-
1
-
-
85023206496
-
Assembly of Francisella novicida Cpf1 endonuclease in complex with guide RNA and target DNA
-
COI: 1:CAS:528:DC%2BC2sXhtFCrtb3N
-
Alcon P, Montoya G, Stella S (2017) Assembly of Francisella novicida Cpf1 endonuclease in complex with guide RNA and target DNA. Acta Crystallogr F 73(Pt 7):409–415. https://doi.org/10.1107/S2053230X1700838X
-
(2017)
Acta Crystallogr F
, vol.73
, pp. 409-415
-
-
Alcon, P.1
Montoya, G.2
Stella, S.3
-
2
-
-
84896308706
-
Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases
-
COI: 1:CAS:528:DC%2BC2cXnslOitrs%3D, PID: 24463181
-
Bae S, Park J, Kim JS (2014) Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics 30(10):1473–1475. https://doi.org/10.1093/bioinformatics/btu048
-
(2014)
Bioinformatics
, vol.30
, Issue.10
, pp. 1473-1475
-
-
Bae, S.1
Park, J.2
Kim, J.S.3
-
3
-
-
85014260078
-
The CRISPR growth spurt: from bench to clinic on versatile small RNAs
-
PID: 27840399
-
Bayat H, Omidi M, Rajabibazl M, Sabri S, Rahimpour A (2017) The CRISPR growth spurt: from bench to clinic on versatile small RNAs. J Microbiol Biotechnol 27(2):207–218. https://doi.org/10.4014/jmb.1607.07005
-
(2017)
J Microbiol Biotechnol
, vol.27
, Issue.2
, pp. 207-218
-
-
Bayat, H.1
Omidi, M.2
Rajabibazl, M.3
Sabri, S.4
Rahimpour, A.5
-
4
-
-
84942746261
-
Biogenesis pathways of RNA guides in archaeal and bacterial CRISPR-Cas adaptive immunity
-
COI: 1:CAS:528:DC%2BC2sXhs1ans7rI, PID: 25994611
-
Charpentier E, Richter H, van der Oost J, White MF (2015) Biogenesis pathways of RNA guides in archaeal and bacterial CRISPR-Cas adaptive immunity. FEMS Microbiol Rev 39(3):428–441. https://doi.org/10.1093/femsre/fuv023
-
(2015)
FEMS Microbiol Rev
, vol.39
, Issue.3
, pp. 428-441
-
-
Charpentier, E.1
Richter, H.2
van der Oost, J.3
White, M.F.4
-
5
-
-
85020839900
-
CRISPR/Cas9: transcending the reality of genome editing
-
COI: 1:CAS:528:DC%2BC2sXhtVarsr7P, PID: 28624197
-
Chira S, Gulei D, Hajitou A, Zimta AA, Cordelier P, Berindan-Neagoe I (2017) CRISPR/Cas9: transcending the reality of genome editing. Mol Ther Nucleic Acids 7:211–222. https://doi.org/10.1016/j.omtn.2017.04.001
-
(2017)
Mol Ther Nucleic Acids
, vol.7
, pp. 211-222
-
-
Chira, S.1
Gulei, D.2
Hajitou, A.3
Zimta, A.A.4
Cordelier, P.5
Berindan-Neagoe, I.6
-
6
-
-
79953250082
-
CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III
-
COI: 1:CAS:528:DC%2BC3MXktVGmsLk%3D, PID: 21455174
-
Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, Eckert MR, Vogel J, Charpentier E (2011) CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471(7340):602–607. https://doi.org/10.1038/nature09886
-
(2011)
Nature
, vol.471
, Issue.7340
, pp. 602-607
-
-
Deltcheva, E.1
Chylinski, K.2
Sharma, C.M.3
Gonzales, K.4
Chao, Y.5
Pirzada, Z.A.6
Eckert, M.R.7
Vogel, J.8
Charpentier, E.9
-
7
-
-
84957605863
-
Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9
-
PID: 26780180
-
Doench JG, Fusi N, Sullender M, Hegde M, Vaimberg EW, Donovan KF, Smith I, Tothova Z, Wilen C, Orchard R, Virgin HW, Listgarten J, Root DE (2016) Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat Biotechnol. https://doi.org/10.1038/nbt.3437
-
(2016)
Nat Biotechnol
-
-
Doench, J.G.1
Fusi, N.2
Sullender, M.3
Hegde, M.4
Vaimberg, E.W.5
Donovan, K.F.6
Smith, I.7
Tothova, Z.8
Wilen, C.9
Orchard, R.10
Virgin, H.W.11
Listgarten, J.12
Root, D.E.13
-
8
-
-
84964831029
-
The crystal structure of Cpf1 in complex with CRISPR RNA
-
COI: 1:CAS:528:DC%2BC28XmsVeiu7s%3D, PID: 27096363
-
Dong D, Ren K, Qiu X, Zheng J, Guo M, Guan X, Liu H, Li N, Zhang B, Yang D, Ma C, Wang S, Wu D, Ma Y, Fan S, Wang J, Gao N, Huang Z (2016) The crystal structure of Cpf1 in complex with CRISPR RNA. Nature 532(7600):522–526. https://doi.org/10.1038/nature17944
-
(2016)
Nature
, vol.532
, Issue.7600
, pp. 522-526
-
-
Dong, D.1
Ren, K.2
Qiu, X.3
Zheng, J.4
Guo, M.5
Guan, X.6
Liu, H.7
Li, N.8
Zhang, B.9
Yang, D.10
Ma, C.11
Wang, S.12
Wu, D.13
Ma, Y.14
Fan, S.15
Wang, J.16
Gao, N.17
Huang, Z.18
-
9
-
-
84913594397
-
Genome editing. The new frontier of genome engineering with CRISPR-Cas9
-
PID: 25430774
-
Doudna JA, Charpentier E (2014) Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346(6213):1258096. https://doi.org/10.1126/science.1258096
-
(2014)
Science
, vol.346
, Issue.6213
, pp. 1258096
-
-
Doudna, J.A.1
Charpentier, E.2
-
10
-
-
84942515505
-
Modeling disease in vivo with CRISPR/Cas9
-
COI: 1:CAS:528:DC%2BC2MXhsF2kurjJ, PID: 26432018
-
Dow LE (2015) Modeling disease in vivo with CRISPR/Cas9. Trends Mol Med 21(10):609–621. https://doi.org/10.1016/j.molmed.2015.07.006
-
(2015)
Trends Mol Med
, vol.21
, Issue.10
, pp. 609-621
-
-
Dow, L.E.1
-
11
-
-
84939986248
-
A giant market and a powerful metabolism: L-lysine provided by Corynebacterium glutamicum
-
COI: 1:CAS:528:DC%2BC2MXktlSrt78%3D, PID: 25761623
-
Eggeling L, Bott M (2015) A giant market and a powerful metabolism: L-lysine provided by Corynebacterium glutamicum. Appl Microbiol Biotechnol 99(8):3387–3394. https://doi.org/10.1007/s00253-015-6508-2
-
(2015)
Appl Microbiol Biotechnol
, vol.99
, Issue.8
, pp. 3387-3394
-
-
Eggeling, L.1
Bott, M.2
-
12
-
-
84887104139
-
Orthogonal Cas9 proteins for RNA-guided gene regulation and editing
-
COI: 1:CAS:528:DC%2BC3sXhsFaks7vM, PID: 24076762
-
Esvelt KM, Mali P, Braff JL, Moosburner M, Yaung SJ, Church GM (2013) Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat Methods 10(11):1116–1121. https://doi.org/10.1038/nmeth.2681
-
(2013)
Nat Methods
, vol.10
, Issue.11
, pp. 1116-1121
-
-
Esvelt, K.M.1
Mali, P.2
Braff, J.L.3
Moosburner, M.4
Yaung, S.J.5
Church, G.M.6
-
13
-
-
84947427248
-
The Cpf1 CRISPR-Cas protein expands genome-editing tools
-
PID: 26578176
-
Fagerlund RD, Staals RH, Fineran PC (2015) The Cpf1 CRISPR-Cas protein expands genome-editing tools. Genome Biol 16:251. https://doi.org/10.1186/s13059-015-0824-9
-
(2015)
Genome Biol
, vol.16
, pp. 251
-
-
Fagerlund, R.D.1
Staals, R.H.2
Fineran, P.C.3
-
14
-
-
85007179090
-
Cornerstones of CRISPR-Cas in drug discovery and therapy
-
COI: 1:CAS:528:DC%2BC28XitFCgtLnN, PID: 28008168
-
Fellmann C, Gowen BG, Lin PC, Doudna JA, Corn JE (2017) Cornerstones of CRISPR-Cas in drug discovery and therapy. Nat Rev Drug Discov 16(2):89–100. https://doi.org/10.1038/nrd.2016.238
-
(2017)
Nat Rev Drug Discov
, vol.16
, Issue.2
, pp. 89-100
-
-
Fellmann, C.1
Gowen, B.G.2
Lin, P.C.3
Doudna, J.A.4
Corn, J.E.5
-
15
-
-
84964862130
-
The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA
-
PID: 27096362
-
Fonfara I, Richter H, Bratovic M, Le Rhun A, Charpentier E (2016) The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature. https://doi.org/10.1038/nature17945
-
(2016)
Nature
-
-
Fonfara, I.1
Richter, H.2
Bratovic, M.3
Le Rhun, A.4
Charpentier, E.5
-
16
-
-
84896929630
-
Improving CRISPR-Cas nuclease specificity using truncated guide RNAs
-
COI: 1:CAS:528:DC%2BC2cXht1yru78%3D, PID: 24463574
-
Fu Y, Sander JD, Reyon D, Cascio VM, Joung JK (2014) Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol 32:279–284. https://doi.org/10.1038/nbt.2808
-
(2014)
Nat Biotechnol
, vol.32
, pp. 279-284
-
-
Fu, Y.1
Sander, J.D.2
Reyon, D.3
Cascio, V.M.4
Joung, J.K.5
-
17
-
-
85022143145
-
Engineered Cpf1 variants with altered PAM specificities
-
Gao L, Cox DBT, Yan WX, Manteiga JC, Schneider MW, Yamano T, Nishimasu H, Nureki O, Crosetto N, Zhang F (2017) Engineered Cpf1 variants with altered PAM specificities. Nat Biotechnol. https://doi.org/10.1038/nbt.3900
-
(2017)
Nat Biotechnol
-
-
Gao, L.1
Cox, D.B.T.2
Yan, W.X.3
Manteiga, J.C.4
Schneider, M.W.5
Yamano, T.6
Nishimasu, H.7
Nureki, O.8
Crosetto, N.9
Zhang, F.10
-
18
-
-
84979224039
-
Type V CRISPR-Cas Cpf1 endonuclease employs a unique mechanism for crRNA-mediated target DNA recognition
-
COI: 1:CAS:528:DC%2BC28XhtlSmsbvI, PID: 27444870
-
Gao P, Yang H, Rajashankar KR, Huang Z, Patel DJ (2016) Type V CRISPR-Cas Cpf1 endonuclease employs a unique mechanism for crRNA-mediated target DNA recognition. Cell Res 26(8):901–913. https://doi.org/10.1038/cr.2016.88
-
(2016)
Cell Res
, vol.26
, Issue.8
, pp. 901-913
-
-
Gao, P.1
Yang, H.2
Rajashankar, K.R.3
Huang, Z.4
Patel, D.J.5
-
19
-
-
84977522458
-
Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR
-
PID: 27380939
-
Haeussler M, Schonig K, Eckert H, Eschstruth A, Mianne J, Renaud JB, Schneider-Maunoury S, Shkumatava A, Teboul L, Kent J, Joly JS, Concordet JP (2016) Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol 17(1):148. https://doi.org/10.1186/s13059-016-1012-2
-
(2016)
Genome Biol
, vol.17
, Issue.1
, pp. 148
-
-
Haeussler, M.1
Schonig, K.2
Eckert, H.3
Eschstruth, A.4
Mianne, J.5
Renaud, J.B.6
Schneider-Maunoury, S.7
Shkumatava, A.8
Teboul, L.9
Kent, J.10
Joly, J.S.11
Concordet, J.P.12
-
20
-
-
77956498326
-
Sequence- and structure-specific RNA processing by a CRISPR endonuclease
-
COI: 1:CAS:528:DC%2BC3cXhtFajs7vN, PID: 20829488
-
Haurwitz RE, Jinek M, Wiedenheft B, Zhou K, Doudna JA (2010) Sequence- and structure-specific RNA processing by a CRISPR endonuclease. Science 329(5997):1355–1358. https://doi.org/10.1126/science.1192272
-
(2010)
Science
, vol.329
, Issue.5997
, pp. 1355-1358
-
-
Haurwitz, R.E.1
Jinek, M.2
Wiedenheft, B.3
Zhou, K.4
Doudna, J.A.5
-
21
-
-
84938950996
-
Engineering microbial cell factories: metabolic engineering of Corynebacterium glutamicum with a focus on non-natural products
-
COI: 1:CAS:528:DC%2BC2MXht1ensrzP, PID: 26216246
-
Heider SA, Wendisch VF (2015) Engineering microbial cell factories: metabolic engineering of Corynebacterium glutamicum with a focus on non-natural products. Biotechnol J 10(8):1170–1184. https://doi.org/10.1002/biot.201400590
-
(2015)
Biotechnol J
, vol.10
, Issue.8
, pp. 1170-1184
-
-
Heider, S.A.1
Wendisch, V.F.2
-
22
-
-
38949214103
-
Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus
-
COI: 1:CAS:528:DC%2BD1cXhvVOlsLw%3D, PID: 18065539
-
Horvath P, Romero DA, Coute-Monvoisin AC, Richards M, Deveau H, Moineau S, Boyaval P, Fremaux C, Barrangou R (2008) Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus. J Bacteriol 190(4):1401–1412. https://doi.org/10.1128/JB.01415-07
-
(2008)
J Bacteriol
, vol.190
, Issue.4
, pp. 1401-1412
-
-
Horvath, P.1
Romero, D.A.2
Coute-Monvoisin, A.C.3
Richards, M.4
Deveau, H.5
Moineau, S.6
Boyaval, P.7
Fremaux, C.8
Barrangou, R.9
-
23
-
-
84981342035
-
Targeted mutagenesis in mice by electroporation of Cpf1 ribonucleoproteins
-
COI: 1:CAS:528:DC%2BC28XpsVCrs78%3D, PID: 27272385
-
Hur JK, Kim K, Been KW, Baek G, Ye S, Hur JW, Ryu SM, Lee YS, Kim JS (2016) Targeted mutagenesis in mice by electroporation of Cpf1 ribonucleoproteins. Nat Biotechnol 34(8):807–808. https://doi.org/10.1038/nbt.3596
-
(2016)
Nat Biotechnol
, vol.34
, Issue.8
, pp. 807-808
-
-
Hur, J.K.1
Kim, K.2
Been, K.W.3
Baek, G.4
Ye, S.5
Hur, J.W.6
Ryu, S.M.7
Lee, Y.S.8
Kim, J.S.9
-
24
-
-
85020726978
-
CRISPR-Cpf1 assisted genome editing of Corynebacterium glutamicum
-
PID: 28469274
-
Jiang Y, Qian F, Yang J, Liu Y, Dong F, Xu C, Sun B, Chen B, Xu X, Li Y, Wang R, Yang S (2017) CRISPR-Cpf1 assisted genome editing of Corynebacterium glutamicum. Nat Commun 8:15179. https://doi.org/10.1038/ncomms15179
-
(2017)
Nat Commun
, vol.8
, pp. 15179
-
-
Jiang, Y.1
Qian, F.2
Yang, J.3
Liu, Y.4
Dong, F.5
Xu, C.6
Sun, B.7
Chen, B.8
Xu, X.9
Li, Y.10
Wang, R.11
Yang, S.12
-
25
-
-
84865070369
-
A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
-
COI: 1:CAS:528:DC%2BC38XhtFOqsb3L, PID: 22745249
-
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821. https://doi.org/10.1126/science.1225829
-
(2012)
Science
, vol.337
, Issue.6096
, pp. 816-821
-
-
Jinek, M.1
Chylinski, K.2
Fonfara, I.3
Hauer, M.4
Doudna, J.A.5
Charpentier, E.6
-
26
-
-
84893157352
-
Structures of Cas9 endonucleases reveal RNA-mediated conformational activation
-
PID: 24505130
-
Jinek M, Jiang F, Taylor DW, Sternberg SH, Kaya E, Ma E, Anders C, Hauer M, Zhou K, Lin S, Kaplan M, Iavarone AT, Charpentier E, Nogales E, Doudna JA (2014) Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science 343(6176):1247997. https://doi.org/10.1126/science.1247997
-
(2014)
Science
, vol.343
, Issue.6176
, pp. 1247997
-
-
Jinek, M.1
Jiang, F.2
Taylor, D.W.3
Sternberg, S.H.4
Kaya, E.5
Ma, E.6
Anders, C.7
Hauer, M.8
Zhou, K.9
Lin, S.10
Kaplan, M.11
Iavarone, A.T.12
Charpentier, E.13
Nogales, E.14
Doudna, J.A.15
-
27
-
-
84947730555
-
Rapid characterization of CRISPR-Cas9 protospacer adjacent motif sequence elements
-
PID: 26585795
-
Karvelis T, Gasiunas G, Young J, Bigelyte G, Silanskas A, Cigan M, Siksnys V (2015) Rapid characterization of CRISPR-Cas9 protospacer adjacent motif sequence elements. Genome Biol 16:253. https://doi.org/10.1186/s13059-015-0818-7
-
(2015)
Genome Biol
, vol.16
, pp. 253
-
-
Karvelis, T.1
Gasiunas, G.2
Young, J.3
Bigelyte, G.4
Silanskas, A.5
Cigan, M.6
Siksnys, V.7
-
28
-
-
85018184285
-
In vivo and in vitro disease modeling with CRISPR/Cas9
-
PID: 27497066
-
Kato T, Takada S (2017) In vivo and in vitro disease modeling with CRISPR/Cas9. Brief Funct Genomics 16(1):13–24. https://doi.org/10.1093/bfgp/elw031
-
(2017)
Brief Funct Genomics
, vol.16
, Issue.1
, pp. 13-24
-
-
Kato, T.1
Takada, S.2
-
29
-
-
84931835241
-
Bacterial CRISPR/Cas DNA endonucleases: a revolutionary technology that could dramatically impact viral research and treatment
-
PID: 25759096
-
Kennedy EM, Cullen BR (2015) Bacterial CRISPR/Cas DNA endonucleases: a revolutionary technology that could dramatically impact viral research and treatment. Virology 479–480:213–220. https://doi.org/10.1016/j.virol.2015.02.024
-
(2015)
Virology
, vol.479-480
, pp. 213-220
-
-
Kennedy, E.M.1
Cullen, B.R.2
-
30
-
-
84960392032
-
Genome-wide target specificities of CRISPR-Cas9 nucleases revealed by multiplex Digenome-sEq
-
COI: 1:CAS:528:DC%2BC28XpvVClt7w%3D, PID: 26786045
-
Kim D, Kim S, Kim S, Park J, Kim JS (2016) Genome-wide target specificities of CRISPR-Cas9 nucleases revealed by multiplex Digenome-sEq. Genome Res 26(3):406–415. https://doi.org/10.1101/gr.199588.115
-
(2016)
Genome Res
, vol.26
, Issue.3
, pp. 406-415
-
-
Kim, D.1
Kim, S.2
Kim, S.3
Park, J.4
Kim, J.S.5
-
31
-
-
84981318543
-
Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells
-
COI: 1:CAS:528:DC%2BC28XpsVCrsrc%3D, PID: 27272384
-
Kim D, Kim J, Hur JK, Been KW, Yoon SH, Kim JS (2016) Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells. Nat Biotechnol 34(8):863–868. https://doi.org/10.1038/nbt.3609
-
(2016)
Nat Biotechnol
, vol.34
, Issue.8
, pp. 863-868
-
-
Kim, D.1
Kim, J.2
Hur, J.K.3
Been, K.W.4
Yoon, S.H.5
Kim, J.S.6
-
32
-
-
84923846574
-
Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells
-
COI: 1:CAS:528:DC%2BC2MXitVGisL0%3D, PID: 25664545, 231 p following 243
-
Kim D, Bae S, Park J, Kim E, Kim S, Yu HR, Hwang J, Kim JI, Kim JS (2015) Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells. Nat Methods 12(3):237–243. https://doi.org/10.1038/nmeth.3284 (231 p following 243)
-
(2015)
Nat Methods
, vol.12
, Issue.3
, pp. 237-243
-
-
Kim, D.1
Bae, S.2
Park, J.3
Kim, E.4
Kim, S.5
Yu, H.R.6
Hwang, J.7
Kim, J.I.8
Kim, J.S.9
-
33
-
-
85013155616
-
CRISPR/Cpf1-mediated DNA-free plant genome editing
-
COI: 1:CAS:528:DC%2BC2sXjtVKht7s%3D, PID: 28205546
-
Kim H, Kim ST, Ryu J, Kang BC, Kim JS, Kim SG (2017) CRISPR/Cpf1-mediated DNA-free plant genome editing. Nat Commun 8:14406. https://doi.org/10.1038/ncomms14406
-
(2017)
Nat Commun
, vol.8
, pp. 14406
-
-
Kim, H.1
Kim, S.T.2
Ryu, J.3
Kang, B.C.4
Kim, J.S.5
Kim, S.G.6
-
34
-
-
85006513409
-
In vivo high-throughput profiling of CRISPR-Cpf1 activity
-
COI: 1:CAS:528:DC%2BC28XitFWnsbfK, PID: 27992409
-
Kim HK, Song M, Lee J, Menon AV, Jung S, Kang YM, Choi JW, Woo E, Koh HC, Nam JW, Kim H (2017) In vivo high-throughput profiling of CRISPR-Cpf1 activity. Nat Methods 14(2):153–159. https://doi.org/10.1038/nmeth.4104
-
(2017)
Nat Methods
, vol.14
, Issue.2
, pp. 153-159
-
-
Kim, H.K.1
Song, M.2
Lee, J.3
Menon, A.V.4
Jung, S.5
Kang, Y.M.6
Choi, J.W.7
Woo, E.8
Koh, H.C.9
Nam, J.W.10
Kim, H.11
-
35
-
-
85016448736
-
Genome surgery using Cas9 ribonucleoproteins for the treatment of age-related macular degeneration
-
COI: 1:CAS:528:DC%2BC2sXhtVahsr7P, PID: 28209587
-
Kim K, Park SW, Kim JH, Lee SH, Kim D, Koo T, Kim KE, Kim JH, Kim JS (2017) Genome surgery using Cas9 ribonucleoproteins for the treatment of age-related macular degeneration. Genome Res 27(3):419–426. https://doi.org/10.1101/gr.219089.116
-
(2017)
Genome Res
, vol.27
, Issue.3
, pp. 419-426
-
-
Kim, K.1
Park, S.W.2
Kim, J.H.3
Lee, S.H.4
Kim, D.5
Koo, T.6
Kim, K.E.7
Kim, J.H.8
Kim, J.S.9
-
36
-
-
85025168126
-
Efficient transcriptional gene repression by type V-A CRISPR-Cpf1 from Eubacterium eligens
-
Kim SK, Kim H, Ahn WC, Park KH, Woo EJ, Lee DH, Lee SG (2017) Efficient transcriptional gene repression by type V-A CRISPR-Cpf1 from Eubacterium eligens. ACS Synth Biol. https://doi.org/10.1021/acssynbio.6b00368
-
(2017)
ACS Synth Biol
-
-
Kim, S.K.1
Kim, H.2
Ahn, W.C.3
Park, K.H.4
Woo, E.J.5
Lee, D.H.6
Lee, S.G.7
-
37
-
-
84981356862
-
Generation of knockout mice by Cpf1-mediated gene targeting
-
COI: 1:CAS:528:DC%2BC28XpsVCrs74%3D, PID: 27272387
-
Kim Y, Cheong SA, Lee JG, Lee SW, Lee MS, Baek IJ, Sung YH (2016) Generation of knockout mice by Cpf1-mediated gene targeting. Nat Biotechnol 34(8):808–810. https://doi.org/10.1038/nbt.3614
-
(2016)
Nat Biotechnol
, vol.34
, Issue.8
, pp. 808-810
-
-
Kim, Y.1
Cheong, S.A.2
Lee, J.G.3
Lee, S.W.4
Lee, M.S.5
Baek, I.J.6
Sung, Y.H.7
-
38
-
-
84937908208
-
Engineered CRISPR-Cas9 nucleases with altered PAM specificities
-
Kleinstiver B, Prew M, Tsai S, Topkar V, Nguyen N, Zheng Z (2015) Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523:4
-
(2015)
Nature
, vol.523
, pp. 4
-
-
Kleinstiver, B.1
Prew, M.2
Tsai, S.3
Topkar, V.4
Nguyen, N.5
Zheng, Z.6
-
39
-
-
84963941043
-
High-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide off-target effects
-
PID: 26735016
-
Kleinstiver BP, Pattanayak V, Prew MS, Nguyen QS, Zheng NT, Joung Z JK (2016) High-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide off-target effects. Nature. https://doi.org/10.1038/nature16526
-
(2016)
Nature
-
-
Kleinstiver, B.P.1
Pattanayak, V.2
Prew, M.S.3
Nguyen, Q.S.4
Zheng, N.T.5
Joung, Z.6
-
40
-
-
84981347695
-
Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells
-
COI: 1:CAS:528:DC%2BC28XhtVKntLbF, PID: 27347757
-
Kleinstiver BP, Tsai SQ, Prew MS, Nguyen NT, Welch MM, Lopez JM, McCaw ZR, Aryee MJ, Joung JK (2016) Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells. Nat Biotechnol 34(8):869–874. https://doi.org/10.1038/nbt.3620
-
(2016)
Nat Biotechnol
, vol.34
, Issue.8
, pp. 869-874
-
-
Kleinstiver, B.P.1
Tsai, S.Q.2
Prew, M.S.3
Nguyen, N.T.4
Welch, M.M.5
Lopez, J.M.6
McCaw, Z.R.7
Aryee, M.J.8
Joung, J.K.9
-
41
-
-
85006705751
-
CRISPR-based technologies for the manipulation of eukaryotic genomes
-
COI: 1:CAS:528:DC%2BC28XhvFWgur%2FI, PID: 27866654
-
Komor AC, Badran AH, Liu DR (2017) CRISPR-based technologies for the manipulation of eukaryotic genomes. Cell 168(1–2):20–36. https://doi.org/10.1016/j.cell.2016.10.044
-
(2017)
Cell
, vol.168
, Issue.1-2
, pp. 20-36
-
-
Komor, A.C.1
Badran, A.H.2
Liu, D.R.3
-
42
-
-
85011312299
-
CHOPCHOP v2: a web tool for the next generation of CRISPR genome engineering
-
COI: 1:CAS:528:DC%2BC2sXhtV2itrnI, PID: 27185894
-
Labun K, Montague TG, Gagnon JA, Thyme SB, Valen E (2016) CHOPCHOP v2: a web tool for the next generation of CRISPR genome engineering. Nucleic Acids Res 44(W1):W272–W276. https://doi.org/10.1093/nar/gkw398
-
(2016)
Nucleic Acids Res
, vol.44
, Issue.W1
, pp. W272-W276
-
-
Labun, K.1
Montague, T.G.2
Gagnon, J.A.3
Thyme, S.B.4
Valen, E.5
-
43
-
-
85027284460
-
The CCTL (Cpf1-assisted Cutting and Taq DNA ligase-assisted Ligation) method for efficient editing of large DNA constructs in vitro
-
PID: 28115632
-
Lei C, Li SY, Liu JK, Zheng X, Zhao GP, Wang J (2017) The CCTL (Cpf1-assisted Cutting and Taq DNA ligase-assisted Ligation) method for efficient editing of large DNA constructs in vitro. Nucleic Acids Res 45(9):e74. https://doi.org/10.1093/nar/gkx018
-
(2017)
Nucleic Acids Res
, vol.45
, Issue.9
-
-
Lei, C.1
Li, S.Y.2
Liu, J.K.3
Zheng, X.4
Zhao, G.P.5
Wang, J.6
-
44
-
-
85029927053
-
Engineering CRISPR-Cpf1 crRNAs and mRNAs to maximize genome editing efficiency
-
Li B, Zhao W, Luo X, Zhang X, Li C, Zeng C, Dong Y (2017) Engineering CRISPR-Cpf1 crRNAs and mRNAs to maximize genome editing efficiency. Nat Biomed Eng. https://doi.org/10.1038/s41551-017-0066
-
(2017)
Nat Biomed Eng
-
-
Li, B.1
Zhao, W.2
Luo, X.3
Zhang, X.4
Li, C.5
Zeng, C.6
Dong, Y.7
-
45
-
-
84982855973
-
Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems
-
PID: 27493190
-
Mohanraju P, Makarova KS, Zetsche B, Zhang F, Koonin EV, van der Oost J (2016) Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems. Science 353(6299):aad5147. https://doi.org/10.1126/science.aad5147
-
(2016)
Science
, vol.353
, Issue.6299
, pp. aad5147
-
-
Mohanraju, P.1
Makarova, K.S.2
Zetsche, B.3
Zhang, F.4
Koonin, E.V.5
van der Oost, J.6
-
46
-
-
84865704094
-
Cas5d protein processes pre-crRNA and assembles into a cascade-like interference complex in subtype I-C/Dvulg CRISPR-Cas system
-
COI: 1:CAS:528:DC%2BC38XhtFahs7zI, PID: 22841292
-
Nam KH, Haitjema C, Liu X, Ding F, Wang H, DeLisa MP, Ke A (2012) Cas5d protein processes pre-crRNA and assembles into a cascade-like interference complex in subtype I-C/Dvulg CRISPR-Cas system. Structure 20(9):1574–1584. https://doi.org/10.1016/j.str.2012.06.016
-
(2012)
Structure
, vol.20
, Issue.9
, pp. 1574-1584
-
-
Nam, K.H.1
Haitjema, C.2
Liu, X.3
Ding, F.4
Wang, H.5
DeLisa, M.P.6
Ke, A.7
-
47
-
-
85020219217
-
Structural basis for the altered PAM recognition by engineered CRISPR-Cpf1
-
Nishimasu H, Yamano T, Gao L, Zhang F, Ishitani R, Nureki O (2017) Structural basis for the altered PAM recognition by engineered CRISPR-Cpf1. Mol Cell. https://doi.org/10.1016/j.molcel.2017.04.019
-
(2017)
Mol Cell
-
-
Nishimasu, H.1
Yamano, T.2
Gao, L.3
Zhang, F.4
Ishitani, R.5
Nureki, O.6
-
48
-
-
79953225830
-
Efficient markerless gene replacement in Corynebacterium glutamicum using a new temperature-sensitive plasmid
-
COI: 1:CAS:528:DC%2BC3MXkt1yrurw%3D, PID: 21362445
-
Okibe N, Suzuki N, Inui M, Yukawa H (2011) Efficient markerless gene replacement in Corynebacterium glutamicum using a new temperature-sensitive plasmid. J Microbiol Methods 85(2):155–163. https://doi.org/10.1016/j.mimet.2011.02.012
-
(2011)
J Microbiol Methods
, vol.85
, Issue.2
, pp. 155-163
-
-
Okibe, N.1
Suzuki, N.2
Inui, M.3
Yukawa, H.4
-
49
-
-
84874687019
-
Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression
-
Qi L, Larson M, Gilbert L, Doudna J, Weissman J, Arkin A, Lim W (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152(5):10. https://doi.org/10.1016/j.cell.2013.02.022
-
(2013)
Cell
, vol.152
, Issue.5
, pp. 10
-
-
Qi, L.1
Larson, M.2
Gilbert, L.3
Doudna, J.4
Weissman, J.5
Arkin, A.6
Lim, W.7
-
50
-
-
84887010498
-
Genome engineering using the CRISPR-Cas9 system
-
Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8(11):28. https://doi.org/10.1038/nprot.2013.143
-
(2013)
Nat Protoc
, vol.8
, Issue.11
, pp. 28
-
-
Ran, F.A.1
Hsu, P.D.2
Wright, J.3
Agarwala, V.4
Scott, D.A.5
Zhang, F.6
-
51
-
-
84884288934
-
Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity
-
COI: 1:CAS:528:DC%2BC3sXhtlGrur3M, PID: 23992846
-
Ran FA, Hsu PD, Lin CY, Gootenberg JS, Konermann S, Trevino AE, Scott DA, Inoue A, Matoba S, Zhang Y, Zhang F (2013) Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154(6):1380–1389. https://doi.org/10.1016/j.cell.2013.08.021
-
(2013)
Cell
, vol.154
, Issue.6
, pp. 1380-1389
-
-
Ran, F.A.1
Hsu, P.D.2
Lin, C.Y.3
Gootenberg, J.S.4
Konermann, S.5
Trevino, A.E.6
Scott, D.A.7
Inoue, A.8
Matoba, S.9
Zhang, Y.10
Zhang, F.11
-
52
-
-
84927514894
-
In vivo genome editing using Staphylococcus aureus Cas9
-
COI: 1:CAS:528:DC%2BC2MXmt1Sms7o%3D, PID: 25830891
-
Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, Kriz AJ, Zetsche B, Shalem O, Wu X, Makarova KS, Koonin EV, Sharp PA, Zhang F (2015) In vivo genome editing using Staphylococcus aureus Cas9. Nature 520(7546):186–191. https://doi.org/10.1038/nature14299
-
(2015)
Nature
, vol.520
, Issue.7546
, pp. 186-191
-
-
Ran, F.A.1
Cong, L.2
Yan, W.X.3
Scott, D.A.4
Gootenberg, J.S.5
Kriz, A.J.6
Zetsche, B.7
Shalem, O.8
Wu, X.9
Makarova, K.S.10
Koonin, E.V.11
Sharp, P.A.12
Zhang, F.13
-
53
-
-
84952943845
-
Rationally engineered Cas9 nucleases with improved specificity
-
COI: 1:CAS:528:DC%2BC2MXitV2nt7nE, PID: 26628643
-
Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX, Zhang F (2016) Rationally engineered Cas9 nucleases with improved specificity. Science 351(6268):84–88. https://doi.org/10.1126/science.aad5227
-
(2016)
Science
, vol.351
, Issue.6268
, pp. 84-88
-
-
Slaymaker, I.M.1
Gao, L.2
Zetsche, B.3
Scott, D.A.4
Yan, W.X.5
Zhang, F.6
-
54
-
-
85021146685
-
Structure of the Cpf1 endonuclease R-loop complex after target DNA cleavage
-
COI: 1:CAS:528:DC%2BC2sXovFCrsrc%3D, PID: 28562584
-
Stella S, Alcon P, Montoya G (2017) Structure of the Cpf1 endonuclease R-loop complex after target DNA cleavage. Nature 546(7659):559–563. https://doi.org/10.1038/nature22398
-
(2017)
Nature
, vol.546
, Issue.7659
, pp. 559-563
-
-
Stella, S.1
Alcon, P.2
Montoya, G.3
-
55
-
-
84929494345
-
CCTop: an intuitive, flexible and reliable CRISPR/Cas9 target prediction tool
-
PID: 25909470
-
Stemmer M, Thumberger T, Del Sol Keyer M, Wittbrodt J, Mateo JL (2015) CCTop: an intuitive, flexible and reliable CRISPR/Cas9 target prediction tool. PLoS ONE 10(4):e0124633. https://doi.org/10.1371/journal.pone.0124633
-
(2015)
PLoS ONE
, vol.10
, Issue.4
-
-
Stemmer, M.1
Thumberger, T.2
Del Sol Keyer, M.3
Wittbrodt, J.4
Mateo, J.L.5
-
56
-
-
84895871173
-
DNA interrogation by the CRISPR RNA-guided endonuclease Cas9
-
COI: 1:CAS:528:DC%2BC2cXjs1GgtL0%3D, PID: 24476820
-
Sternberg SH, Redding S, Jinek M, Greene EC, Doudna JA (2014) DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 507(7490):62–67. https://doi.org/10.1038/nature13011
-
(2014)
Nature
, vol.507
, Issue.7490
, pp. 62-67
-
-
Sternberg, S.H.1
Redding, S.2
Jinek, M.3
Greene, E.C.4
Doudna, J.A.5
-
57
-
-
84903975702
-
Direct observation of R-loop formation by single RNA-guided Cas9 and Cascade effector complexes
-
COI: 1:CAS:528:DC%2BC2cXos1aqu74%3D, PID: 24912165
-
Szczelkun MD, Tikhomirova MS, Sinkunas T, Gasiunas G, Karvelis T, Pschera P, Siksnys V, Seidel R (2014) Direct observation of R-loop formation by single RNA-guided Cas9 and Cascade effector complexes. Proc Natl Acad Sci USA 111(27):9798–9803. https://doi.org/10.1073/pnas.1402597111
-
(2014)
Proc Natl Acad Sci USA
, vol.111
, Issue.27
, pp. 9798-9803
-
-
Szczelkun, M.D.1
Tikhomirova, M.S.2
Sinkunas, T.3
Gasiunas, G.4
Karvelis, T.5
Pschera, P.6
Siksnys, V.7
Seidel, R.8
-
58
-
-
85013304812
-
A CRISPR-Cpf1 system for efficient genome editing and transcriptional repression in plants
-
COI: 1:CAS:528:DC%2BC2sXivVykur0%3D, PID: 28211909
-
Tang X, Lowder LG, Zhang T, Malzahn AA, Zheng X, Voytas DF, Zhong Z, Chen Y, Ren Q, Li Q, Kirkland ER, Zhang Y, Qi Y (2017) A CRISPR-Cpf1 system for efficient genome editing and transcriptional repression in plants. Nat Plants 3:17018. https://doi.org/10.1038/nplants.2017.18
-
(2017)
Nat Plants
, vol.3
, pp. 17018
-
-
Tang, X.1
Lowder, L.G.2
Zhang, T.3
Malzahn, A.A.4
Zheng, X.5
Voytas, D.F.6
Zhong, Z.7
Chen, Y.8
Ren, Q.9
Li, Q.10
Kirkland, E.R.11
Zhang, Y.12
Qi, Y.13
-
59
-
-
84987707885
-
Cpf1 nucleases demonstrate robust activity to induce DNA modification by exploiting homology directed repair pathways in mammalian cells
-
PID: 27630115
-
Toth E, Weinhardt N, Bencsura P, Huszar K, Kulcsar PI, Talas A, Fodor E, Welker E (2016) Cpf1 nucleases demonstrate robust activity to induce DNA modification by exploiting homology directed repair pathways in mammalian cells. Biol Direct 11:46. https://doi.org/10.1186/s13062-016-0147-0
-
(2016)
Biol Direct
, vol.11
, pp. 46
-
-
Toth, E.1
Weinhardt, N.2
Bencsura, P.3
Huszar, K.4
Kulcsar, P.I.5
Talas, A.6
Fodor, E.7
Welker, E.8
-
60
-
-
84923266604
-
GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases
-
COI: 1:CAS:528:DC%2BC2cXitFCqs7vE, PID: 25513782
-
Tsai SQ, Zheng Z, Nguyen NT, Liebers M, Topkar VV, Thapar V, Wyvekens N, Khayter C, Iafrate AJ, Le LP, Aryee MJ, Joung JK (2015) GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol 33(2):187–197. https://doi.org/10.1038/nbt.3117
-
(2015)
Nat Biotechnol
, vol.33
, Issue.2
, pp. 187-197
-
-
Tsai, S.Q.1
Zheng, Z.2
Nguyen, N.T.3
Liebers, M.4
Topkar, V.V.5
Thapar, V.6
Wyvekens, N.7
Khayter, C.8
Iafrate, A.J.9
Le, L.P.10
Aryee, M.J.11
Joung, J.K.12
-
61
-
-
85037992239
-
A ‘new lease of life’: FnCpf1 possesses DNA cleavage activity for genome editing in human cells
-
Tu M, Lin L, Cheng Y, He X, Sun H, Xie H, Fu J, Liu C, Li J, Chen D, Xi H, Xue D, Liu Q, Zhao J, Gao C, Song Z, Qu J, Gu F (2017) A ‘new lease of life’: FnCpf1 possesses DNA cleavage activity for genome editing in human cells. Nucleic Acids Res. https://doi.org/10.1093/nar/gkx783
-
(2017)
Nucleic Acids Res
-
-
Tu, M.1
Lin, L.2
Cheng, Y.3
He, X.4
Sun, H.5
Xie, H.6
Fu, J.7
Liu, C.8
Li, J.9
Chen, D.10
Xi, H.11
Xue, D.12
Liu, Q.13
Zhao, J.14
Gao, C.15
Song, Z.16
Qu, J.17
Gu, F.18
-
62
-
-
85006870225
-
Cpf1 is a versatile tool for CRISPR genome editing across diverse species of cyanobacteria
-
COI: 1:CAS:528:DC%2BC28XitFGju7rE, PID: 28000776
-
Ungerer J, Pakrasi HB (2016) Cpf1 is a versatile tool for CRISPR genome editing across diverse species of cyanobacteria. Sci Rep 6:39681. https://doi.org/10.1038/srep39681
-
(2016)
Sci Rep
, vol.6
, pp. 39681
-
-
Ungerer, J.1
Pakrasi, H.B.2
-
63
-
-
84964483814
-
Updates on industrial production of amino acids using Corynebacterium glutamicum
-
PID: 27116971
-
Wendisch VF, Jorge JMP, Perez-Garcia F, Sgobba E (2016) Updates on industrial production of amino acids using Corynebacterium glutamicum. World J Microbiol Biotechnol 32(6):105. https://doi.org/10.1007/s11274-016-2060-1
-
(2016)
World J Microbiol Biotechnol
, vol.32
, Issue.6
, pp. 105
-
-
Wendisch, V.F.1
Jorge, J.M.P.2
Perez-Garcia, F.3
Sgobba, E.4
-
64
-
-
84966292052
-
Cpf1 shape-shifts for streamlined CRISPR cleavage
-
PID: 27142322
-
White MF (2016) Cpf1 shape-shifts for streamlined CRISPR cleavage. Nat Struct Mol Biol 23(5):365–366. https://doi.org/10.1038/nsmb.3225
-
(2016)
Nat Struct Mol Biol
, vol.23
, Issue.5
, pp. 365-366
-
-
White, M.F.1
-
65
-
-
85013471837
-
Generation of targeted mutant rice using a CRISPR-Cpf1 system
-
COI: 1:CAS:528:DC%2BC2sXnsV2htro%3D, PID: 27875019
-
Xu R, Qin R, Li H, Li D, Li L, Wei P, Yang J (2017) Generation of targeted mutant rice using a CRISPR-Cpf1 system. Plant Biotechnol J 15(6):713–717. https://doi.org/10.1111/pbi.12669
-
(2017)
Plant Biotechnol J
, vol.15
, Issue.6
, pp. 713-717
-
-
Xu, R.1
Qin, R.2
Li, H.3
Li, D.4
Li, L.5
Wei, P.6
Yang, J.7
-
66
-
-
85027553127
-
Structural basis for the canonical and non-canonical PAM recognition by CRISPR-Cpf1
-
COI: 1:CAS:528:DC%2BC2sXht1ynsL7E, PID: 28781234
-
Yamano T, Zetsche B, Ishitani R, Zhang F, Nishimasu H, Nureki O (2017) Structural basis for the canonical and non-canonical PAM recognition by CRISPR-Cpf1. Mol Cell 67(4):633–645 e633. https://doi.org/10.1016/j.molcel.2017.06.035
-
(2017)
Mol Cell
, vol.67
, Issue.4
, pp. 630-633
-
-
Yamano, T.1
Zetsche, B.2
Ishitani, R.3
Zhang, F.4
Nishimasu, H.5
Nureki, O.6
-
67
-
-
84963973892
-
Crystal structure of Cpf1 in complex with guide RNA and target DNA
-
COI: 1:CAS:528:DC%2BC28XmslSjsLk%3D, PID: 27114038
-
Yamano T, Nishimasu H, Zetsche B, Hirano H, Slaymaker IM, Li Y, Fedorova I, Nakane T, Makarova KS, Koonin EV, Ishitani R, Zhang F, Nureki O (2016) Crystal structure of Cpf1 in complex with guide RNA and target DNA. Cell 165(4):949–962. https://doi.org/10.1016/j.cell.2016.04.003
-
(2016)
Cell
, vol.165
, Issue.4
, pp. 949-962
-
-
Yamano, T.1
Nishimasu, H.2
Zetsche, B.3
Hirano, H.4
Slaymaker, I.M.5
Li, Y.6
Fedorova, I.7
Nakane, T.8
Makarova, K.S.9
Koonin, E.V.10
Ishitani, R.11
Zhang, F.12
Nureki, O.13
-
68
-
-
85027463310
-
CRISPR-Cas12a-assisted recombineering in bacteria
-
Yan MY, Yan HQ, Ren GX, Zhao JP, Guo XP, Sun YC (2017) CRISPR-Cas12a-assisted recombineering in bacteria. Appl Environ Microbiol 83 (17). https://doi.org/10.1128/AEM.00947-17
-
(2017)
Appl Environ Microbiol
, vol.83
, Issue.17
-
-
Yan, M.Y.1
Yan, H.Q.2
Ren, G.X.3
Zhao, J.P.4
Guo, X.P.5
Sun, Y.C.6
-
69
-
-
85029303956
-
Targeted disruption of V600E-mutant BRAF gene by CRISPR-Cpf1
-
COI: 1:CAS:528:DC%2BC2sXhsFSktLvE, PID: 28918044
-
Yang M, Wei H, Wang Y, Deng J, Tang Y, Zhou L, Guo G, Tong A (2017) Targeted disruption of V600E-mutant BRAF gene by CRISPR-Cpf1. Mol Ther Nucleic Acids 8:450–458. https://doi.org/10.1016/j.omtn.2017.05.009
-
(2017)
Mol Ther Nucleic Acids
, vol.8
, pp. 450-458
-
-
Yang, M.1
Wei, H.2
Wang, Y.3
Deng, J.4
Tang, Y.5
Zhou, L.6
Guo, G.7
Tong, A.8
-
70
-
-
85019907425
-
CRISPR-Cpf1: a new tool for plant genome editing
-
COI: 1:CAS:528:DC%2BC2sXnsl2qsrw%3D, PID: 28532598
-
Zaidi SS, Mahfouz MM, Mansoor S (2017) CRISPR-Cpf1: a new tool for plant genome editing. Trends Plant Sci 22(7):550–553. https://doi.org/10.1016/j.tplants.2017.05.001
-
(2017)
Trends Plant Sci
, vol.22
, Issue.7
, pp. 550-553
-
-
Zaidi, S.S.1
Mahfouz, M.M.2
Mansoor, S.3
-
71
-
-
85040374549
-
A survey of genome editing activity for 16 Cpf1 orthologs
-
Zetsche B, Strecker J, Abudayyeh OO, Gootenberg JS, Scott DA, Zhang F (2017) A survey of genome editing activity for 16 Cpf1 orthologs. bioRxiv. https://doi.org/10.1101/134015
-
(2017)
bioRxiv
-
-
Zetsche, B.1
Strecker, J.2
Abudayyeh, O.O.3
Gootenberg, J.S.4
Scott, D.A.5
Zhang, F.6
-
72
-
-
84975678715
-
Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system
-
COI: 1:CAS:528:DC%2BC2MXhsFKqtLvI, PID: 26422227
-
Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, van der Oost J, Regev A, Koonin EV, Zhang F (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163(3):759–771. https://doi.org/10.1016/j.cell.2015.09.038
-
(2015)
Cell
, vol.163
, Issue.3
, pp. 759-771
-
-
Zetsche, B.1
Gootenberg, J.S.2
Abudayyeh, O.O.3
Slaymaker, I.M.4
Makarova, K.S.5
Essletzbichler, P.6
Volz, S.E.7
Joung, J.8
van der Oost, J.9
Regev, A.10
Koonin, E.V.11
Zhang, F.12
-
73
-
-
85011072174
-
Multiplex gene editing by CRISPR-Cpf1 using a single crRNA array
-
COI: 1:CAS:528:DC%2BC28XitVSrurjI, PID: 27918548
-
Zetsche B, Heidenreich M, Mohanraju P, Fedorova I, Kneppers J, DeGennaro EM, Winblad N, Choudhury SR, Abudayyeh OO, Gootenberg JS, Wu WY, Scott DA, Severinov K, van der Oost J, Zhang F (2017) Multiplex gene editing by CRISPR-Cpf1 using a single crRNA array. Nat Biotechnol 35(1):31–34. https://doi.org/10.1038/nbt.3737
-
(2017)
Nat Biotechnol
, vol.35
, Issue.1
, pp. 31-34
-
-
Zetsche, B.1
Heidenreich, M.2
Mohanraju, P.3
Fedorova, I.4
Kneppers, J.5
DeGennaro, E.M.6
Winblad, N.7
Choudhury, S.R.8
Abudayyeh, O.O.9
Gootenberg, J.S.10
Wu, W.Y.11
Scott, D.A.12
Severinov, K.13
van der Oost, J.14
Zhang, F.15
-
74
-
-
85022113341
-
Multiplex gene regulation by CRISPR-ddCpf1
-
COI: 1:CAS:528:DC%2BC2sXptlSksLw%3D, PID: 28607761
-
Zhang X, Wang J, Cheng Q, Zheng X, Zhao G, Wang J (2017) Multiplex gene regulation by CRISPR-ddCpf1. Cell Discov 3:17018. https://doi.org/10.1038/celldisc.2017.18
-
(2017)
Cell Discov
, vol.3
, pp. 17018
-
-
Zhang, X.1
Wang, J.2
Cheng, Q.3
Zheng, X.4
Zhao, G.5
Wang, J.6
-
75
-
-
84944891198
-
DNase H activity of Neisseria meningitidis Cas9
-
COI: 1:CAS:528:DC%2BC2MXhs1OrtrfE, PID: 26474066
-
Zhang Y, Rajan R, Seifert HS, Mondragon A, Sontheimer EJ (2015) DNase H activity of Neisseria meningitidis Cas9. Mol Cell 60(2):242–255. https://doi.org/10.1016/j.molcel.2015.09.020
-
(2015)
Mol Cell
, vol.60
, Issue.2
, pp. 242-255
-
-
Zhang, Y.1
Rajan, R.2
Seifert, H.S.3
Mondragon, A.4
Sontheimer, E.J.5
-
76
-
-
84878193178
-
Processing-independent CRISPR RNAs limit natural transformation in Neisseria meningitidis
-
COI: 1:CAS:528:DC%2BC3sXotlGltLc%3D, PID: 23706818
-
Zhang Y, Heidrich N, Ampattu BJ, Gunderson CW, Seifert HS, Schoen C, Vogel J, Sontheimer EJ (2013) Processing-independent CRISPR RNAs limit natural transformation in Neisseria meningitidis. Mol Cell 50(4):488–503. https://doi.org/10.1016/j.molcel.2013.05.001
-
(2013)
Mol Cell
, vol.50
, Issue.4
, pp. 488-503
-
-
Zhang, Y.1
Heidrich, N.2
Ampattu, B.J.3
Gunderson, C.W.4
Seifert, H.S.5
Schoen, C.6
Vogel, J.7
Sontheimer, E.J.8
-
77
-
-
85020835403
-
CRISPR-Cpf1 correction of muscular dystrophy mutations in human cardiomyocytes and mice
-
PID: 28439558
-
Zhang Y, Long C, Li H, McAnally JR, Baskin KK, Shelton JM, Bassel-Duby R, Olson EN (2017) CRISPR-Cpf1 correction of muscular dystrophy mutations in human cardiomyocytes and mice. Sci Adv 3(4):e1602814. https://doi.org/10.1126/sciadv.1602814
-
(2017)
Sci Adv
, vol.3
, Issue.4
-
-
Zhang, Y.1
Long, C.2
Li, H.3
McAnally, J.R.4
Baskin, K.K.5
Shelton, J.M.6
Bassel-Duby, R.7
Olson, E.N.8
-
78
-
-
84903200702
-
Comparison of non-canonical PAMs for CRISPR/Cas9-mediated DNA cleavage in human cells
-
PID: 24956376
-
Zhang Y, Ge X, Yang F, Zhang L, Zheng J, Tan X, Jin ZB, Qu J, Gu F (2014) Comparison of non-canonical PAMs for CRISPR/Cas9-mediated DNA cleavage in human cells. Sci Rep 4:5405. https://doi.org/10.1038/srep05405
-
(2014)
Sci Rep
, vol.4
, pp. 5405
-
-
Zhang, Y.1
Ge, X.2
Yang, F.3
Zhang, L.4
Zheng, J.5
Tan, X.6
Jin, Z.B.7
Qu, J.8
Gu, F.9
-
79
-
-
85028602229
-
Cpf1 proteins excise CRISPR RNAs from mRNA transcripts in mammalian cells
-
Zhong G, Wang H, Li Y, Tran MH, Farzan M (2017) Cpf1 proteins excise CRISPR RNAs from mRNA transcripts in mammalian cells. Nat Chem Biol. https://doi.org/10.1038/nchembio.2410
-
(2017)
Nat Chem Biol
-
-
Zhong, G.1
Wang, H.2
Li, Y.3
Tran, M.H.4
Farzan, M.5
|