메뉴 건너뛰기




Volumn 9, Issue , 2010, Pages 693-700

Efficient learning of Deep Boltzmann Machines

Author keywords

[No Author keywords available]

Indexed keywords

APPROXIMATE INFERENCE; BOLTZMANN MACHINES; DEEP BELIEF NETWORKS; DISCRIMINATIVE MODELS; EFFICIENT LEARNING; GENERATIVE MODEL; HANDWRITTEN DIGIT; HIDDEN LAYERS; HIDDEN VARIABLE; HIGH-DIMENSIONAL; LATENT VARIABLE; RECOGNITION MODELS; SENSORY INPUT; TOP-DOWN FEEDBACK; TOPDOWN; VISUAL OBJECT RECOGNITION;

EID: 84862291504     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Conference Paper
Times cited : (339)

References (18)
  • 3
    • 0036161034 scopus 로고    scopus 로고
    • Training invariant support vector machines
    • Decoste, D., & Schölkopf, B. (2002). Training invariant support vector machines. Machine Learning, 46, 161.
    • (2002) Machine Learning , vol.46 , pp. 161
    • Decoste, D.1    Schölkopf, B.2
  • 4
    • 0029652445 scopus 로고
    • The " wakesleep" algorithm for unsupervised neural networks
    • Hinton, G., Dayan, P., Frey, B., & Neal, R. (1995). The" wakesleep" algorithm for unsupervised neural networks. Science, 268, 1158-1161.
    • (1995) Science , vol.268 , pp. 1158-1161
    • Hinton, G.1    Dayan, P.2    Frey, B.3    Neal, R.4
  • 5
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton, G. E., Osindero, S., & Teh, Y. W. (2006). A fast learning algorithm for deep belief nets. Neural Computation, 18, 1527-1554.
    • (2006) Neural Computation , vol.18 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.W.3
  • 8
    • 5044231640 scopus 로고    scopus 로고
    • Learning methods for generic object recognition with invariance to pose and lighting
    • LeCun, Y., Huang, F. J., & Bottou, L. (2004). Learning methods for generic object recognition with invariance to pose and lighting. CVPR (2) (pp. 97-104).
    • (2004) CVPR (2) , pp. 97-104
    • Lecun, Y.1    Huang, F.J.2    Bottou, L.3
  • 9
    • 71149119164 scopus 로고    scopus 로고
    • Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
    • ACM
    • Lee, H., Grosse, R., Ranganath, R., & Ng, A. Y. (2009). Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. ICML. ACM.
    • (2009) ICML
    • Lee, H.1    Grosse, R.2    Ranganath, R.3    Ng, A.Y.4
  • 10
    • 0031875590 scopus 로고    scopus 로고
    • The role of the primary visual cortex in higher level vision
    • Lee, T. S., Mumford, D., Romero, R., & Lamme, V. (1998). The role of the primary visual cortex in higher level vision. Vision research, 38, 2429-2454.
    • (1998) Vision Research , vol.38 , pp. 2429-2454
    • Lee, T.S.1    Mumford, D.2    Romero, R.3    Lamme, V.4
  • 12
    • 0000273048 scopus 로고    scopus 로고
    • Annealed importance sampling
    • Neal, R. M. (2001). Annealed importance sampling. Statistics and Computing, 11, 125-139.
    • (2001) Statistics and Computing , vol.11 , pp. 125-139
    • Neal, R.M.1
  • 13
    • 84864069017 scopus 로고    scopus 로고
    • Efficient learning of sparse representations with an energy-based model
    • Cambridge, MA: MIT Press
    • Ranzato, M., Poultney, C., Chopra, S., & LeCun, Y. (2007). Efficient learning of sparse representations with an energy-based model. In NIPS 19, 1137-1144. Cambridge, MA: MIT Press.
    • (2007) NIPS , vol.19 , pp. 1137-1144
    • Ranzato, M.1    Poultney, C.2    Chopra, S.3    Lecun, Y.4
  • 14
    • 72249106174 scopus 로고    scopus 로고
    • Learning and evaluating Boltzmann machines
    • Department of Computer Science, University of Toronto
    • Salakhutdinov, R. R. (2008). Learning and evaluating Boltzmann machines (Technical Report UTML TR 2008-002). Department of Computer Science, University of Toronto.
    • (2008) Technical Report UTML TR 2008-002
    • Salakhutdinov, R.R.1
  • 18
    • 0000355193 scopus 로고
    • Parameter inference for imperfectly observed Gibbsian fields
    • Younes, L. (1989). Parameter inference for imperfectly observed Gibbsian fields. Probability Theory Rel. Fields, 82, 625-645.
    • (1989) Probability Theory Rel. Fields , vol.82 , pp. 625-645
    • Younes, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.