메뉴 건너뛰기




Volumn 11, Issue 10, 2007, Pages 428-434

Learning multiple layers of representation

Author keywords

[No Author keywords available]

Indexed keywords

BRAIN; BRAIN MODELS; COMPUTATIONAL METHODS; LEARNING SYSTEMS; NEURAL NETWORKS; SPEECH INTELLIGIBILITY;

EID: 35348818718     PISSN: 13646613     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.tics.2007.09.004     Document Type: Review
Times cited : (855)

References (44)
  • 1
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • Rumelhart D.E., et al. Learning representations by back-propagating errors. Nature 323 (1986) 533-536
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1
  • 2
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • Hinton G.E., and Salakhutdinov R.R. Reducing the dimensionality of data with neural networks. Science 313 (2006) 504-507
    • (2006) Science , vol.313 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 3
    • 0031875590 scopus 로고    scopus 로고
    • The role of the primary visual cortex in higher level vision
    • Lee T.S., et al. The role of the primary visual cortex in higher level vision. Vision Res. 38 (1998) 2429-2454
    • (1998) Vision Res. , vol.38 , pp. 2429-2454
    • Lee, T.S.1
  • 4
    • 0025718412 scopus 로고
    • Distributed hierarchical processing in the primate cerebral cortex
    • Felleman D.J., and Van Essen D.C. Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1 (1991) 1-47
    • (1991) Cereb. Cortex , vol.1 , pp. 1-47
    • Felleman, D.J.1    Van Essen, D.C.2
  • 5
    • 0026463329 scopus 로고
    • On the computational architecture of the neocortex. II. The role of cortico-cortical loops
    • Mumford D. On the computational architecture of the neocortex. II. The role of cortico-cortical loops. Biol. Cybern. 66 (1992) 241-251
    • (1992) Biol. Cybern. , vol.66 , pp. 241-251
    • Mumford, D.1
  • 7
    • 0033556862 scopus 로고    scopus 로고
    • A unifying review of linear gaussian models
    • Roweis S., and Ghahramani Z. A unifying review of linear gaussian models. Neural Comput. 11 (1999) 305-345
    • (1999) Neural Comput. , vol.11 , pp. 305-345
    • Roweis, S.1    Ghahramani, Z.2
  • 8
    • 35348824407 scopus 로고    scopus 로고
    • Marks, T.K. and Movellan, J.R. (2001) Diffusion networks, products of experts, and factor analysis. In Proceedings of the International Conference on Independent Component Analysis (Lee, T. W. et al., eds), pp. 481-485, http://citeseer.ist.psu.edu/article/marks01diffusion.html
  • 9
    • 0029411030 scopus 로고
    • An information-maximization approach to blind separation and blind deconvolution
    • Bell A.J., and Sejnowski T.J. An information-maximization approach to blind separation and blind deconvolution. Neural Comput. 7 (1995) 1129-1159
    • (1995) Neural Comput. , vol.7 , pp. 1129-1159
    • Bell, A.J.1    Sejnowski, T.J.2
  • 11
    • 0036856989 scopus 로고    scopus 로고
    • Face recognition by independent component analysis
    • Bartlett M.S., et al. Face recognition by independent component analysis. IEEE Trans. Neural Netw. 13 (2002) 1450-1464
    • (2002) IEEE Trans. Neural Netw. , vol.13 , pp. 1450-1464
    • Bartlett, M.S.1
  • 12
    • 0029938380 scopus 로고    scopus 로고
    • Emergence of simple-cell receptive field properties by learning a sparse code for natural images
    • Olshausen B.A., and Field D. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381 (1996) 607-609
    • (1996) Nature , vol.381 , pp. 607-609
    • Olshausen, B.A.1    Field, D.2
  • 14
    • 84899016904 scopus 로고    scopus 로고
    • Bayesian unsupervised learning of higher order structure
    • Mozer M.C., et al. (Ed), MIT Press
    • Lewicki M.S., and Sejnowski T.J. Bayesian unsupervised learning of higher order structure. In: Mozer M.C., et al. (Ed). Advances in Neural Information Processing Systems Vol. 9 (1997), MIT Press 529-535
    • (1997) Advances in Neural Information Processing Systems , vol.9 , pp. 529-535
    • Lewicki, M.S.1    Sejnowski, T.J.2
  • 15
    • 0036284161 scopus 로고    scopus 로고
    • A multi-layer sparse coding network learns contour coding from natural images
    • Hoyer P.O., and Hyvärinen A. A multi-layer sparse coding network learns contour coding from natural images. Vision Res. 42 (2002) 1593-1605
    • (2002) Vision Res. , vol.42 , pp. 1593-1605
    • Hoyer, P.O.1    Hyvärinen, A.2
  • 16
    • 0242636409 scopus 로고    scopus 로고
    • Image denoising using Gaussian scale mixtures in the wavelet domain
    • Portilla J., et al. Image denoising using Gaussian scale mixtures in the wavelet domain. IEEE Trans. Image Process. 12 (2004) 1338-1351
    • (2004) IEEE Trans. Image Process. , vol.12 , pp. 1338-1351
    • Portilla, J.1
  • 17
    • 33750590863 scopus 로고    scopus 로고
    • Soft mixer assignment in a hierarchical generative model of natural scene statistics
    • Schwartz O., et al. Soft mixer assignment in a hierarchical generative model of natural scene statistics. Neural Comput. 18 (2006) 2680-2718
    • (2006) Neural Comput. , vol.18 , pp. 2680-2718
    • Schwartz, O.1
  • 18
    • 0347517574 scopus 로고    scopus 로고
    • Learning higher-order structures in natural images
    • Karklin Y., and Lewicki M.S. Learning higher-order structures in natural images. Network 14 (2003) 483-499
    • (2003) Network , vol.14 , pp. 483-499
    • Karklin, Y.1    Lewicki, M.S.2
  • 20
    • 0032211901 scopus 로고    scopus 로고
    • Six principles for biologically based computational models of cortical cognition
    • O'Reilly R.C. Six principles for biologically based computational models of cortical cognition. Trends Cogn. Sci. 2 (1998) 455-462
    • (1998) Trends Cogn. Sci. , vol.2 , pp. 455-462
    • O'Reilly, R.C.1
  • 21
    • 0002834189 scopus 로고
    • Autoencoders, minimum description length, and Helmholtz free energy
    • Hinton G.E., and Zemel R.S. Autoencoders, minimum description length, and Helmholtz free energy. Adv. Neural Inf. Process. Syst. 6 (1994) 3-10
    • (1994) Adv. Neural Inf. Process. Syst. , vol.6 , pp. 3-10
    • Hinton, G.E.1    Zemel, R.S.2
  • 22
    • 0029652445 scopus 로고
    • The wake-sleep algorithm for self-organizing neural networks
    • Hinton G.E., et al. The wake-sleep algorithm for self-organizing neural networks. Science 268 (1995) 1158-1161
    • (1995) Science , vol.268 , pp. 1158-1161
    • Hinton, G.E.1
  • 23
    • 0002788893 scopus 로고    scopus 로고
    • A new view of the EM algorithm that justifies incremental, sparse and other variants
    • Jordan M.I. (Ed), Kluwer Academic Publishers
    • Neal R.M., and Hinton G.E. A new view of the EM algorithm that justifies incremental, sparse and other variants. In: Jordan M.I. (Ed). Learning in Graphical Models (1998), Kluwer Academic Publishers 355-368
    • (1998) Learning in Graphical Models , pp. 355-368
    • Neal, R.M.1    Hinton, G.E.2
  • 24
    • 0033225865 scopus 로고    scopus 로고
    • An introduction to variational methods for graphical models
    • Jordan M.I., et al. An introduction to variational methods for graphical models. Mach. Learn. 37 (1999) 183-233
    • (1999) Mach. Learn. , vol.37 , pp. 183-233
    • Jordan, M.I.1
  • 25
    • 33745948591 scopus 로고    scopus 로고
    • LOCUS: Learning object classes with unsupervised segmentation
    • IEEE Press
    • Winn J., and Jojic N. LOCUS: Learning object classes with unsupervised segmentation. Tenth IEEE International Conference on Computer Vision Vol. 1 (2005), IEEE Press 756-763
    • (2005) Tenth IEEE International Conference on Computer Vision , vol.1 , pp. 756-763
    • Winn, J.1    Jojic, N.2
  • 27
    • 4043124380 scopus 로고    scopus 로고
    • VIBES: a variational inference engine for Bayesian networks
    • Bishop C.M., et al. VIBES: a variational inference engine for Bayesian networks. Adv. Neural Inf. Process. Syst. 15 (2002) 793-800
    • (2002) Adv. Neural Inf. Process. Syst. , vol.15 , pp. 793-800
    • Bishop, C.M.1
  • 29
    • 0013344078 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • Hinton G.E. Training products of experts by minimizing contrastive divergence. Neural Comput. 14 (2002) 1711-1800
    • (2002) Neural Comput. , vol.14 , pp. 1711-1800
    • Hinton, G.E.1
  • 30
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton G.E., et al. A fast learning algorithm for deep belief nets. Neural Comput. 18 (2006) 1527-1554
    • (2006) Neural Comput. , vol.18 , pp. 1527-1554
    • Hinton, G.E.1
  • 31
    • 0036161034 scopus 로고    scopus 로고
    • Training invariant support vector machines
    • Decoste D., and Schoelkopf B. Training invariant support vector machines. Mach. Learn. 46 (2002) 161-190
    • (2002) Mach. Learn. , vol.46 , pp. 161-190
    • Decoste, D.1    Schoelkopf, B.2
  • 32
    • 84864073449 scopus 로고    scopus 로고
    • Greedy layerwise training of deep networks
    • Schoelkopf B., et al. (Ed), MIT Press
    • Bengio Y., et al. Greedy layerwise training of deep networks. In: Schoelkopf B., et al. (Ed). Advances in Neural Information Processing Systems Vol. 19 (2007), MIT Press 153-160
    • (2007) Advances in Neural Information Processing Systems , vol.19 , pp. 153-160
    • Bengio, Y.1
  • 33
    • 84864069017 scopus 로고    scopus 로고
    • Efficient learning of sparse representations with an energy-based model
    • Schoelkopf B., et al. (Ed), MIT Press
    • Ranzato M., et al. Efficient learning of sparse representations with an energy-based model. In: Schoelkopf B., et al. (Ed). Advances in Neural Information Processing Systems Vol. 19 (2007), MIT Press 1137-1144
    • (2007) Advances in Neural Information Processing Systems , vol.19 , pp. 1137-1144
    • Ranzato, M.1
  • 35
    • 84864026688 scopus 로고    scopus 로고
    • Modeling human motion using binary latent variables
    • Schoelkopf B., et al. (Ed), MIT Press
    • Taylor G.W., et al. Modeling human motion using binary latent variables. In: Schoelkopf B., et al. (Ed). Advances in Neural Information Processing Systems Vol. 19 (2007), MIT Press 1345-1352
    • (2007) Advances in Neural Information Processing Systems , vol.19 , pp. 1345-1352
    • Taylor, G.W.1
  • 36
    • 24644467818 scopus 로고    scopus 로고
    • Fields of experts: a framework for learning image priors
    • IEEE Press
    • Roth S., and Black M.J. Fields of experts: a framework for learning image priors. Computer Vision and Pattern Recognition Vol. 2 (2005), IEEE Press 860-867
    • (2005) Computer Vision and Pattern Recognition , vol.2 , pp. 860-867
    • Roth, S.1    Black, M.J.2
  • 38
    • 84899000641 scopus 로고    scopus 로고
    • Exponential family harmoniums with an application to information retrieval
    • Saul L.K., et al. (Ed), MIT Press
    • Welling M., et al. Exponential family harmoniums with an application to information retrieval. In: Saul L.K., et al. (Ed). Advances in Neural Information Processing Systems Vol. 17 (2005), MIT Press 1481-1488
    • (2005) Advances in Neural Information Processing Systems , vol.17 , pp. 1481-1488
    • Welling, M.1
  • 41
    • 34547983260 scopus 로고    scopus 로고
    • Salakhutdinov, R.R. et al. (2007) Restricted Boltzmann machines for collaborative filtering. In Proceedings of the 24th International Conference on Machine Learning (Ghahramani, Z., ed.), pp. 791-798, ACM Press New York}
  • 42
    • 35348846681 scopus 로고    scopus 로고
    • Bengio, Y. and Le Cun, Y. Scaling learning algorithms towards AI. In Large-Scale Kernel Machines (Bottou, L. et al., eds), MIT Press (in press)
  • 43
    • 84862289622 scopus 로고    scopus 로고
    • Welling, M. and Hinton, G.E. (2002) A new learning algorithm for mean field Boltzmann machines. In Artificial Neural Networks - ICANN 2002: International Conference, Madrid, Spain, August 28-30, 2002 (Lecture Notes in Computer Science Vol. 2415) (Dorronsoro, J.R., ed.), pp.351-357, Springer
  • 44
    • 35348917365 scopus 로고    scopus 로고
    • Osindero, S. and Hinton, G.E. Modelling image patches with a directed hierarchy of Markov random fields. Adv. Neural Inf. Process. Syst. 20 (in press)


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.