-
3
-
-
0036161034
-
Training invariant support vector machines
-
Decoste, D., & Schölkopf, B. (2002). Training invariant support vector machines. Machine Learning, 46, 161.
-
(2002)
Machine Learning
, vol.46
, pp. 161
-
-
Decoste, D.1
Schölkopf, B.2
-
4
-
-
0029652445
-
The " wakesleep" algorithm for unsupervised neural networks
-
Hinton, G., Dayan, P., Frey, B., & Neal, R. (1995). The" wakesleep" algorithm for unsupervised neural networks. Science, 268, 1158-1161.
-
(1995)
Science
, vol.268
, pp. 1158-1161
-
-
Hinton, G.1
Dayan, P.2
Frey, B.3
Neal, R.4
-
5
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
Hinton, G. E., Osindero, S., & Teh, Y. W. (2006). A fast learning algorithm for deep belief nets. Neural Computation, 18, 1527-1554.
-
(2006)
Neural Computation
, vol.18
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.W.3
-
8
-
-
5044231640
-
Learning methods for generic object recognition with invariance to pose and lighting
-
LeCun, Y., Huang, F. J., & Bottou, L. (2004). Learning methods for generic object recognition with invariance to pose and lighting. CVPR (2) (pp. 97-104).
-
(2004)
CVPR (2)
, pp. 97-104
-
-
Lecun, Y.1
Huang, F.J.2
Bottou, L.3
-
9
-
-
71149119164
-
Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
-
ACM
-
Lee, H., Grosse, R., Ranganath, R., & Ng, A. Y. (2009). Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. ICML. ACM.
-
(2009)
ICML
-
-
Lee, H.1
Grosse, R.2
Ranganath, R.3
Ng, A.Y.4
-
10
-
-
0031875590
-
The role of the primary visual cortex in higher level vision
-
Lee, T. S., Mumford, D., Romero, R., & Lamme, V. (1998). The role of the primary visual cortex in higher level vision. Vision research, 38, 2429-2454.
-
(1998)
Vision Research
, vol.38
, pp. 2429-2454
-
-
Lee, T.S.1
Mumford, D.2
Romero, R.3
Lamme, V.4
-
12
-
-
0000273048
-
Annealed importance sampling
-
Neal, R. M. (2001). Annealed importance sampling. Statistics and Computing, 11, 125-139.
-
(2001)
Statistics and Computing
, vol.11
, pp. 125-139
-
-
Neal, R.M.1
-
13
-
-
84864069017
-
Efficient learning of sparse representations with an energy-based model
-
Cambridge, MA: MIT Press
-
Ranzato, M., Poultney, C., Chopra, S., & LeCun, Y. (2007). Efficient learning of sparse representations with an energy-based model. In NIPS 19, 1137-1144. Cambridge, MA: MIT Press.
-
(2007)
NIPS
, vol.19
, pp. 1137-1144
-
-
Ranzato, M.1
Poultney, C.2
Chopra, S.3
Lecun, Y.4
-
14
-
-
72249106174
-
Learning and evaluating Boltzmann machines
-
Department of Computer Science, University of Toronto
-
Salakhutdinov, R. R. (2008). Learning and evaluating Boltzmann machines (Technical Report UTML TR 2008-002). Department of Computer Science, University of Toronto.
-
(2008)
Technical Report UTML TR 2008-002
-
-
Salakhutdinov, R.R.1
-
18
-
-
0000355193
-
Parameter inference for imperfectly observed Gibbsian fields
-
Younes, L. (1989). Parameter inference for imperfectly observed Gibbsian fields. Probability Theory Rel. Fields, 82, 625-645.
-
(1989)
Probability Theory Rel. Fields
, vol.82
, pp. 625-645
-
-
Younes, L.1
|