메뉴 건너뛰기




Volumn 58, Issue , 2016, Pages 121-134

High-dimensional and large-scale anomaly detection using a linear one-class SVM with deep learning

Author keywords

Anomaly detection; Deep belief net; Deep learning; Feature extraction; High dimensional data; One class SVM; Outlier detection

Indexed keywords

CLUSTERING ALGORITHMS; DATA MINING; SIGNAL DETECTION; SUPPORT VECTOR MACHINES;

EID: 84992311617     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2016.03.028     Document Type: Article
Times cited : (1062)

References (61)
  • 1
    • 85001239123 scopus 로고    scopus 로고
    • ISSNIP Internet of Things (IoT) for Creating Smart Cities
    • ISSNIP, Internet of Things (IoT) for Creating Smart Cities. (http://issnip.unimelb.edu.au/research-program/Internet-of-Things), 2013
    • (2013)
  • 2
    • 84876943063 scopus 로고    scopus 로고
    • Internet of Things (IoT): A vision, architectural elements, and future directions
    • J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami Internet of Things (IoT): a vision, architectural elements, and future directions Future Gener. Comput. Syst. 29 7 2013 1645 1660
    • (2013) Future Gener. Comput. Syst. , vol.29 , Issue.7 , pp. 1645-1660
    • Gubbi, J.1    Buyya, R.2    Marusic, S.3    Palaniswami, M.4
  • 3
    • 59449095425 scopus 로고    scopus 로고
    • Incremental data-driven learning of a novelty detection model for one-class classification with application to high-dimensional noisy data
    • R. Kassab, and F. Alexandre Incremental data-driven learning of a novelty detection model for one-class classification with application to high-dimensional noisy data Mach. Learn. 74 2 2009 191 234
    • (2009) Mach. Learn. , vol.74 , Issue.2 , pp. 191-234
    • Kassab, R.1    Alexandre, F.2
  • 7
    • 84866458840 scopus 로고    scopus 로고
    • A survey on unsupervised outlier detection in high-dimensional numerical data
    • A. Zimek, E. Schubert, and H.-P. Kriegel A survey on unsupervised outlier detection in high-dimensional numerical data Stat. Anal. Data Min. 5 5 2012 363 387
    • (2012) Stat. Anal. Data Min. , vol.5 , Issue.5 , pp. 363-387
    • Zimek, A.1    Schubert, E.2    Kriegel, H.-P.3
  • 8
    • 0942266514 scopus 로고    scopus 로고
    • Support vector data description
    • D.M. Tax, and R.P. Duin Support vector data description Mach. Learn. 54 2004 45 66
    • (2004) Mach. Learn. , vol.54 , pp. 45-66
    • Tax, D.M.1    Duin, R.P.2
  • 15
    • 84876717770 scopus 로고    scopus 로고
    • An iterative SVM approach to feature selection and classification in high-dimensional datasets
    • D. Liu, H. Qian, G. Dai, and Z. Zhang An iterative SVM approach to feature selection and classification in high-dimensional datasets Pattern Recognit. 46 9 2013 2531 2537
    • (2013) Pattern Recognit. , vol.46 , Issue.9 , pp. 2531-2537
    • Liu, D.1    Qian, H.2    Dai, G.3    Zhang, Z.4
  • 16
    • 34547975052 scopus 로고    scopus 로고
    • Scaling learning algorithms towards AI
    • L. Bottou
    • Y. Bengio, and Y. LeCun Scaling learning algorithms towards AI L. Bottou, Large Scale Kernel Machines 2007 1 41
    • (2007) Large Scale Kernel Machines , pp. 1-41
    • Bengio, Y.1    LeCun, Y.2
  • 17
    • 69349090197 scopus 로고    scopus 로고
    • Learning deep architectures for AI
    • Y. Bengio Learning deep architectures for AI Found. Trends Mach. Learn. 2 1 2009 1 127
    • (2009) Found. Trends Mach. Learn. , vol.2 , Issue.1 , pp. 1-127
    • Bengio, Y.1
  • 18
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • G.E. Hinton, and R.R. Salakhutdinov Reducing the dimensionality of data with neural networks Science 313 5786 2006 504 507
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 19
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • G.E. Hinton, S. Osindero, and Y.-W. Teh A fast learning algorithm for deep belief nets Neural Comput. 18 7 2006 1527 1554
    • (2006) Neural Comput. , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.-W.3
  • 20
    • 79958842816 scopus 로고    scopus 로고
    • Discriminative deep belief networks for visual data classification
    • Y. Liu, S. Zhou, and Q. Chen Discriminative deep belief networks for visual data classification Pattern Recognit. 44 10 2011 2287 2296
    • (2011) Pattern Recognit. , vol.44 , Issue.10 , pp. 2287-2296
    • Liu, Y.1    Zhou, S.2    Chen, Q.3
  • 21
    • 0242288799 scopus 로고    scopus 로고
    • A comparison of PCA, KPCA and ICA for dimensionality reduction in support vector machine
    • L. Cao, K. Chua, W. Chong, H. Lee, and Q. Gu A comparison of PCA, KPCA and ICA for dimensionality reduction in support vector machine Neurocomputing 55 1 2003 321 336
    • (2003) Neurocomputing , vol.55 , Issue.1 , pp. 321-336
    • Cao, L.1    Chua, K.2    Chong, W.3    Lee, H.4    Gu, Q.5
  • 22
    • 30044438683 scopus 로고    scopus 로고
    • Combined SVM-based feature selection and classification
    • J. Neumann, C. Schnörr, and G. Steidl Combined SVM-based feature selection and classification Mach. Learn. 61 1-3 2005 129 150
    • (2005) Mach. Learn. , vol.61 , Issue.1-3 , pp. 129-150
    • Neumann, J.1    Schnörr, C.2    Steidl, G.3
  • 23
    • 33750481498 scopus 로고    scopus 로고
    • Combination of independent component analysis and support vector machines for intelligent faults diagnosis of induction motors
    • A. Widodo, B.-S. Yang, and T. Han Combination of independent component analysis and support vector machines for intelligent faults diagnosis of induction motors Expert Syst. Appl. 32 2 2007 299 312
    • (2007) Expert Syst. Appl. , vol.32 , Issue.2 , pp. 299-312
    • Widodo, A.1    Yang, B.-S.2    Han, T.3
  • 24
    • 33845623677 scopus 로고    scopus 로고
    • Application of nonlinear feature extraction and support vector machines for fault diagnosis of induction motors
    • A. Widodo, and B.-S. Yang Application of nonlinear feature extraction and support vector machines for fault diagnosis of induction motors Expert Syst. Appl. 33 1 2007 241 250
    • (2007) Expert Syst. Appl. , vol.33 , Issue.1 , pp. 241-250
    • Widodo, A.1    Yang, B.-S.2
  • 25
    • 36849082989 scopus 로고    scopus 로고
    • Feature selection via sensitivity analysis of SVM probabilistic outputs
    • K.-Q. Shen, C.-J. Ong, X.-P. Li, and E.P. Wilder-Smith Feature selection via sensitivity analysis of SVM probabilistic outputs Mach. Learn. 70 1 2008 1 20
    • (2008) Mach. Learn. , vol.70 , Issue.1 , pp. 1-20
    • Shen, K.-Q.1    Ong, C.-J.2    Li, X.-P.3    Wilder-Smith, E.P.4
  • 32
    • 33745162710 scopus 로고    scopus 로고
    • Intrusion detection in unlabeled data with quarter-sphere support vector machines
    • P. Laskov, C. Schäfer, I. Kotenko, and K.-R. Müller Intrusion detection in unlabeled data with quarter-sphere support vector machines Prax. Inf. Kommun. 27 4 2004 228 236
    • (2004) Prax. Inf. Kommun. , vol.27 , Issue.4 , pp. 228-236
    • Laskov, P.1    Schäfer, C.2    Kotenko, I.3    Müller, K.-R.4
  • 33
    • 77955684744 scopus 로고    scopus 로고
    • Centered hyperspherical and hyperellipsoidal one-class support vector machines for anomaly detection in sensor networks
    • S. Rajasegarar, C. Leckie, J.C. Bezdek, and M. Palaniswami Centered hyperspherical and hyperellipsoidal one-class support vector machines for anomaly detection in sensor networks IEEE Trans. Inf. Forensics Secur. 5 3 2010 518 533
    • (2010) IEEE Trans. Inf. Forensics Secur. , vol.5 , Issue.3 , pp. 518-533
    • Rajasegarar, S.1    Leckie, C.2    Bezdek, J.C.3    Palaniswami, M.4
  • 37
    • 84944178665 scopus 로고
    • Hierarchical grouping to optimize an objective function
    • J.H. Ward Hierarchical grouping to optimize an objective function J. Am. Stat. Assoc. 58 1-301 1963 236 244
    • (1963) J. Am. Stat. Assoc. , vol.58 , Issue.1-301 , pp. 236-244
    • Ward, J.H.1
  • 39
    • 79957967845 scopus 로고    scopus 로고
    • Modeling electroencephalography waveforms with semi-supervised deep belief nets: Fast classification and anomaly measurement
    • D. Wulsin, J. Gupta, R. Mani, J. Blanco, and B. Litt Modeling electroencephalography waveforms with semi-supervised deep belief nets: fast classification and anomaly measurement J. Neural Eng. 8 3 2011 036015
    • (2011) J. Neural Eng. , vol.8 , Issue.3 , pp. 036015
    • Wulsin, D.1    Gupta, J.2    Mani, R.3    Blanco, J.4    Litt, B.5
  • 42
    • 84875678689 scopus 로고    scopus 로고
    • Towards scaling up classification-based speech separation
    • Y. Wang, and D. Wang Towards scaling up classification-based speech separation IEEE Trans. Audio Speech Lang. Process. 21 7 2013 1381 1390
    • (2013) IEEE Trans. Audio Speech Lang. Process. , vol.21 , Issue.7 , pp. 1381-1390
    • Wang, Y.1    Wang, D.2
  • 43
    • 0013344078 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • G.E. Hinton Training products of experts by minimizing contrastive divergence Neural Comput. 14 8 2002 1771 1800
    • (2002) Neural Comput. , vol.14 , Issue.8 , pp. 1771-1800
    • Hinton, G.E.1
  • 45
    • 85096855936 scopus 로고    scopus 로고
    • One-class SVMs for document classification
    • L.M. Manevitz, and M. Yousef One-class SVMs for document classification J. Mach. Learn. Res. 2 2002 139 154
    • (2002) J. Mach. Learn. Res. , vol.2 , pp. 139-154
    • Manevitz, L.M.1    Yousef, M.2
  • 47
    • 84882277761 scopus 로고    scopus 로고
    • The flip-The-state transition operator for restricted Boltzmann machines
    • K. Brügge, A. Fischer, and C. Igel The flip-the-state transition operator for restricted Boltzmann machines Mach. Learn. 93 1 2013 53 69
    • (2013) Mach. Learn. , vol.93 , Issue.1 , pp. 53-69
    • Brügge, K.1    Fischer, A.2    Igel, C.3
  • 51
    • 84872506495 scopus 로고    scopus 로고
    • A practical guide to training restricted Boltzmann machines
    • G. Hinton, A practical guide to training restricted Boltzmann machines, in: Neural Networks: Tricks of the Trade, 2012, pp. 599-619.
    • (2012) Neural Networks: Tricks of the Trade , pp. 599-619
    • Hinton, G.1
  • 53
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • J. Demšar Statistical comparisons of classifiers over multiple data sets J. Mach. Learn. Res. 7 2006 1 30
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 1-30
    • Demšar, J.1
  • 54
    • 58149287952 scopus 로고    scopus 로고
    • An extension on statistical comparisons of classifiers over multiple data sets for all pairwise comparisons
    • S. García, F. Herrera, and J. Shawe-taylor An extension on statistical comparisons of classifiers over multiple data sets for all pairwise comparisons J. Mach. Learn. Res. 9 2008 2677 2694
    • (2008) J. Mach. Learn. Res. , vol.9 , pp. 2677-2694
    • García, S.1    Herrera, F.2    Shawe-Taylor, J.3
  • 55
    • 77549084648 scopus 로고    scopus 로고
    • Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power
    • S. García, A. Fernández, J. Luengo, and F. Herrera Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power Inf. Sci. 180 10 2010 2044 2064
    • (2010) Inf. Sci. , vol.180 , Issue.10 , pp. 2044-2064
    • García, S.1    Fernández, A.2    Luengo, J.3    Herrera, F.4
  • 56
    • 79953051509 scopus 로고    scopus 로고
    • An overview of ensemble methods for binary classifiers in multi-class problems: Experimental study on one-vs-one and one-vs-all schemes
    • M. Galar, A. Fernández, E. Barrenechea, H. Bustince, and F. Herrera An overview of ensemble methods for binary classifiers in multi-class problems: experimental study on one-vs-one and one-vs-all schemes Pattern Recognit. 44 8 2011 1761 1776
    • (2011) Pattern Recognit. , vol.44 , Issue.8 , pp. 1761-1776
    • Galar, M.1    Fernández, A.2    Barrenechea, E.3    Bustince, H.4    Herrera, F.5
  • 57
    • 0001884644 scopus 로고
    • Individual comparisons by ranking methods
    • F. Wilcoxon Individual comparisons by ranking methods Biom. Bull. 1 6 1945 80 83
    • (1945) Biom. Bull. , vol.1 , Issue.6 , pp. 80-83
    • Wilcoxon, F.1
  • 59
    • 84890829458 scopus 로고
    • Modified sequentially rejective multiple test procedures
    • J.P. Shaffer Modified sequentially rejective multiple test procedures J. Am. Stat. Assoc. 81 395 1986 826 831
    • (1986) J. Am. Stat. Assoc. , vol.81 , Issue.395 , pp. 826-831
    • Shaffer, J.P.1
  • 60
    • 84944811700 scopus 로고
    • The use of ranks to avoid the assumption of normality implicit in the analysis of variance
    • M. Friedman The use of ranks to avoid the assumption of normality implicit in the analysis of variance J. Am. Stat. Assoc. 32 200 1937 675 701
    • (1937) J. Am. Stat. Assoc. , vol.32 , Issue.200 , pp. 675-701
    • Friedman, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.