ, NF-κB and AMPK-dependent mechanism may be involved in the beneficial effects of curcumin in the diabetic db/db mice liver. Molecules 19, 8289–302, 2014. doi:10.3390/molecules19068289.
-
(2014)
Molecules
, vol.19
, pp. 8289-8302
-
-
Jiménez-Flores, L.M.1
López-Briones, S.2
Macías-Cervantes, M.H.3
Ramírez-Emiliano, J.4
Pérez-Vázquez, V.5
-
73
-
-
84901236844
-
Activation of SIRT1 by curcumin blocks the neurotoxicity of amyloid-β25-35 in rat cortical neurons
-
et al
-
Sun Q, Jia N, Wang W, Jin H, Xu J, et al.: Activation of SIRT1 by curcumin blocks the neurotoxicity of amyloid-β25-35 in rat cortical neurons. BiochemBiophys Res Commun 448, 89–94, 2014. doi:10.1016/j.bbrc.2014.04.066.
-
(2014)
BiochemBiophys Res Commun
, vol.448
, pp. 89-94
-
-
Sun, Q.1
Jia, N.2
Wang, W.3
Jin, H.4
Xu, J.5
-
74
-
-
84923177027
-
Quercetin ameliorates hypobaric hypoxia-induced memory impairment through mitochondrial and neuron function adaptation via the PGC-1α pathway
-
et al
-
Liu P, Zou D, Yi L, Chen M, Chen M, et al.: Quercetin ameliorates hypobaric hypoxia-induced memory impairment through mitochondrial and neuron function adaptation via the PGC-1α pathway. Restor Neurol Neurosci 33, 143–57, 2015. doi:10.3233/RNN-140446.
-
(2015)
Restor Neurol Neurosci
, vol.33
, pp. 143-157
-
-
Liu, P.1
Zou, D.2
Yi, L.3
Chen, M.4
Chen, M.5
-
75
-
-
84894815681
-
Quercetin reduces obesity-associated ATM infiltration and inflammation in mice: A mechanism including AMPKα1/SIRT1
-
et al
-
Dong J, Zhang X, Zhang L, Bian HX, Xu N, et al.: Quercetin reduces obesity-associated ATM infiltration and inflammation in mice: A mechanism including AMPKα1/SIRT1. J Lipid Res 55, 363–74, 2014. doi:10.1194/jlr.M038786.
-
(2014)
J Lipid Res
, vol.55
, pp. 363-374
-
-
Dong, J.1
Zhang, X.2
Zhang, L.3
Bian, H.X.4
Xu, N.5
-
76
-
-
57849131142
-
Concurrent regulation of AMP-activated protein kinase and SIRT1 in mammalian cells
-
et al
-
Suchankova G, Nelson LE, Gerhart-Hines Z, Kelly M, Gauthier MS, et al.: Concurrent regulation of AMP-activated protein kinase and SIRT1 in mammalian cells. BiochemBiophys Res Commun 378, 836–41, 2009. doi:10.1016/j.bbrc.2008.11.130.
-
(2009)
BiochemBiophys Res Commun
, vol.378
, pp. 836-841
-
-
Suchankova, G.1
Nelson, L.E.2
Gerhart-Hines, Z.3
Kelly, M.4
Gauthier, M.S.5
-
77
-
-
0141719702
-
Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan
-
et al
-
Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, et al.: Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425, 191–196, 2003.
-
(2003)
Nature
, vol.425
, pp. 191-196
-
-
Howitz, K.T.1
Bitterman, K.J.2
Cohen, H.Y.3
Lamming, D.W.4
Lavu, S.5
-
78
-
-
84937019534
-
Properties of Resveratrol: In Vitro and In Vivo Studies about Metabolism, Bioavailability, and Biological Effects in Animal Models and Humans
-
et al
-
Gambini J, Inglés M, Olaso G, Lopez-Grueso R, Bonet-Costa V, et al.: Properties of Resveratrol: In Vitro and In Vivo Studies about Metabolism, Bioavailability, and Biological Effects in Animal Models and Humans. Oxid Med Cell Longev 2015, 837042, 2015. doi:10.1155/2015/837042.
-
(2015)
Oxid Med Cell Longev
, vol.2015
, pp. 837042
-
-
Gambini, J.1
Inglés, M.2
Olaso, G.3
Lopez-Grueso, R.4
Bonet-Costa, V.5
-
79
-
-
84883462405
-
Calorie restriction (CR) and CR mimetics for the prevention and treatment of age-related eye disorders
-
et al
-
Kawashima M, Ozawa Y, Shinmura K, Inaba T, Nakamura S, et al.: Calorie restriction (CR) and CR mimetics for the prevention and treatment of age-related eye disorders. ExpGerontol 48, 1096–100, 2013. doi:10.1016/j.exger.2013.04.002.
-
(2013)
ExpGerontol
, vol.48
, pp. 1096-1100
-
-
Kawashima, M.1
Ozawa, Y.2
Shinmura, K.3
Inaba, T.4
Nakamura, S.5
-
80
-
-
77950635550
-
Recent research on polyphenolics in vision and eye health
-
Kalt W, Hanneken A, Milbury P, and Tremblay F, : Recent research on polyphenolics in vision and eye health. J Agric Food Chem 58, 4001–7, 2010. doi:10.1021/jf903038r.
-
(2010)
J Agric Food Chem
, vol.58
, pp. 4001-4007
-
-
Kalt, W.1
Hanneken, A.2
Milbury, P.3
Tremblay, F.4
-
81
-
-
84959419408
-
Resveratrol induces autophagy by directly inhibiting mTOR through ATP competition
-
et al
-
Park D, Jeong H, Lee MN, Koh A, Kwon O, et al.: Resveratrol induces autophagy by directly inhibiting mTOR through ATP competition. Sci Rep 6, 21772, 2016. doi:10.1038/srep21772.
-
(2016)
Sci Rep
, vol.6
, pp. 21772
-
-
Park, D.1
Jeong, H.2
Lee, M.N.3
Koh, A.4
Kwon, O.5
-
82
-
-
84925318549
-
Regulation of autophagy by polyphenolic compounds as a potential therapeutic strategy for cancer
-
Review, and
-
Hasima N, and Ozpolat B, : Regulation of autophagy by polyphenolic compounds as a potential therapeutic strategy for cancer. Cell Death Dis 5, 2014. doi:10.1038/cddis.2014.467. Review.
-
(2014)
Cell Death Dis
, vol.5
-
-
Hasima, N.1
Ozpolat, B.2
-
83
-
-
85004147239
-
Polyphenolics from mango (Mangiferaindica L.) suppress breast cancer ductal carcinoma in situ proliferation through activation of AMPK pathway and suppression of mTOR in athymic nude mice
-
et al
-
Nemec MJ, Kim H, Marciante AB, Barnes RC, Hendrick ED, et al.: Polyphenolics from mango (Mangiferaindica L.) suppress breast cancer ductal carcinoma in situ proliferation through activation of AMPK pathway and suppression of mTOR in athymic nude mice. J NutrBiochem 41, 12–19, 2017. doi:10.1016/j.jnutbio.2016.11.005.
-
(2017)
J NutrBiochem
, vol.41
, pp. 12-19
-
-
Nemec, M.J.1
Kim, H.2
Marciante, A.B.3
Barnes, R.C.4
Hendrick, E.D.5
-
84
-
-
84946866919
-
Oleuropeinaglycone induces autophagy via the AMPK/mTORsignalling pathway: A mechanistic insight
-
et al
-
Rigacci S, Miceli C, Nediani C, Berti A, Cascella R, et al.: Oleuropeinaglycone induces autophagy via the AMPK/mTORsignalling pathway: A mechanistic insight. Oncotarget 6, 35344–57, 2015. doi:10.18632/oncotarget.6119.
-
(2015)
Oncotarget
, vol.6
, pp. 35344-35357
-
-
Rigacci, S.1
Miceli, C.2
Nediani, C.3
Berti, A.4
Cascella, R.5
-
85
-
-
84944463387
-
Mechanism of Chemoprevention against Colon Cancer Cells Using Combined Gelam Honey and Ginger Extract via mTOR and Wnt/β-catenin Pathways
-
et al
-
Wee LH, Morad NA, Aan GJ, Makpol S, Wan Ngah WZ, et al.: Mechanism of Chemoprevention against Colon Cancer Cells Using Combined Gelam Honey and Ginger Extract via mTOR and Wnt/β-catenin Pathways. Asian Pac J Cancer Prev 16, 6549–56, 2015.
-
(2015)
Asian Pac J Cancer Prev
, vol.16
, pp. 6549-6556
-
-
Wee, L.H.1
Morad, N.A.2
Aan, G.J.3
Makpol, S.4
Wan Ngah, W.Z.5
-
86
-
-
84920148090
-
Antagonistic role of natural compounds in mTOR-mediated metabolic reprogramming
-
Review, and
-
Cerella C, Gaigneaux A, Dicato M, and Diederich M, : Antagonistic role of natural compounds in mTOR-mediated metabolic reprogramming. Cancer Lett 356, 251–62, 2015. doi:10.1016/j.canlet.2014.02.008. Review.
-
(2015)
Cancer Lett
, vol.356
, pp. 251-262
-
-
Cerella, C.1
Gaigneaux, A.2
Dicato, M.3
Diederich, M.4
-
87
-
-
84867865103
-
Dietary flavonoid fisetin: A novel dual inhibitor of PI3K/Akt and mTOR for prostate cancer management
-
Review, and
-
Adhami VM, Syed DN, Khan N, and Mukhtar H, : Dietary flavonoid fisetin: A novel dual inhibitor of PI3K/Akt and mTOR for prostate cancer management. BiochemPharmacol 84, 1277–81, 2012. doi:10.1016/j.bcp.2012.07.012. Review.
-
(2012)
BiochemPharmacol
, vol.84
, pp. 1277-1281
-
-
Adhami, V.M.1
Syed, D.N.2
Khan, N.3
Mukhtar, H.4
-
88
-
-
84954216638
-
Suppression of HSP27 increases the anti-tumor effects of quercetin in human leukemia U937 cells
-
et al
-
Chen X, Dong XS, Gao HY, Jiang YF, Jin YL, et al.: Suppression of HSP27 increases the anti-tumor effects of quercetin in human leukemia U937 cells. Mol Med Rep 13, 689–96, 2016. doi:10.3892/mmr.2015.4600.
-
(2016)
Mol Med Rep
, vol.13
, pp. 689-696
-
-
Chen, X.1
Dong, X.S.2
Gao, H.Y.3
Jiang, Y.F.4
Jin, Y.L.5
-
89
-
-
84900404392
-
Cross-talk between sirtuin and mammalian target of rapamycin complex 1 (mTORC1) signaling in the regulation of S6 kinase 1 (S6K1) phosphorylation
-
PMC4036325, and
-
Hong S, Zhao B, Lombard DB, Fingar DC, and Inoki K, : Cross-talk between sirtuin and mammalian target of rapamycin complex 1 (mTORC1) signaling in the regulation of S6 kinase 1 (S6K1) phosphorylation. J Biol Chem 289, 13132–41, 2014. doi:10.1074/jbc.M113.520734. PMC4036325.
-
(2014)
J Biol Chem
, vol.289
, pp. 13132-13141
-
-
Hong, S.1
Zhao, B.2
Lombard, D.B.3
Fingar, D.C.4
Inoki, K.5
-
90
-
-
77950127881
-
SIRT1 negatively regulates the mammalian target of rapamycin
-
PMC2821410, and
-
Ghosh HS, McBurney M, and Robbins PD, : SIRT1 negatively regulates the mammalian target of rapamycin. PLoS One 5, e9199, 2010. doi:10.1371/journal.pone.0009199. PMC2821410.
-
(2010)
PLoS One
, vol.5
-
-
Ghosh, H.S.1
McBurney, M.2
Robbins, P.D.3
|