-
1
-
-
85001239123
-
-
ISSNIP Internet of Things (IoT) for Creating Smart Cities
-
ISSNIP, Internet of Things (IoT) for Creating Smart Cities. (http://issnip.unimelb.edu.au/research-program/Internet-of-Things), 2013
-
(2013)
-
-
-
2
-
-
84876943063
-
Internet of Things (IoT): A vision, architectural elements, and future directions
-
J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami Internet of Things (IoT): a vision, architectural elements, and future directions Future Gener. Comput. Syst. 29 7 2013 1645 1660
-
(2013)
Future Gener. Comput. Syst.
, vol.29
, Issue.7
, pp. 1645-1660
-
-
Gubbi, J.1
Buyya, R.2
Marusic, S.3
Palaniswami, M.4
-
3
-
-
59449095425
-
Incremental data-driven learning of a novelty detection model for one-class classification with application to high-dimensional noisy data
-
R. Kassab, and F. Alexandre Incremental data-driven learning of a novelty detection model for one-class classification with application to high-dimensional noisy data Mach. Learn. 74 2 2009 191 234
-
(2009)
Mach. Learn.
, vol.74
, Issue.2
, pp. 191-234
-
-
Kassab, R.1
Alexandre, F.2
-
4
-
-
84959524841
-
R1SVM: A randomised nonlinear approach to large-scale anomaly detection
-
S.M. Erfani, M. Baktashmotlagh, S. Rajasegarar, S. Karunasekera, C. Leckie, R1SVM: a randomised nonlinear approach to large-scale anomaly detection, in: Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015, pp. 432-438.
-
(2015)
Twenty-Ninth AAAI Conference on Artificial Intelligence
, pp. 432-438
-
-
Erfani, S.M.1
Baktashmotlagh, M.2
Rajasegarar, S.3
Karunasekera, S.4
Leckie, C.5
-
5
-
-
84991671447
-
R1STM: One-class Support Tensor Machine with Randomised Kernel
-
Sarah M Erfani, Mahsa Baktashmotlagh, Sutharshan Rajasegarar, Vinh Nguyen, Christopher Leckie, James Bailey, and Kotagiri Ramamohanarao. R1STM: One-class Support Tensor Machine with Randomised Kernel. In Proceedings of SIAM International Conference on Data Mining (SDM), 2016
-
(2016)
Proceedings of SIAM International Conference on Data Mining (SDM)
-
-
Erfani, S.M.1
Baktashmotlagh, M.2
Rajasegarar, S.3
Nguyen, V.4
Leckie, C.5
Bailey, J.6
Ramamohanarao, K.7
-
6
-
-
85006085645
-
Robust Domain Generalisation by Enforcing Distribution Invariance
-
Sarah M. Erfani, Mahsa Baktashmotlagh, Masud Moshtahgi, Vinh Nguyen, Christopher Leckie, James Bailey, and Kotagiri Ramamohanarao. Robust Domain Generalisation by Enforcing Distribution Invariance. In Proceedings of International Joint Conference on Artificial Intelligence(IJCAI), 2016.
-
(2016)
Proceedings of International Joint Conference on Artificial Intelligence(IJCAI)
-
-
Erfani, S.M.1
Baktashmotlagh, M.2
Moshtahgi, M.3
Nguyen, V.4
Leckie, C.5
Bailey, J.6
Ramamohanarao, K.7
-
7
-
-
84866458840
-
A survey on unsupervised outlier detection in high-dimensional numerical data
-
A. Zimek, E. Schubert, and H.-P. Kriegel A survey on unsupervised outlier detection in high-dimensional numerical data Stat. Anal. Data Min. 5 5 2012 363 387
-
(2012)
Stat. Anal. Data Min.
, vol.5
, Issue.5
, pp. 363-387
-
-
Zimek, A.1
Schubert, E.2
Kriegel, H.-P.3
-
8
-
-
0942266514
-
Support vector data description
-
D.M. Tax, and R.P. Duin Support vector data description Mach. Learn. 54 2004 45 66
-
(2004)
Mach. Learn.
, vol.54
, pp. 45-66
-
-
Tax, D.M.1
Duin, R.P.2
-
12
-
-
79955105452
-
-
German Institute for Economic Research
-
L. Auria, R.A. Moro, Support Vector Machines (SVM) as a Technique for Solvency Analysis, Technical Report, Discussion Paper of DIW Berlin, German Institute for Economic Research, 2008.
-
(2008)
Support Vector Machines (SVM) As A Technique for Solvency Analysis, Technical Report, Discussion Paper of DIW Berlin
-
-
Auria, L.1
Moro, R.A.2
-
13
-
-
84898407813
-
Generalized RBF feature maps for efficient detection
-
S. Vempati, A. Vedaldi, A. Zisserman, C. Jawahar, Generalized RBF feature maps for efficient detection, in: 21st British Machine Vision Conference, 2010, pp. 1-11.
-
(2010)
21st British Machine Vision Conference
, pp. 1-11
-
-
Vempati, S.1
Vedaldi, A.2
Zisserman, A.3
Jawahar, C.4
-
14
-
-
33845597145
-
Large-scale learning with SVM and convolutional for generic object categorization
-
F.J. Huang, Y. LeCun, Large-scale learning with SVM and convolutional for generic object categorization, in: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, 2006, pp. 284-291.
-
(2006)
IEEE Computer Society Conference on Computer Vision and Pattern Recognition
, vol.1
, pp. 284-291
-
-
Huang, F.J.1
LeCun, Y.2
-
15
-
-
84876717770
-
An iterative SVM approach to feature selection and classification in high-dimensional datasets
-
D. Liu, H. Qian, G. Dai, and Z. Zhang An iterative SVM approach to feature selection and classification in high-dimensional datasets Pattern Recognit. 46 9 2013 2531 2537
-
(2013)
Pattern Recognit.
, vol.46
, Issue.9
, pp. 2531-2537
-
-
Liu, D.1
Qian, H.2
Dai, G.3
Zhang, Z.4
-
16
-
-
34547975052
-
Scaling learning algorithms towards AI
-
L. Bottou
-
Y. Bengio, and Y. LeCun Scaling learning algorithms towards AI L. Bottou, Large Scale Kernel Machines 2007 1 41
-
(2007)
Large Scale Kernel Machines
, pp. 1-41
-
-
Bengio, Y.1
LeCun, Y.2
-
17
-
-
69349090197
-
Learning deep architectures for AI
-
Y. Bengio Learning deep architectures for AI Found. Trends Mach. Learn. 2 1 2009 1 127
-
(2009)
Found. Trends Mach. Learn.
, vol.2
, Issue.1
, pp. 1-127
-
-
Bengio, Y.1
-
18
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
G.E. Hinton, and R.R. Salakhutdinov Reducing the dimensionality of data with neural networks Science 313 5786 2006 504 507
-
(2006)
Science
, vol.313
, Issue.5786
, pp. 504-507
-
-
Hinton, G.E.1
Salakhutdinov, R.R.2
-
19
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
G.E. Hinton, S. Osindero, and Y.-W. Teh A fast learning algorithm for deep belief nets Neural Comput. 18 7 2006 1527 1554
-
(2006)
Neural Comput.
, vol.18
, Issue.7
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.-W.3
-
20
-
-
79958842816
-
Discriminative deep belief networks for visual data classification
-
Y. Liu, S. Zhou, and Q. Chen Discriminative deep belief networks for visual data classification Pattern Recognit. 44 10 2011 2287 2296
-
(2011)
Pattern Recognit.
, vol.44
, Issue.10
, pp. 2287-2296
-
-
Liu, Y.1
Zhou, S.2
Chen, Q.3
-
21
-
-
0242288799
-
A comparison of PCA, KPCA and ICA for dimensionality reduction in support vector machine
-
L. Cao, K. Chua, W. Chong, H. Lee, and Q. Gu A comparison of PCA, KPCA and ICA for dimensionality reduction in support vector machine Neurocomputing 55 1 2003 321 336
-
(2003)
Neurocomputing
, vol.55
, Issue.1
, pp. 321-336
-
-
Cao, L.1
Chua, K.2
Chong, W.3
Lee, H.4
Gu, Q.5
-
22
-
-
30044438683
-
Combined SVM-based feature selection and classification
-
J. Neumann, C. Schnörr, and G. Steidl Combined SVM-based feature selection and classification Mach. Learn. 61 1-3 2005 129 150
-
(2005)
Mach. Learn.
, vol.61
, Issue.1-3
, pp. 129-150
-
-
Neumann, J.1
Schnörr, C.2
Steidl, G.3
-
23
-
-
33750481498
-
Combination of independent component analysis and support vector machines for intelligent faults diagnosis of induction motors
-
A. Widodo, B.-S. Yang, and T. Han Combination of independent component analysis and support vector machines for intelligent faults diagnosis of induction motors Expert Syst. Appl. 32 2 2007 299 312
-
(2007)
Expert Syst. Appl.
, vol.32
, Issue.2
, pp. 299-312
-
-
Widodo, A.1
Yang, B.-S.2
Han, T.3
-
24
-
-
33845623677
-
Application of nonlinear feature extraction and support vector machines for fault diagnosis of induction motors
-
A. Widodo, and B.-S. Yang Application of nonlinear feature extraction and support vector machines for fault diagnosis of induction motors Expert Syst. Appl. 33 1 2007 241 250
-
(2007)
Expert Syst. Appl.
, vol.33
, Issue.1
, pp. 241-250
-
-
Widodo, A.1
Yang, B.-S.2
-
25
-
-
36849082989
-
Feature selection via sensitivity analysis of SVM probabilistic outputs
-
K.-Q. Shen, C.-J. Ong, X.-P. Li, and E.P. Wilder-Smith Feature selection via sensitivity analysis of SVM probabilistic outputs Mach. Learn. 70 1 2008 1 20
-
(2008)
Mach. Learn.
, vol.70
, Issue.1
, pp. 1-20
-
-
Shen, K.-Q.1
Ong, C.-J.2
Li, X.-P.3
Wilder-Smith, E.P.4
-
28
-
-
32044460170
-
Hybrid intelligent intrusion detection system
-
N. Bashah, I.B. Shanmugam, A.M. Ahmed, Hybrid intelligent intrusion detection system, in: World Academy of Science, Engineering and Technology, vol. 6, 2005, pp. 291-294.
-
(2005)
World Academy of Science, Engineering and Technology
, vol.6
, pp. 291-294
-
-
Bashah, N.1
Shanmugam, I.B.2
Ahmed, A.M.3
-
31
-
-
0000487102
-
Estimating the support of a high-dimensional distribution
-
B. Schölkopf, J.C. Platt, J. Shawe-Taylor, A.J. Smola, and R.C. Williamson Estimating the support of a high-dimensional distribution Neural Comput. 13 7 2001 1443 1471
-
(2001)
Neural Comput.
, vol.13
, Issue.7
, pp. 1443-1471
-
-
Schölkopf, B.1
Platt, J.C.2
Shawe-Taylor, J.3
Smola, A.J.4
Williamson, R.C.5
-
32
-
-
33745162710
-
Intrusion detection in unlabeled data with quarter-sphere support vector machines
-
P. Laskov, C. Schäfer, I. Kotenko, and K.-R. Müller Intrusion detection in unlabeled data with quarter-sphere support vector machines Prax. Inf. Kommun. 27 4 2004 228 236
-
(2004)
Prax. Inf. Kommun.
, vol.27
, Issue.4
, pp. 228-236
-
-
Laskov, P.1
Schäfer, C.2
Kotenko, I.3
Müller, K.-R.4
-
33
-
-
77955684744
-
Centered hyperspherical and hyperellipsoidal one-class support vector machines for anomaly detection in sensor networks
-
S. Rajasegarar, C. Leckie, J.C. Bezdek, and M. Palaniswami Centered hyperspherical and hyperellipsoidal one-class support vector machines for anomaly detection in sensor networks IEEE Trans. Inf. Forensics Secur. 5 3 2010 518 533
-
(2010)
IEEE Trans. Inf. Forensics Secur.
, vol.5
, Issue.3
, pp. 518-533
-
-
Rajasegarar, S.1
Leckie, C.2
Bezdek, J.C.3
Palaniswami, M.4
-
34
-
-
51249089432
-
CESVM: Centered hyperellipsoidal support vector machine based anomaly detection
-
S. Rajasegarar, C. Leckie, M. Palaniswami, CESVM: Centered hyperellipsoidal support vector machine based anomaly detection, in: IEEE International Conference on Communications, 2008, pp. 1610-1614.
-
(2008)
IEEE International Conference on Communications
, pp. 1610-1614
-
-
Rajasegarar, S.1
Leckie, C.2
Palaniswami, M.3
-
35
-
-
38549109147
-
Quarter sphere based distributed anomaly detection in wireless sensor networks
-
S. Rajasegarar, C. Leckie, M. Palaniswami, J.C. Bezdek, Quarter sphere based distributed anomaly detection in wireless sensor networks, in: IEEE International Conference on Communications, 2007, pp. 3864-3869.
-
(2007)
IEEE International Conference on Communications
, pp. 3864-3869
-
-
Rajasegarar, S.1
Leckie, C.2
Palaniswami, M.3
Bezdek, J.C.4
-
36
-
-
84898950762
-
A linear programming approach to novelty detection
-
C. Campbell, K. Bennett, A linear programming approach to novelty detection, in: Advances in Neural Information Processing Systems (NIPS), vol. 13, 2001, pp. 395-401.
-
(2001)
Advances in Neural Information Processing Systems (NIPS)
, vol.13
, pp. 395-401
-
-
Campbell, C.1
Bennett, K.2
-
37
-
-
84944178665
-
Hierarchical grouping to optimize an objective function
-
J.H. Ward Hierarchical grouping to optimize an objective function J. Am. Stat. Assoc. 58 1-301 1963 236 244
-
(1963)
J. Am. Stat. Assoc.
, vol.58
, Issue.1-301
, pp. 236-244
-
-
Ward, J.H.1
-
38
-
-
84864073449
-
Greedy layer-wise training of deep networks
-
Y. Bengio, P. Lamblin, D. Popovici, H. Larochelle, Greedy layer-wise training of deep networks, in: Advances in Neural Information Processing Systems (NIPS), vol. 19, 2007, pp. 153-160.
-
(2007)
Advances in Neural Information Processing Systems (NIPS)
, vol.19
, pp. 153-160
-
-
Bengio, Y.1
Lamblin, P.2
Popovici, D.3
Larochelle, H.4
-
39
-
-
79957967845
-
Modeling electroencephalography waveforms with semi-supervised deep belief nets: Fast classification and anomaly measurement
-
D. Wulsin, J. Gupta, R. Mani, J. Blanco, and B. Litt Modeling electroencephalography waveforms with semi-supervised deep belief nets: fast classification and anomaly measurement J. Neural Eng. 8 3 2011 036015
-
(2011)
J. Neural Eng.
, vol.8
, Issue.3
, pp. 036015
-
-
Wulsin, D.1
Gupta, J.2
Mani, R.3
Blanco, J.4
Litt, B.5
-
40
-
-
78149306047
-
3D object recognition with deep belief nets
-
V. Nair, G.E. Hinton, 3D object recognition with deep belief nets, in: Advances in Neural Information Processing Systems (NIPS), vol. 21, 2009, pp. 1339-1347.
-
(2009)
Advances in Neural Information Processing Systems (NIPS)
, vol.21
, pp. 1339-1347
-
-
Nair, V.1
Hinton, G.E.2
-
42
-
-
84875678689
-
Towards scaling up classification-based speech separation
-
Y. Wang, and D. Wang Towards scaling up classification-based speech separation IEEE Trans. Audio Speech Lang. Process. 21 7 2013 1381 1390
-
(2013)
IEEE Trans. Audio Speech Lang. Process.
, vol.21
, Issue.7
, pp. 1381-1390
-
-
Wang, Y.1
Wang, D.2
-
43
-
-
0013344078
-
Training products of experts by minimizing contrastive divergence
-
G.E. Hinton Training products of experts by minimizing contrastive divergence Neural Comput. 14 8 2002 1771 1800
-
(2002)
Neural Comput.
, vol.14
, Issue.8
, pp. 1771-1800
-
-
Hinton, G.E.1
-
45
-
-
85096855936
-
One-class SVMs for document classification
-
L.M. Manevitz, and M. Yousef One-class SVMs for document classification J. Mach. Learn. Res. 2 2002 139 154
-
(2002)
J. Mach. Learn. Res.
, vol.2
, pp. 139-154
-
-
Manevitz, L.M.1
Yousef, M.2
-
47
-
-
84882277761
-
The flip-The-state transition operator for restricted Boltzmann machines
-
K. Brügge, A. Fischer, and C. Igel The flip-the-state transition operator for restricted Boltzmann machines Mach. Learn. 93 1 2013 53 69
-
(2013)
Mach. Learn.
, vol.93
, Issue.1
, pp. 53-69
-
-
Brügge, K.1
Fischer, A.2
Igel, C.3
-
49
-
-
79954573338
-
IVAT and aVAT: Enhanced visual analysis for cluster tendency assessment
-
L. Wang, U.T. Nguyen, J.C. Bezdek, C. Leckie, K. Ramamohanarao, iVAT and aVAT: enhanced visual analysis for cluster tendency assessment, in: Advances in Knowledge Discovery and Data Mining, 2010, pp. 16-27.
-
(2010)
Advances in Knowledge Discovery and Data Mining
, pp. 16-27
-
-
Wang, L.1
Nguyen, U.T.2
Bezdek, J.C.3
Leckie, C.4
Ramamohanarao, K.5
-
50
-
-
35248830261
-
Online outlier detection in sensor data using non-parametric models
-
S. Subramaniam, T. Palpanas, D. Papadopoulos, V. Kalogeraki, D. Gunopulos, Online outlier detection in sensor data using non-parametric models, in: Proceedings of the 32nd International Conference on Very Large Data Bases (VLDB), 2006, pp. 187-198.
-
(2006)
Proceedings of the 32nd International Conference on Very Large Data Bases (VLDB)
, pp. 187-198
-
-
Subramaniam, S.1
Palpanas, T.2
Papadopoulos, D.3
Kalogeraki, V.4
Gunopulos, D.5
-
51
-
-
84872506495
-
A practical guide to training restricted Boltzmann machines
-
G. Hinton, A practical guide to training restricted Boltzmann machines, in: Neural Networks: Tricks of the Trade, 2012, pp. 599-619.
-
(2012)
Neural Networks: Tricks of the Trade
, pp. 599-619
-
-
Hinton, G.1
-
53
-
-
29644438050
-
Statistical comparisons of classifiers over multiple data sets
-
J. Demšar Statistical comparisons of classifiers over multiple data sets J. Mach. Learn. Res. 7 2006 1 30
-
(2006)
J. Mach. Learn. Res.
, vol.7
, pp. 1-30
-
-
Demšar, J.1
-
54
-
-
58149287952
-
An extension on statistical comparisons of classifiers over multiple data sets for all pairwise comparisons
-
S. García, F. Herrera, and J. Shawe-taylor An extension on statistical comparisons of classifiers over multiple data sets for all pairwise comparisons J. Mach. Learn. Res. 9 2008 2677 2694
-
(2008)
J. Mach. Learn. Res.
, vol.9
, pp. 2677-2694
-
-
García, S.1
Herrera, F.2
Shawe-Taylor, J.3
-
55
-
-
77549084648
-
Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power
-
S. García, A. Fernández, J. Luengo, and F. Herrera Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power Inf. Sci. 180 10 2010 2044 2064
-
(2010)
Inf. Sci.
, vol.180
, Issue.10
, pp. 2044-2064
-
-
García, S.1
Fernández, A.2
Luengo, J.3
Herrera, F.4
-
56
-
-
79953051509
-
An overview of ensemble methods for binary classifiers in multi-class problems: Experimental study on one-vs-one and one-vs-all schemes
-
M. Galar, A. Fernández, E. Barrenechea, H. Bustince, and F. Herrera An overview of ensemble methods for binary classifiers in multi-class problems: experimental study on one-vs-one and one-vs-all schemes Pattern Recognit. 44 8 2011 1761 1776
-
(2011)
Pattern Recognit.
, vol.44
, Issue.8
, pp. 1761-1776
-
-
Galar, M.1
Fernández, A.2
Barrenechea, E.3
Bustince, H.4
Herrera, F.5
-
57
-
-
0001884644
-
Individual comparisons by ranking methods
-
F. Wilcoxon Individual comparisons by ranking methods Biom. Bull. 1 6 1945 80 83
-
(1945)
Biom. Bull.
, vol.1
, Issue.6
, pp. 80-83
-
-
Wilcoxon, F.1
-
59
-
-
84890829458
-
Modified sequentially rejective multiple test procedures
-
J.P. Shaffer Modified sequentially rejective multiple test procedures J. Am. Stat. Assoc. 81 395 1986 826 831
-
(1986)
J. Am. Stat. Assoc.
, vol.81
, Issue.395
, pp. 826-831
-
-
Shaffer, J.P.1
-
60
-
-
84944811700
-
The use of ranks to avoid the assumption of normality implicit in the analysis of variance
-
M. Friedman The use of ranks to avoid the assumption of normality implicit in the analysis of variance J. Am. Stat. Assoc. 32 200 1937 675 701
-
(1937)
J. Am. Stat. Assoc.
, vol.32
, Issue.200
, pp. 675-701
-
-
Friedman, M.1
|