-
1
-
-
84890149646
-
Where is mTOR and what is it doing there?
-
Betz C., Hall M.N. Where is mTOR and what is it doing there?. J Cell Biol 2013, 203:563-574.
-
(2013)
J Cell Biol
, vol.203
, pp. 563-574
-
-
Betz, C.1
Hall, M.N.2
-
2
-
-
0037178781
-
Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action
-
Hara K., Maruki Y., Long X., Yoshino K., Oshiro N., Hidayat S., et al. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 2002, 110:177-189.
-
(2002)
Cell
, vol.110
, pp. 177-189
-
-
Hara, K.1
Maruki, Y.2
Long, X.3
Yoshino, K.4
Oshiro, N.5
Hidayat, S.6
-
3
-
-
0036753494
-
Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control
-
Loewith R., Jacinto E., Wullschleger S., Lorberg A., Crespo J.L., Bonenfant D., et al. Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol Cell 2002, 10:457-468.
-
(2002)
Mol Cell
, vol.10
, pp. 457-468
-
-
Loewith, R.1
Jacinto, E.2
Wullschleger, S.3
Lorberg, A.4
Crespo, J.L.5
Bonenfant, D.6
-
4
-
-
0037178786
-
MTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery
-
Kim D.H., Sarbassov D.D., Ali S.M., King J.E., Latek R.R., Erdjument-Bromage H., et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 2002, 110:163-175.
-
(2002)
Cell
, vol.110
, pp. 163-175
-
-
Kim, D.H.1
Sarbassov, D.D.2
Ali, S.M.3
King, J.E.4
Latek, R.R.5
Erdjument-Bromage, H.6
-
5
-
-
3342895823
-
Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton
-
Sarbassov D.D., Ali S.M., Kim D.H., Guertin D.A., Latek R.R., Erdjument-Bromage H., et al. Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol 2004, 14:1296-1302.
-
(2004)
Curr Biol
, vol.14
, pp. 1296-1302
-
-
Sarbassov, D.D.1
Ali, S.M.2
Kim, D.H.3
Guertin, D.A.4
Latek, R.R.5
Erdjument-Bromage, H.6
-
6
-
-
0037732600
-
LST8 negatively regulates amino acid biosynthesis as a component of the TOR pathway
-
Chen E.J., Kaiser C.A. LST8 negatively regulates amino acid biosynthesis as a component of the TOR pathway. J Cell Biol 2003, 161:333-347.
-
(2003)
J Cell Biol
, vol.161
, pp. 333-347
-
-
Chen, E.J.1
Kaiser, C.A.2
-
7
-
-
0037623417
-
GbetaL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR
-
Kim D.H., Sarbassov D.D., Ali S.M., Latek R.R., Guntur K.V., Erdjument-Bromage H., et al. GbetaL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR. Mol Cell 2003, 11:895-904.
-
(2003)
Mol Cell
, vol.11
, pp. 895-904
-
-
Kim, D.H.1
Sarbassov, D.D.2
Ali, S.M.3
Latek, R.R.4
Guntur, K.V.5
Erdjument-Bromage, H.6
-
8
-
-
67349241955
-
DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival
-
Peterson T.R., Laplante M., Thoreen C.C., Sancak Y., Kang S.A., Kuehl W.M., et al. DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell 2009, 137:873-886.
-
(2009)
Cell
, vol.137
, pp. 873-886
-
-
Peterson, T.R.1
Laplante, M.2
Thoreen, C.C.3
Sancak, Y.4
Kang, S.A.5
Kuehl, W.M.6
-
9
-
-
83455177213
-
Target of rapamycin (TOR) in nutrient signaling and growth control
-
Loewith R., Hall M.N. Target of rapamycin (TOR) in nutrient signaling and growth control. Genetics 2011, 189:1177-1201.
-
(2011)
Genetics
, vol.189
, pp. 1177-1201
-
-
Loewith, R.1
Hall, M.N.2
-
10
-
-
78650510609
-
MTOR: from growth signal integration to cancer, diabetes and ageing
-
Zoncu R., Efeyan A., Sabatini D.M. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 2011, 12:21-35.
-
(2011)
Nat Rev Mol Cell Biol
, vol.12
, pp. 21-35
-
-
Zoncu, R.1
Efeyan, A.2
Sabatini, D.M.3
-
11
-
-
34547169439
-
Structure of TOR and its complex with KOG1
-
Adami A., García-Álvarez B., Arias-Palomo E., Barford D., Llorca O. Structure of TOR and its complex with KOG1. Mol Cell 2007, 27:509-516.
-
(2007)
Mol Cell
, vol.27
, pp. 509-516
-
-
Adami, A.1
García-Álvarez, B.2
Arias-Palomo, E.3
Barford, D.4
Llorca, O.5
-
12
-
-
77953091045
-
Structure of the human mTOR complex I and its implications for rapamycin inhibition
-
Yip C.K., Murata K., Walz T., Sabatini D.M., Kang S.A. Structure of the human mTOR complex I and its implications for rapamycin inhibition. Mol Cell 2010, 38:768-774.
-
(2010)
Mol Cell
, vol.38
, pp. 768-774
-
-
Yip, C.K.1
Murata, K.2
Walz, T.3
Sabatini, D.M.4
Kang, S.A.5
-
13
-
-
33947264077
-
PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase
-
Sancak Y., Thoreen C.C., Peterson T.R., Lindquist R.A., Kang S.A., Spooner E., et al. PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol Cell 2007, 25:903-915.
-
(2007)
Mol Cell
, vol.25
, pp. 903-915
-
-
Sancak, Y.1
Thoreen, C.C.2
Peterson, T.R.3
Lindquist, R.A.4
Kang, S.A.5
Spooner, E.6
-
14
-
-
34547099855
-
PRAS40 regulates mTORC1 kinase activity by functioning as a direct inhibitor of substrate binding
-
Wang L., Harris T.E., Roth R.A., Lawrence J.C. PRAS40 regulates mTORC1 kinase activity by functioning as a direct inhibitor of substrate binding. J Biol Chem 2007, 282:20036-20044.
-
(2007)
J Biol Chem
, vol.282
, pp. 20036-20044
-
-
Wang, L.1
Harris, T.E.2
Roth, R.A.3
Lawrence, J.C.4
-
15
-
-
43249124698
-
PRAS40 and PRR5-like protein are new mTOR interactors that regulate apoptosis
-
Thedieck K., Polak P., Kim M.L., Molle K.D., Cohen A., Jenö P., et al. PRAS40 and PRR5-like protein are new mTOR interactors that regulate apoptosis. PLoS ONE 2007, 2:e1217.
-
(2007)
PLoS ONE
, vol.2
, pp. e1217
-
-
Thedieck, K.1
Polak, P.2
Kim, M.L.3
Molle, K.D.4
Cohen, A.5
Jenö, P.6
-
16
-
-
84880709668
-
MTORC1 phosphorylation sites encode their sensitivity to starvation and rapamycin
-
Kang S.A., Pacold M.E., Cervantes C.L., Lim D., Lou H.J., Ottina K.A., et al. mTORC1 phosphorylation sites encode their sensitivity to starvation and rapamycin. Science 2013, 341:1236566.
-
(2013)
Science
, vol.341
, pp. 1236566
-
-
Kang, S.A.1
Pacold, M.E.2
Cervantes, C.L.3
Lim, D.4
Lou, H.J.5
Ottina, K.A.6
-
17
-
-
33847397874
-
Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40
-
Vander Haar E., Lee S.-I., Bandhakavi S., Griffin T.J., Kim D.-H. Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat Cell Biol 2007, 9:316-323.
-
(2007)
Nat Cell Biol
, vol.9
, pp. 316-323
-
-
Vander Haar, E.1
Lee, S.-I.2
Bandhakavi, S.3
Griffin, T.J.4
Kim, D.-H.5
-
18
-
-
0037462453
-
The ATRs, ATMs, and TORs are giant HEAT repeat proteins
-
Perry J., Kleckner N. The ATRs, ATMs, and TORs are giant HEAT repeat proteins. Cell 2003, 112:151-155.
-
(2003)
Cell
, vol.112
, pp. 151-155
-
-
Perry, J.1
Kleckner, N.2
-
20
-
-
73849140503
-
Crystal structure of DNA-PKcs reveals a large open-ring cradle comprised of HEAT repeats
-
Sibanda B.L., Chirgadze D.Y., Blundell T.L. Crystal structure of DNA-PKcs reveals a large open-ring cradle comprised of HEAT repeats. Nature 2010, 463:118-121.
-
(2010)
Nature
, vol.463
, pp. 118-121
-
-
Sibanda, B.L.1
Chirgadze, D.Y.2
Blundell, T.L.3
-
21
-
-
84905705220
-
Structures of SMG1-UPFs complexes: SMG1 contributes to regulate UPF2-dependent activation of UPF1 in NMD
-
Melero R., Uchiyama A., Castano R., Kataoka N., Kurosawa H., Ohno S., et al. Structures of SMG1-UPFs complexes: SMG1 contributes to regulate UPF2-dependent activation of UPF1 in NMD. Structure 2014, 22:1105-1119.
-
(2014)
Structure
, vol.22
, pp. 1105-1119
-
-
Melero, R.1
Uchiyama, A.2
Castano, R.3
Kataoka, N.4
Kurosawa, H.5
Ohno, S.6
-
22
-
-
84877761058
-
MTOR kinase structure, mechanism and regulation
-
Yang H., Rudge D.G., Koos J.D., Vaidialingam B., Yang H.J., Pavletich N.P. mTOR kinase structure, mechanism and regulation. Nature 2013, 497:217-223.
-
(2013)
Nature
, vol.497
, pp. 217-223
-
-
Yang, H.1
Rudge, D.G.2
Koos, J.D.3
Vaidialingam, B.4
Yang, H.J.5
Pavletich, N.P.6
-
23
-
-
0037117409
-
Identification of a conserved motif required for mTOR signaling
-
Schalm S.S., Blenis J. Identification of a conserved motif required for mTOR signaling. Curr Biol 2002, 12:632-639.
-
(2002)
Curr Biol
, vol.12
, pp. 632-639
-
-
Schalm, S.S.1
Blenis, J.2
-
24
-
-
0037718389
-
TOS motif-mediated raptor binding regulates 4E-BP1 multisite phosphorylation and function
-
Schalm S.S., Fingar D.C., Sabatini D.M., Blenis J. TOS motif-mediated raptor binding regulates 4E-BP1 multisite phosphorylation and function. Curr Biol 2003, 13:797-806.
-
(2003)
Curr Biol
, vol.13
, pp. 797-806
-
-
Schalm, S.S.1
Fingar, D.C.2
Sabatini, D.M.3
Blenis, J.4
-
25
-
-
84880877011
-
Crystal structures of S6K1 provide insights into the regulation mechanism of S6K1 by the hydrophobic motif
-
Wang J., Zhong C., Wang F., Qu F., Ding J. Crystal structures of S6K1 provide insights into the regulation mechanism of S6K1 by the hydrophobic motif. Biochem J 2013, 454:39-47.
-
(2013)
Biochem J
, vol.454
, pp. 39-47
-
-
Wang, J.1
Zhong, C.2
Wang, F.3
Qu, F.4
Ding, J.5
-
26
-
-
0031821410
-
The interaction of eIF4E with 4E-BP1 is an induced fit to a completely disordered protein
-
Fletcher C.M., Wagner G. The interaction of eIF4E with 4E-BP1 is an induced fit to a completely disordered protein. Protein Sci 1998, 7:1639-1642.
-
(1998)
Protein Sci
, vol.7
, pp. 1639-1642
-
-
Fletcher, C.M.1
Wagner, G.2
-
27
-
-
64849101452
-
Mammalian target of rapamycin complex 1-mediated phosphorylation of eukaryotic initiation factor 4E-binding protein 1 requires multiple protein-protein interactions for substrate recognition
-
Dunlop E.A., Dodd K.M., Seymour L.A., Tee A.R. Mammalian target of rapamycin complex 1-mediated phosphorylation of eukaryotic initiation factor 4E-binding protein 1 requires multiple protein-protein interactions for substrate recognition. Cell Signal 2009, 21:1073-1084.
-
(2009)
Cell Signal
, vol.21
, pp. 1073-1084
-
-
Dunlop, E.A.1
Dodd, K.M.2
Seymour, L.A.3
Tee, A.R.4
-
28
-
-
0036181011
-
Caspase cleavage of initiation factor 4E-binding protein 1 yields a dominant inhibitor of cap-dependent translation and reveals a novel regulatory motif
-
Tee A.R., Proud C.G. Caspase cleavage of initiation factor 4E-binding protein 1 yields a dominant inhibitor of cap-dependent translation and reveals a novel regulatory motif. Mol Cell Biol 2002, 22:1674-1683.
-
(2002)
Mol Cell Biol
, vol.22
, pp. 1674-1683
-
-
Tee, A.R.1
Proud, C.G.2
-
29
-
-
33745263990
-
Different roles for the TOS and RAIP motifs of the translational regulator protein 4E-BP1 in the association with raptor and phosphorylation by mTOR in the regulation of cell size
-
Eguchi S., Tokunaga C., Hidayat S., Oshiro N., Yoshino K-I., Kikkawa U., et al. Different roles for the TOS and RAIP motifs of the translational regulator protein 4E-BP1 in the association with raptor and phosphorylation by mTOR in the regulation of cell size. Genes Cells 2006, 11:757-766.
-
(2006)
Genes Cells
, vol.11
, pp. 757-766
-
-
Eguchi, S.1
Tokunaga, C.2
Hidayat, S.3
Oshiro, N.4
Yoshino, K.-I.5
Kikkawa, U.6
-
30
-
-
61449235398
-
Not all substrates are treated equally: implications for mTOR, rapamycin-resistance and cancer therapy
-
Choo A.Y., Blenis J. Not all substrates are treated equally: implications for mTOR, rapamycin-resistance and cancer therapy. Cell Cycle 2009, 8:567-572.
-
(2009)
Cell Cycle
, vol.8
, pp. 567-572
-
-
Choo, A.Y.1
Blenis, J.2
-
31
-
-
0033150672
-
Topological characteristics of helical repeat proteins
-
Groves M.R., Barford D. Topological characteristics of helical repeat proteins. Curr Opin Struct Biol 1999, 9:383-389.
-
(1999)
Curr Opin Struct Biol
, vol.9
, pp. 383-389
-
-
Groves, M.R.1
Barford, D.2
-
32
-
-
80054736907
-
Structural basis for activation and inhibition of class I phosphoinositide 3-kinases
-
Vadas O., Burke J.E., Zhang X., Berndt A., Williams R.L. Structural basis for activation and inhibition of class I phosphoinositide 3-kinases. Sci Signal 2011, 4:re2-re12.
-
(2011)
Sci Signal
, vol.4
, pp. re2-re12
-
-
Vadas, O.1
Burke, J.E.2
Zhang, X.3
Berndt, A.4
Williams, R.L.5
-
33
-
-
57649137958
-
Isolation of hyperactive mutants of mammalian target of rapamycin
-
Ohne Y., Takahara T., Hatakeyama R., Matsuzaki T., Noda M., Mizushima N., et al. Isolation of hyperactive mutants of mammalian target of rapamycin. J Biol Chem 2008, 283:31861-31870.
-
(2008)
J Biol Chem
, vol.283
, pp. 31861-31870
-
-
Ohne, Y.1
Takahara, T.2
Hatakeyama, R.3
Matsuzaki, T.4
Noda, M.5
Mizushima, N.6
-
34
-
-
33847651745
-
Point mutations in TOR confer Rheb-independent growth in fission yeast and nutrient-independent mammalian TOR signaling in mammalian cells
-
Urano J., Sato T., Matsuo T., Otsubo Y., Yamamoto M., Tamanoi F. Point mutations in TOR confer Rheb-independent growth in fission yeast and nutrient-independent mammalian TOR signaling in mammalian cells. Proc Natl Acad Sci USA 2007, 104:3514-3519.
-
(2007)
Proc Natl Acad Sci USA
, vol.104
, pp. 3514-3519
-
-
Urano, J.1
Sato, T.2
Matsuo, T.3
Otsubo, Y.4
Yamamoto, M.5
Tamanoi, F.6
-
35
-
-
33846024055
-
Caffeine targets TOR complex I and provides evidence for a regulatory link between the FRB and kinase domains of Tor1p
-
Reinke A., Chen J.C., Aronova S., Powers T. Caffeine targets TOR complex I and provides evidence for a regulatory link between the FRB and kinase domains of Tor1p. J Biol Chem 2006, 281:31616-31626.
-
(2006)
J Biol Chem
, vol.281
, pp. 31616-31626
-
-
Reinke, A.1
Chen, J.C.2
Aronova, S.3
Powers, T.4
-
36
-
-
77952243626
-
Single amino-acid changes that confer constitutive activation of mTOR are discovered in human cancer
-
Sato T., Nakashima A., Guo L., Coffman K., Tamanoi F. Single amino-acid changes that confer constitutive activation of mTOR are discovered in human cancer. Oncogene 2010, 29:2746-2752.
-
(2010)
Oncogene
, vol.29
, pp. 2746-2752
-
-
Sato, T.1
Nakashima, A.2
Guo, L.3
Coffman, K.4
Tamanoi, F.5
-
37
-
-
84899680978
-
Activating mTOR mutations in a patient with an extraordinary response on a phase I trial of everolimus and pazopanib
-
Wagle N., Grabiner B.C., Van Allen E.M., Hodis E., Jacobus S., Supko J.G., et al. Activating mTOR mutations in a patient with an extraordinary response on a phase I trial of everolimus and pazopanib. Cancer Discov 2014, 4:546-553.
-
(2014)
Cancer Discov
, vol.4
, pp. 546-553
-
-
Wagle, N.1
Grabiner, B.C.2
Van Allen, E.M.3
Hodis, E.4
Jacobus, S.5
Supko, J.G.6
-
38
-
-
84863393080
-
Intratumor heterogeneity and branched evolution revealed by multiregion sequencing
-
Gerlinger M., Rowan A.J., Horswell S., Larkin J., Endesfelder D., Gronroos E., et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 2012, 366:883-892.
-
(2012)
N Engl J Med
, vol.366
, pp. 883-892
-
-
Gerlinger, M.1
Rowan, A.J.2
Horswell, S.3
Larkin, J.4
Endesfelder, D.5
Gronroos, E.6
-
39
-
-
84899678098
-
A diverse array of cancer-associated MTOR mutations are hyperactivating and can predict rapamycin sensitivity
-
Grabiner B.C., Nardi V., Birsoy K., Possemato R., Shen K., Sinha S., et al. A diverse array of cancer-associated MTOR mutations are hyperactivating and can predict rapamycin sensitivity. Cancer Discov 2014, 4:554-563.
-
(2014)
Cancer Discov
, vol.4
, pp. 554-563
-
-
Grabiner, B.C.1
Nardi, V.2
Birsoy, K.3
Possemato, R.4
Shen, K.5
Sinha, S.6
-
40
-
-
79953308071
-
Catalytic control in the EGF receptor and its connection to general kinase regulatory mechanisms
-
Jura N., Zhang X., Endres N.F., Seeliger M.A., Schindler T., Kuriyan J. Catalytic control in the EGF receptor and its connection to general kinase regulatory mechanisms. Mol Cell 2011, 42:9-22.
-
(2011)
Mol Cell
, vol.42
, pp. 9-22
-
-
Jura, N.1
Zhang, X.2
Endres, N.F.3
Seeliger, M.A.4
Schindler, T.5
Kuriyan, J.6
-
41
-
-
0028773477
-
Three protein kinase structures define a common motif
-
Taylor S.S., Radzio-Andzelm E. Three protein kinase structures define a common motif. Structure 1994, 2:345-355.
-
(1994)
Structure
, vol.2
, pp. 345-355
-
-
Taylor, S.S.1
Radzio-Andzelm, E.2
-
42
-
-
79551594605
-
Protein kinases: evolution of dynamic regulatory proteins
-
Taylor S.S., Kornev A.P. Protein kinases: evolution of dynamic regulatory proteins. Trends Biochem Sci 2011, 36:65-77.
-
(2011)
Trends Biochem Sci
, vol.36
, pp. 65-77
-
-
Taylor, S.S.1
Kornev, A.P.2
-
43
-
-
0029029617
-
Mechanism of CDK activation revealed by the structure of a cyclinA-CDK2 complex
-
Jeffrey P.D., Russo A.A., Polyak K., Gibbs E., Hurwitz J., Massagué J., et al. Mechanism of CDK activation revealed by the structure of a cyclinA-CDK2 complex. Nature 1995, 376:313-320.
-
(1995)
Nature
, vol.376
, pp. 313-320
-
-
Jeffrey, P.D.1
Russo, A.A.2
Polyak, K.3
Gibbs, E.4
Hurwitz, J.5
Massagué, J.6
-
44
-
-
0029831167
-
Direct inhibition of the signaling functions of the mammalian target of rapamycin by the phosphoinositide 3-kinase inhibitors, wortmannin and LY294002
-
Brunn G.J., Williams J., Sabers C., Wiederrecht G., Lawrence J.J., Abraham R.T. Direct inhibition of the signaling functions of the mammalian target of rapamycin by the phosphoinositide 3-kinase inhibitors, wortmannin and LY294002. Embo J 1996, 15:5256-5267.
-
(1996)
Embo J
, vol.15
, pp. 5256-5267
-
-
Brunn, G.J.1
Williams, J.2
Sabers, C.3
Wiederrecht, G.4
Lawrence, J.J.5
Abraham, R.T.6
-
45
-
-
0029965452
-
Wortmannin inactivates phosphoinositide 3-kinase by covalent modification of Lys-802, a residue involved in the phosphate transfer reaction
-
Wymann M.P., Bulgarelli-Leva G., Zvelebil M.J., Pirola L., Vanhaesebroeck B., Waterfield M.D., et al. Wortmannin inactivates phosphoinositide 3-kinase by covalent modification of Lys-802, a residue involved in the phosphate transfer reaction. Mol Cell Biol 1996, 16:1722-1733.
-
(1996)
Mol Cell Biol
, vol.16
, pp. 1722-1733
-
-
Wymann, M.P.1
Bulgarelli-Leva, G.2
Zvelebil, M.J.3
Pirola, L.4
Vanhaesebroeck, B.5
Waterfield, M.D.6
-
46
-
-
0033634827
-
Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine
-
Walker E.H., Pacold M.E., Perisic O., Stephens L., Hawkins P.T., Wymann M.P., et al. Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine. Mol Cell 2000, 6:909-919.
-
(2000)
Mol Cell
, vol.6
, pp. 909-919
-
-
Walker, E.H.1
Pacold, M.E.2
Perisic, O.3
Stephens, L.4
Hawkins, P.T.5
Wymann, M.P.6
-
47
-
-
0025330489
-
CAMP-dependent protein kinase: framework for a diverse family of regulatory enzymes
-
Taylor S.S., Buechler J.A., Yonemoto W. cAMP-dependent protein kinase: framework for a diverse family of regulatory enzymes. Annu Rev Biochem 1990, 59:971-1005.
-
(1990)
Annu Rev Biochem
, vol.59
, pp. 971-1005
-
-
Taylor, S.S.1
Buechler, J.A.2
Yonemoto, W.3
-
48
-
-
70349335444
-
Form and flexibility in phosphoinositide 3-kinases
-
Williams R., Berndt A., Miller S., Hon W-C., Zhang X. Form and flexibility in phosphoinositide 3-kinases. Biochem Soc Trans 2009, 37:615-626.
-
(2009)
Biochem Soc Trans
, vol.37
, pp. 615-626
-
-
Williams, R.1
Berndt, A.2
Miller, S.3
Hon, W.-C.4
Zhang, X.5
-
49
-
-
0035413606
-
Kinetic and catalytic mechanisms of protein kinases
-
Adams J.A. Kinetic and catalytic mechanisms of protein kinases. Chem Rev 2001, 101:2271-2290.
-
(2001)
Chem Rev
, vol.101
, pp. 2271-2290
-
-
Adams, J.A.1
-
50
-
-
79958696694
-
The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling
-
Hsu P.P., Kang S.A., Rameseder J., Zhang Y., Ottina K.A., Lim D., et al. The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 2011, 332:1317-1322.
-
(2011)
Science
, vol.332
, pp. 1317-1322
-
-
Hsu, P.P.1
Kang, S.A.2
Rameseder, J.3
Zhang, Y.4
Ottina, K.A.5
Lim, D.6
-
51
-
-
0033581886
-
Structural insights into phosphoinositide 3-kinase catalysis and signalling
-
Walker E.H., Perisic O., Ried C., Stephens L., Williams R.L. Structural insights into phosphoinositide 3-kinase catalysis and signalling. Nature 1999, 402:313-320.
-
(1999)
Nature
, vol.402
, pp. 313-320
-
-
Walker, E.H.1
Perisic, O.2
Ried, C.3
Stephens, L.4
Williams, R.L.5
-
52
-
-
77950212231
-
Shaping development of autophagy inhibitors with the structure of the lipid kinase Vps34
-
Miller S., Tavshanjian B., Oleksy A., Perisic O., Houseman B.T., Shokat K.M., et al. Shaping development of autophagy inhibitors with the structure of the lipid kinase Vps34. Science 2010, 327:1638-1642.
-
(2010)
Science
, vol.327
, pp. 1638-1642
-
-
Miller, S.1
Tavshanjian, B.2
Oleksy, A.3
Perisic, O.4
Houseman, B.T.5
Shokat, K.M.6
-
53
-
-
79951993684
-
Structure of lipid kinase p110beta/p85beta elucidates an unusual SH2-domain-mediated inhibitory mechanism
-
Zhang X., Vadas O., Perisic O., Anderson K.E., Clark J., Hawkins P.T., et al. Structure of lipid kinase p110beta/p85beta elucidates an unusual SH2-domain-mediated inhibitory mechanism. Mol Cell 2011, 41:567-578.
-
(2011)
Mol Cell
, vol.41
, pp. 567-578
-
-
Zhang, X.1
Vadas, O.2
Perisic, O.3
Anderson, K.E.4
Clark, J.5
Hawkins, P.T.6
-
54
-
-
0034234924
-
A direct linkage between the phosphoinositide 3-kinase-AKT signaling pathway and the mammalian target of rapamycin in mitogen-stimulated and transformed cells
-
Sekulic A., Hudson C.C., Homme J.L., Yin P., Otterness D.M., Karnitz L.M., et al. A direct linkage between the phosphoinositide 3-kinase-AKT signaling pathway and the mammalian target of rapamycin in mitogen-stimulated and transformed cells. Cancer Res 2000, 60:3504-3513.
-
(2000)
Cancer Res
, vol.60
, pp. 3504-3513
-
-
Sekulic, A.1
Hudson, C.C.2
Homme, J.L.3
Yin, P.4
Otterness, D.M.5
Karnitz, L.M.6
-
55
-
-
0036837863
-
The rapamycin-binding domain governs substrate selectivity by the mammalian target of rapamycin
-
McMahon L.P., Choi K.M., Lin T.A., Abraham R.T., Lawrence J.J. The rapamycin-binding domain governs substrate selectivity by the mammalian target of rapamycin. Mol Cell Biol 2002, 22:7428-7438.
-
(2002)
Mol Cell Biol
, vol.22
, pp. 7428-7438
-
-
McMahon, L.P.1
Choi, K.M.2
Lin, T.A.3
Abraham, R.T.4
Lawrence, J.J.5
-
56
-
-
3342931591
-
An activated mTOR mutant supports growth factor-independent, nutrient-dependent cell survival
-
Edinger A.L., Thompson C.B. An activated mTOR mutant supports growth factor-independent, nutrient-dependent cell survival. Oncogene 2004, 23:5654-5663.
-
(2004)
Oncogene
, vol.23
, pp. 5654-5663
-
-
Edinger, A.L.1
Thompson, C.B.2
-
57
-
-
18044381192
-
Rheb binds and regulates the mTOR kinase
-
Long X., Lin Y., Ortiz-Vega S., Yonezawa K., Avruch J. Rheb binds and regulates the mTOR kinase. Curr Biol 2005, 15:702-713.
-
(2005)
Curr Biol
, vol.15
, pp. 702-713
-
-
Long, X.1
Lin, Y.2
Ortiz-Vega, S.3
Yonezawa, K.4
Avruch, J.5
-
58
-
-
55749102720
-
A helix scaffold for the assembly of active protein kinases
-
Kornev A.P., Taylor S.S., Eyck Ten L.F. A helix scaffold for the assembly of active protein kinases. Proc Natl Acad Sci USA 2008, 105:14377-14382.
-
(2008)
Proc Natl Acad Sci USA
, vol.105
, pp. 14377-14382
-
-
Kornev, A.P.1
Taylor, S.S.2
Eyck Ten, L.F.3
-
59
-
-
84878872527
-
PKA: lessons learned after twenty years
-
Taylor S.S., Zhang P., Steichen J.M., Keshwani M.M., Kornev A.P. PKA: lessons learned after twenty years. Biochim Biophys Acta 2013, 1834:1271-1278.
-
(2013)
Biochim Biophys Acta
, vol.1834
, pp. 1271-1278
-
-
Taylor, S.S.1
Zhang, P.2
Steichen, J.M.3
Keshwani, M.M.4
Kornev, A.P.5
-
60
-
-
0029842109
-
Structure of the FKBP12-rapamycin complex interacting with the binding domain of human FRAP
-
Choi J., Chen J., Schreiber S.L., Clardy J. Structure of the FKBP12-rapamycin complex interacting with the binding domain of human FRAP. Science 1996, 273:239-242.
-
(1996)
Science
, vol.273
, pp. 239-242
-
-
Choi, J.1
Chen, J.2
Schreiber, S.L.3
Clardy, J.4
-
61
-
-
16844385435
-
Characterization of the FKBP.rapamycin.FRB ternary complex
-
Banaszynski L.A., Liu C.W., Wandless T.J. Characterization of the FKBP.rapamycin.FRB ternary complex. J Am Chem Soc 2005, 127:4715-4721.
-
(2005)
J Am Chem Soc
, vol.127
, pp. 4715-4721
-
-
Banaszynski, L.A.1
Liu, C.W.2
Wandless, T.J.3
-
62
-
-
79953298958
-
Next-generation mTOR inhibitors in clinical oncology: how pathway complexity informs therapeutic strategy
-
Wander S.A., Hennessy B.T., Slingerland J.M. Next-generation mTOR inhibitors in clinical oncology: how pathway complexity informs therapeutic strategy. J Clin Invest 2011, 121:1231-1241.
-
(2011)
J Clin Invest
, vol.121
, pp. 1231-1241
-
-
Wander, S.A.1
Hennessy, B.T.2
Slingerland, J.M.3
-
63
-
-
61349141302
-
Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2
-
Feldman M.E., Apsel B., Uotila A., Loewith R., Knight Z.A., Ruggero D., et al. Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2. PLoS Biol 2009, 7:e38.
-
(2009)
PLoS Biol
, vol.7
, pp. e38
-
-
Feldman, M.E.1
Apsel, B.2
Uotila, A.3
Loewith, R.4
Knight, Z.A.5
Ruggero, D.6
-
64
-
-
79952265072
-
Discovery of 9-(6-aminopyridin-3-yl)-1-(3-(trifluoromethyl)phenyl)benzo[h][1,6]naphthyridin-2(1H)-one (Torin2) as a potent, selective, and orally available mammalian target of rapamycin (mTOR) inhibitor for treatment of cancer
-
Liu Q., Wang J., Kang S.A., Thoreen C.C., Hur W., Ahmed T., et al. Discovery of 9-(6-aminopyridin-3-yl)-1-(3-(trifluoromethyl)phenyl)benzo[h][1,6]naphthyridin-2(1H)-one (Torin2) as a potent, selective, and orally available mammalian target of rapamycin (mTOR) inhibitor for treatment of cancer. J Med Chem 2011, 54:1473-1480.
-
(2011)
J Med Chem
, vol.54
, pp. 1473-1480
-
-
Liu, Q.1
Wang, J.2
Kang, S.A.3
Thoreen, C.C.4
Hur, W.5
Ahmed, T.6
-
65
-
-
79960348203
-
Relieving autophagy and 4EBP1 from rapamycin resistance
-
Nyfeler B., Bergman P., Triantafellow E., Wilson C.J., Zhu Y., Radetich B., et al. Relieving autophagy and 4EBP1 from rapamycin resistance. Mol Cell Biol 2011, 31:2867-2876.
-
(2011)
Mol Cell Biol
, vol.31
, pp. 2867-2876
-
-
Nyfeler, B.1
Bergman, P.2
Triantafellow, E.3
Wilson, C.J.4
Zhu, Y.5
Radetich, B.6
-
66
-
-
84894114029
-
Spatial control of the TSC complex integrates insulin and nutrient regulation of mTORC1 at the lysosome
-
Menon S., Dibble C.C., Talbott G., Hoxhaj G., Valvezan A.J., Takahashi H., et al. Spatial control of the TSC complex integrates insulin and nutrient regulation of mTORC1 at the lysosome. Cell 2014, 156:771-785.
-
(2014)
Cell
, vol.156
, pp. 771-785
-
-
Menon, S.1
Dibble, C.C.2
Talbott, G.3
Hoxhaj, G.4
Valvezan, A.J.5
Takahashi, H.6
|