-
1
-
-
84876758617
-
Metabolic pathways in immune cell activation and quiescence
-
Pearce, E.L., Pearce, E.J., Metabolic pathways in immune cell activation and quiescence. Immunity 38 (2013), 633–643.
-
(2013)
Immunity
, vol.38
, pp. 633-643
-
-
Pearce, E.L.1
Pearce, E.J.2
-
2
-
-
85030150492
-
Mitochondrial control of immunity: beyond ATP
-
Published online July 3, 2017
-
Mehta, M.M., et al. Mitochondrial control of immunity: beyond ATP. Nat. Rev. Immunol., 2017, 10.1038/nri.2017.66 Published online July 3, 2017.
-
(2017)
Nat. Rev. Immunol.
-
-
Mehta, M.M.1
-
3
-
-
85014634323
-
Murine mast cells rapidly modulate metabolic pathways essential for distinct effector functions
-
Phong, B., et al. Murine mast cells rapidly modulate metabolic pathways essential for distinct effector functions. J. Immunol. 198 (2017), 640–644.
-
(2017)
J. Immunol.
, vol.198
, pp. 640-644
-
-
Phong, B.1
-
4
-
-
85017605327
-
Mitochondria are the powerhouses of immunity
-
Mills, E.L., et al. Mitochondria are the powerhouses of immunity. Nat. Immunol. 18 (2017), 488–498.
-
(2017)
Nat. Immunol.
, vol.18
, pp. 488-498
-
-
Mills, E.L.1
-
5
-
-
84952838177
-
Measurement and analysis of extracellular acid production to determine glycolytic rate
-
e53464
-
Mookerjee, S.A., Brand, M.D., Measurement and analysis of extracellular acid production to determine glycolytic rate. J. Vis. Exp., 2015, 2015 e53464.
-
(2015)
J. Vis. Exp.
, vol.2015
-
-
Mookerjee, S.A.1
Brand, M.D.2
-
6
-
-
84858796367
-
A two-way street: reciprocal regulation of metabolism and signalling
-
Wellen, K.E., Thompson, C.B., A two-way street: reciprocal regulation of metabolism and signalling. Nat. Rev. Mol. Cell Biol. 13 (2012), 270–276.
-
(2012)
Nat. Rev. Mol. Cell Biol.
, vol.13
, pp. 270-276
-
-
Wellen, K.E.1
Thompson, C.B.2
-
7
-
-
84875755814
-
Influence of metabolism on epigenetics and disease
-
Kaelin, W.G. Jr., McKnight, S.L., Influence of metabolism on epigenetics and disease. Cell 153 (2013), 56–69.
-
(2013)
Cell
, vol.153
, pp. 56-69
-
-
Kaelin, W.G.1
McKnight, S.L.2
-
8
-
-
84869051280
-
Mitochondrial disorders as windows into an ancient organelle
-
Vafai, S.B., Mootha, V.K., Mitochondrial disorders as windows into an ancient organelle. Nature 491 (2012), 374–383.
-
(2012)
Nature
, vol.491
, pp. 374-383
-
-
Vafai, S.B.1
Mootha, V.K.2
-
9
-
-
67749089562
-
A hyperfused mitochondrial state achieved at G1–S regulates cyclin E buildup and entry into S phase
-
Mitra, K., et al. A hyperfused mitochondrial state achieved at G1–S regulates cyclin E buildup and entry into S phase. Proc. Natl. Acad. Sci. U. S. A. 106 (2009), 11960–11965.
-
(2009)
Proc. Natl. Acad. Sci. U. S. A.
, vol.106
, pp. 11960-11965
-
-
Mitra, K.1
-
10
-
-
0842325793
-
Energy substrate modulates mitochondrial structure and oxidative capacity in cancer cells
-
Rossignol, R., et al. Energy substrate modulates mitochondrial structure and oxidative capacity in cancer cells. Cancer Res. 64 (2004), 985–993.
-
(2004)
Cancer Res.
, vol.64
, pp. 985-993
-
-
Rossignol, R.1
-
11
-
-
67049089786
-
SLP-2 is required for stress-induced mitochondrial hyperfusion
-
Tondera, D., et al. SLP-2 is required for stress-induced mitochondrial hyperfusion. EMBO J. 28 (2009), 1589–1600.
-
(2009)
EMBO J.
, vol.28
, pp. 1589-1600
-
-
Tondera, D.1
-
12
-
-
79955623510
-
During autophagy mitochondria elongate, are spared from degradation and sustain cell viability
-
Gomes, L.C., et al. During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat. Cell Biol. 13 (2011), 589–598.
-
(2011)
Nat. Cell Biol.
, vol.13
, pp. 589-598
-
-
Gomes, L.C.1
-
13
-
-
84925324049
-
Fatty acid trafficking in starved cells: regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics
-
Rambold, A.S., et al. Fatty acid trafficking in starved cells: regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics. Dev. Cell 32 (2015), 678–692.
-
(2015)
Dev. Cell
, vol.32
, pp. 678-692
-
-
Rambold, A.S.1
-
14
-
-
79959987510
-
Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation
-
Rambold, A.S., et al. Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation. Proc. Natl. Acad. Sci. U. S. A. 108 (2011), 10190–10195.
-
(2011)
Proc. Natl. Acad. Sci. U. S. A.
, vol.108
, pp. 10190-10195
-
-
Rambold, A.S.1
-
15
-
-
70349650451
-
Mitochondrial networking protects beta-cells from nutrient-induced apoptosis
-
Molina, A.J., et al. Mitochondrial networking protects beta-cells from nutrient-induced apoptosis. Diabetes 58 (2009), 2303–2315.
-
(2009)
Diabetes
, vol.58
, pp. 2303-2315
-
-
Molina, A.J.1
-
16
-
-
84863011641
-
Mitochondrial fission contributes to mitochondrial dysfunction and insulin resistance in skeletal muscle
-
Jheng, H.F., et al. Mitochondrial fission contributes to mitochondrial dysfunction and insulin resistance in skeletal muscle. Mol. Cell Biol. 32 (2012), 309–319.
-
(2012)
Mol. Cell Biol.
, vol.32
, pp. 309-319
-
-
Jheng, H.F.1
-
17
-
-
84865544952
-
Mitochondrial fission, fusion, and stress
-
Youle, R.J., van der Bliek, A.M., Mitochondrial fission, fusion, and stress. Science 337 (2012), 1062–1065.
-
(2012)
Science
, vol.337
, pp. 1062-1065
-
-
Youle, R.J.1
van der Bliek, A.M.2
-
18
-
-
80054844842
-
ER tubules mark sites of mitochondrial division
-
Friedman, J.R., et al. ER tubules mark sites of mitochondrial division. Science 334 (2011), 358–362.
-
(2011)
Science
, vol.334
, pp. 358-362
-
-
Friedman, J.R.1
-
19
-
-
84872769447
-
An actin-dependent step in mitochondrial fission mediated by the ER-associated formin INF2
-
Korobova, F., et al. An actin-dependent step in mitochondrial fission mediated by the ER-associated formin INF2. Science 339 (2013), 464–467.
-
(2013)
Science
, vol.339
, pp. 464-467
-
-
Korobova, F.1
-
20
-
-
84941888608
-
A mitochondria-anchored isoform of the actin-nucleating spire protein regulates mitochondrial division
-
e08828
-
Manor, U., et al. A mitochondria-anchored isoform of the actin-nucleating spire protein regulates mitochondrial division. Elife, 4, 2015 e08828.
-
(2015)
Elife
, vol.4
-
-
Manor, U.1
-
21
-
-
85000386311
-
Multiple dynamin family members collaborate to drive mitochondrial division
-
Lee, J.E., et al. Multiple dynamin family members collaborate to drive mitochondrial division. Nature 540 (2016), 139–143.
-
(2016)
Nature
, vol.540
, pp. 139-143
-
-
Lee, J.E.1
-
22
-
-
84908250304
-
Determinants and functions of mitochondrial behavior
-
Labbe, K., et al. Determinants and functions of mitochondrial behavior. Annu. Rev. Cell Dev. Biol. 30 (2014), 357–391.
-
(2014)
Annu. Rev. Cell Dev. Biol.
, vol.30
, pp. 357-391
-
-
Labbe, K.1
-
23
-
-
84926258887
-
Disturbed mitochondrial dynamics and neurodegenerative disorders
-
Burte, F., et al. Disturbed mitochondrial dynamics and neurodegenerative disorders. Nat. Rev. Neurol. 11 (2015), 11–24.
-
(2015)
Nat. Rev. Neurol.
, vol.11
, pp. 11-24
-
-
Burte, F.1
-
24
-
-
45349094984
-
Mitochondrial dynamics and apoptosis
-
Suen, D.F., et al. Mitochondrial dynamics and apoptosis. Genes. Dev. 22 (2008), 1577–1590.
-
(2008)
Genes. Dev.
, vol.22
, pp. 1577-1590
-
-
Suen, D.F.1
-
25
-
-
0037424490
-
Dynamin-like protein 1 is involved in peroxisomal fission
-
Koch, A., et al. Dynamin-like protein 1 is involved in peroxisomal fission. J. Biol. Chem. 278 (2003), 8597–8605.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 8597-8605
-
-
Koch, A.1
-
26
-
-
34247525092
-
A lethal defect of mitochondrial and peroxisomal fission
-
Waterham, H.R., et al. A lethal defect of mitochondrial and peroxisomal fission. N. Engl. J. Med. 356 (2007), 1736–1741.
-
(2007)
N. Engl. J. Med.
, vol.356
, pp. 1736-1741
-
-
Waterham, H.R.1
-
27
-
-
84975635993
-
DNM1L-related mitochondrial fission defect presenting as refractory epilepsy
-
Vanstone, J.R., et al. DNM1L-related mitochondrial fission defect presenting as refractory epilepsy. Eur. J. Hum. Genet. 24 (2016), 1084–1088.
-
(2016)
Eur. J. Hum. Genet.
, vol.24
, pp. 1084-1088
-
-
Vanstone, J.R.1
-
28
-
-
84864112680
-
Genomic analysis of mitochondrial diseases in a consanguineous population reveals novel candidate disease genes
-
Shamseldin, H.E., et al. Genomic analysis of mitochondrial diseases in a consanguineous population reveals novel candidate disease genes. J. Med. Genet. 49 (2012), 234–241.
-
(2012)
J. Med. Genet.
, vol.49
, pp. 234-241
-
-
Shamseldin, H.E.1
-
29
-
-
27744491193
-
Emerging functions of mammalian mitochondrial fusion and fission
-
Chen, H., Chan, D.C., Emerging functions of mammalian mitochondrial fusion and fission. Hum. Mol. Genet. 14 (2005), R283–R289.
-
(2005)
Hum. Mol. Genet.
, vol.14
, pp. R283-R289
-
-
Chen, H.1
Chan, D.C.2
-
30
-
-
22544451586
-
Disruption of fusion results in mitochondrial heterogeneity and dysfunction
-
Chen, H., et al. Disruption of fusion results in mitochondrial heterogeneity and dysfunction. J. Biol. Chem. 280 (2005), 26185–26192.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 26185-26192
-
-
Chen, H.1
-
31
-
-
0037455575
-
Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development
-
Chen, H., et al. Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J. Cell Biol. 160 (2003), 189–200.
-
(2003)
J. Cell Biol.
, vol.160
, pp. 189-200
-
-
Chen, H.1
-
32
-
-
3843075121
-
Structural basis of mitochondrial tethering by mitofusin complexes
-
Koshiba, T., et al. Structural basis of mitochondrial tethering by mitofusin complexes. Science 305 (2004), 858–862.
-
(2004)
Science
, vol.305
, pp. 858-862
-
-
Koshiba, T.1
-
33
-
-
57349100367
-
Mitofusin 2 tethers endoplasmic reticulum to mitochondria
-
de Brito, O.M., Scorrano, L., Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature 456 (2008), 605–610.
-
(2008)
Nature
, vol.456
, pp. 605-610
-
-
de Brito, O.M.1
Scorrano, L.2
-
34
-
-
85017395263
-
Mfn2 is critical for brown adipose tissue thermogenic function
-
Boutant, M., et al. Mfn2 is critical for brown adipose tissue thermogenic function. EMBO J., 2017.
-
(2017)
EMBO J.
-
-
Boutant, M.1
-
35
-
-
8644270474
-
OPA1 requires mitofusin 1 to promote mitochondrial fusion
-
Cipolat, S., et al. OPA1 requires mitofusin 1 to promote mitochondrial fusion. Proc. Natl. Acad. Sci. U. S. A. 101 (2004), 15927–15932.
-
(2004)
Proc. Natl. Acad. Sci. U. S. A.
, vol.101
, pp. 15927-15932
-
-
Cipolat, S.1
-
36
-
-
84976483506
-
OPA1 processing in cell death and disease – the long and short of it
-
MacVicar, T., Langer, T., OPA1 processing in cell death and disease – the long and short of it. J. Cell Sci. 129 (2016), 2297–2306.
-
(2016)
J. Cell Sci.
, vol.129
, pp. 2297-2306
-
-
MacVicar, T.1
Langer, T.2
-
37
-
-
84896264348
-
The i-AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission
-
Anand, R., et al. The i-AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission. J. Cell Biol. 204 (2014), 919–929.
-
(2014)
J. Cell Biol.
, vol.204
, pp. 919-929
-
-
Anand, R.1
-
38
-
-
84884909413
-
Mitochondrial cristae shape determines respiratory chain supercomplexes assembly and respiratory efficiency
-
Cogliati, S., et al. Mitochondrial cristae shape determines respiratory chain supercomplexes assembly and respiratory efficiency. Cell 155 (2013), 160–171.
-
(2013)
Cell
, vol.155
, pp. 160-171
-
-
Cogliati, S.1
-
39
-
-
84880008164
-
Cyclin-dependent kinases regulate splice-specific targeting of dynamin-related protein 1 to microtubules
-
Strack, S., et al. Cyclin-dependent kinases regulate splice-specific targeting of dynamin-related protein 1 to microtubules. J. Cell Biol. 201 (2013), 1037–1051.
-
(2013)
J. Cell Biol.
, vol.201
, pp. 1037-1051
-
-
Strack, S.1
-
40
-
-
84976478216
-
Mitochondrial dynamics controls T cell fate through metabolic programming
-
Buck, M.D., et al. Mitochondrial dynamics controls T cell fate through metabolic programming. Cell 166 (2016), 63–76.
-
(2016)
Cell
, vol.166
, pp. 63-76
-
-
Buck, M.D.1
-
41
-
-
79957839365
-
Human mast cell degranulation and preformed TNF secretion require mitochondrial translocation to exocytosis sites: relevance to atopic dermatitis
-
1522–1531.e8
-
Zhang, B., et al. Human mast cell degranulation and preformed TNF secretion require mitochondrial translocation to exocytosis sites: relevance to atopic dermatitis. J. Allergy Clin. Immunol., 127, 2011 1522–1531.e8.
-
(2011)
J. Allergy Clin. Immunol.
, vol.127
-
-
Zhang, B.1
-
42
-
-
78651393239
-
A role for mitochondria in NLRP3 inflammasome activation
-
Zhou, R., et al. A role for mitochondria in NLRP3 inflammasome activation. Nature 469 (2011), 221–225.
-
(2011)
Nature
, vol.469
, pp. 221-225
-
-
Zhou, R.1
-
43
-
-
84904392273
-
+ T cells use cell-intrinsic lipolysis to support the metabolic programming necessary for development
-
+ T cells use cell-intrinsic lipolysis to support the metabolic programming necessary for development. Immunity 41 (2014), 75–88.
-
(2014)
Immunity
, vol.41
, pp. 75-88
-
-
O'Sullivan, D.1
-
44
-
-
84856183120
-
+ T cell memory development
-
+ T cell memory development. Immunity 36 (2012), 68–78.
-
(2012)
Immunity
, vol.36
, pp. 68-78
-
-
van der Windt, G.J.1
-
45
-
-
34047173074
-
Mitochondrial bioenergetics and structural network organization
-
Benard, G., et al. Mitochondrial bioenergetics and structural network organization. J. Cell Sci. 120:Pt 5 (2007), 838–848.
-
(2007)
J. Cell Sci.
, vol.120
, pp. 838-848
-
-
Benard, G.1
-
46
-
-
84876514626
-
Control of amino-acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation
-
Sinclair, L.V., et al. Control of amino-acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation. Nat. Immunol. 14 (2013), 500–508.
-
(2013)
Nat. Immunol.
, vol.14
, pp. 500-508
-
-
Sinclair, L.V.1
-
47
-
-
84865285455
-
Metabolic switching and fuel choice during T-cell differentiation and memory development
-
van der Windt, G.J., et al. Metabolic switching and fuel choice during T-cell differentiation and memory development. Immunol. Rev. 249 (2012), 27–42.
-
(2012)
Immunol. Rev.
, vol.249
, pp. 27-42
-
-
van der Windt, G.J.1
-
48
-
-
79953776337
-
The mitochondrial fission factor dynamin-related protein 1 modulates T-cell receptor signalling at the immune synapse
-
Baixauli, F., et al. The mitochondrial fission factor dynamin-related protein 1 modulates T-cell receptor signalling at the immune synapse. EMBO J. 30 (2011), 1238–1250.
-
(2011)
EMBO J.
, vol.30
, pp. 1238-1250
-
-
Baixauli, F.1
-
49
-
-
84863200362
-
Mitochondrial dynamics and their impact on T cell function
-
Quintana, A., Hoth, M., Mitochondrial dynamics and their impact on T cell function. Cell Calcium 52 (2012), 57–63.
-
(2012)
Cell Calcium
, vol.52
, pp. 57-63
-
-
Quintana, A.1
Hoth, M.2
-
50
-
-
33845908501
-
Orchestration of lymphocyte chemotaxis by mitochondrial dynamics
-
Campello, S., et al. Orchestration of lymphocyte chemotaxis by mitochondrial dynamics. J. Exp. Med. 203 (2006), 2879–2886.
-
(2006)
J. Exp. Med.
, vol.203
, pp. 2879-2886
-
-
Campello, S.1
-
51
-
-
84960399221
-
Immunometabolism governs dendritic cell and macrophage function
-
O'Neill, L.A., Pearce, E.J., Immunometabolism governs dendritic cell and macrophage function. J. Exp. Med. 213 (2016), 15–23.
-
(2016)
J. Exp. Med.
, vol.213
, pp. 15-23
-
-
O'Neill, L.A.1
Pearce, E.J.2
-
52
-
-
84924935721
-
Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization
-
Jha, A.K., et al. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity 42 (2015), 419–430.
-
(2015)
Immunity
, vol.42
, pp. 419-430
-
-
Jha, A.K.1
-
53
-
-
84994797642
-
Metabolic reprogramming mediated by the mTORC2–IRF4 signaling axis is essential for macrophage alternative activation
-
Huang, S.C., et al. Metabolic reprogramming mediated by the mTORC2–IRF4 signaling axis is essential for macrophage alternative activation. Immunity 45 (2016), 817–830.
-
(2016)
Immunity
, vol.45
, pp. 817-830
-
-
Huang, S.C.1
-
54
-
-
85016487669
-
The putative Drp1 inhibitor mdivi-1 is a reversible mitochondrial complex I inhibitor that modulates reactive oxygen species
-
583–594.e6
-
Bordt, E.A., et al. The putative Drp1 inhibitor mdivi-1 is a reversible mitochondrial complex I inhibitor that modulates reactive oxygen species. Dev. Cell, 40, 2017 583–594.e6.
-
(2017)
Dev. Cell
, vol.40
-
-
Bordt, E.A.1
-
55
-
-
79957597757
-
Mitochondria in innate immune responses
-
West, A.P., et al. Mitochondria in innate immune responses. Nat. Rev. Immunol. 11 (2011), 389–402.
-
(2011)
Nat. Rev. Immunol.
, vol.11
, pp. 389-402
-
-
West, A.P.1
-
56
-
-
79961133270
-
MAVS forms functional prion-like aggregates to activate and propagate antiviral innate immune response
-
Hou, F., et al. MAVS forms functional prion-like aggregates to activate and propagate antiviral innate immune response. Cell 146 (2011), 448–461.
-
(2011)
Cell
, vol.146
, pp. 448-461
-
-
Hou, F.1
-
57
-
-
79551716551
-
Mitochondrial membrane potential is required for MAVS-mediated antiviral signaling
-
ra7
-
Koshiba, T., et al. Mitochondrial membrane potential is required for MAVS-mediated antiviral signaling. Sci. Signal., 4, 2011 ra7.
-
(2011)
Sci. Signal.
, vol.4
-
-
Koshiba, T.1
-
58
-
-
75949098312
-
Mitochondrial dynamics regulate the RIG-I-like receptor antiviral pathway
-
Castanier, C., et al. Mitochondrial dynamics regulate the RIG-I-like receptor antiviral pathway. EMBO Rep. 11 (2010), 133–138.
-
(2010)
EMBO Rep.
, vol.11
, pp. 133-138
-
-
Castanier, C.1
-
59
-
-
84882614243
-
Mitochondrial cardiolipin is required for Nlrp3 inflammasome activation
-
Iyer, S.S., et al. Mitochondrial cardiolipin is required for Nlrp3 inflammasome activation. Immunity 39 (2013), 311–323.
-
(2013)
Immunity
, vol.39
, pp. 311-323
-
-
Iyer, S.S.1
-
60
-
-
84887086945
-
Mitochondrial protein mitofusin 2 is required for NLRP3 inflammasome activation after RNA virus infection
-
Ichinohe, T., et al. Mitochondrial protein mitofusin 2 is required for NLRP3 inflammasome activation after RNA virus infection. Proc. Natl. Acad. Sci. U. S. A. 110 (2013), 17963–17968.
-
(2013)
Proc. Natl. Acad. Sci. U. S. A.
, vol.110
, pp. 17963-17968
-
-
Ichinohe, T.1
-
61
-
-
84944910164
-
Defective mitochondrial fission augments NLRP3 inflammasome activation
-
Park, S., et al. Defective mitochondrial fission augments NLRP3 inflammasome activation. Sci. Rep., 5, 2015, 15489.
-
(2015)
Sci. Rep.
, vol.5
-
-
Park, S.1
-
62
-
-
84911192502
-
RNA viruses promote activation of the NLRP3 inflammasome through a RIP1–RIP3–DRP1 signaling pathway
-
Wang, X., et al. RNA viruses promote activation of the NLRP3 inflammasome through a RIP1–RIP3–DRP1 signaling pathway. Nat. Immunol. 15 (2014), 1126–1133.
-
(2014)
Nat. Immunol.
, vol.15
, pp. 1126-1133
-
-
Wang, X.1
-
63
-
-
56349133547
-
Positioning mitochondrial plasticity within cellular signaling cascades
-
Soubannier, V., McBride, H.M., Positioning mitochondrial plasticity within cellular signaling cascades. Biochim. Biophys. Acta 1793 (2009), 154–170.
-
(2009)
Biochim. Biophys. Acta
, vol.1793
, pp. 154-170
-
-
Soubannier, V.1
McBride, H.M.2
-
64
-
-
84959516439
-
Metabolic regulation of mitochondrial dynamics
-
Mishra, P., Chan, D.C., Metabolic regulation of mitochondrial dynamics. J. Cell Biol. 212 (2016), 379–387.
-
(2016)
J. Cell Biol.
, vol.212
, pp. 379-387
-
-
Mishra, P.1
Chan, D.C.2
-
65
-
-
84958850926
-
Mitochondrial dynamics and metabolic regulation
-
Wai, T., Langer, T., Mitochondrial dynamics and metabolic regulation. Trends Endocrinol. Metab. 27 (2016), 105–117.
-
(2016)
Trends Endocrinol. Metab.
, vol.27
, pp. 105-117
-
-
Wai, T.1
Langer, T.2
-
66
-
-
34547611925
-
Cyclic AMP-dependent protein kinase phosphorylation of Drp1 regulates its GTPase activity and mitochondrial morphology
-
Chang, C.R., Blackstone, C., Cyclic AMP-dependent protein kinase phosphorylation of Drp1 regulates its GTPase activity and mitochondrial morphology. J. Biol. Chem. 282 (2007), 21583–21587.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 21583-21587
-
-
Chang, C.R.1
Blackstone, C.2
-
67
-
-
84955242874
-
Pharmacological activation of AMPK prevents Drp1-mediated mitochondrial fission and alleviates endoplasmic reticulum stress-associated endothelial dysfunction
-
Li, J., et al. Pharmacological activation of AMPK prevents Drp1-mediated mitochondrial fission and alleviates endoplasmic reticulum stress-associated endothelial dysfunction. J. Mol. Cell Cardiol. 86 (2015), 62–74.
-
(2015)
J. Mol. Cell Cardiol.
, vol.86
, pp. 62-74
-
-
Li, J.1
-
68
-
-
84911958739
-
MFN1 deacetylation activates adaptive mitochondrial fusion and protects metabolically challenged mitochondria
-
Lee, J.Y., et al. MFN1 deacetylation activates adaptive mitochondrial fusion and protects metabolically challenged mitochondria. J. Cell Sci. 127:Pt 22 (2014), 4954–4963.
-
(2014)
J. Cell Sci.
, vol.127
, pp. 4954-4963
-
-
Lee, J.Y.1
-
69
-
-
67650096912
-
Enhancing CD8 T-cell memory by modulating fatty acid metabolism
-
Pearce, E.L., et al. Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature 460 (2009), 103–107.
-
(2009)
Nature
, vol.460
, pp. 103-107
-
-
Pearce, E.L.1
-
70
-
-
58849115949
-
Adenosine 5'-monophosphate-activated protein kinase promotes macrophage polarization to an anti-inflammatory functional phenotype
-
Sag, D., et al. Adenosine 5'-monophosphate-activated protein kinase promotes macrophage polarization to an anti-inflammatory functional phenotype. J. Immunol. 181 (2008), 8633–8641.
-
(2008)
J. Immunol.
, vol.181
, pp. 8633-8641
-
-
Sag, D.1
-
71
-
-
84874271196
-
mTOR, linking metabolism and immunity
-
Xu, X., et al. mTOR, linking metabolism and immunity. Semin. Immunol. 24 (2012), 429–435.
-
(2012)
Semin. Immunol.
, vol.24
, pp. 429-435
-
-
Xu, X.1
-
72
-
-
34848840991
-
Reversible phosphorylation of Drp1 by cyclic AMP-dependent protein kinase and calcineurin regulates mitochondrial fission and cell death
-
Cribbs, J.T., Strack, S., Reversible phosphorylation of Drp1 by cyclic AMP-dependent protein kinase and calcineurin regulates mitochondrial fission and cell death. EMBO Rep. 8 (2007), 939–944.
-
(2007)
EMBO Rep.
, vol.8
, pp. 939-944
-
-
Cribbs, J.T.1
Strack, S.2
-
73
-
-
34249689057
-
Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission
-
Taguchi, N., et al. Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. J. Biol. Chem. 282 (2007), 11521–11529.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 11521-11529
-
-
Taguchi, N.1
-
74
-
-
84924761433
-
Erk2 phosphorylation of Drp1 promotes mitochondrial fission and MAPK-driven tumor growth
-
Kashatus, J.A., et al. Erk2 phosphorylation of Drp1 promotes mitochondrial fission and MAPK-driven tumor growth. Mol. Cell 57 (2015), 537–551.
-
(2015)
Mol. Cell
, vol.57
, pp. 537-551
-
-
Kashatus, J.A.1
-
75
-
-
84962920513
-
Early ERK1/2 activation promotes DRP1-dependent mitochondrial fission necessary for cell reprogramming
-
Prieto, J., et al. Early ERK1/2 activation promotes DRP1-dependent mitochondrial fission necessary for cell reprogramming. Nat. Commun., 7, 2016, 11124.
-
(2016)
Nat. Commun.
, vol.7
-
-
Prieto, J.1
-
76
-
-
84865457924
-
Modulation of dynamin-related protein 1 (DRP1) function by increased O-linked-beta-N-acetylglucosamine modification (O-GlcNAc) in cardiac myocytes
-
Gawlowski, T., et al. Modulation of dynamin-related protein 1 (DRP1) function by increased O-linked-beta-N-acetylglucosamine modification (O-GlcNAc) in cardiac myocytes. J. Biol. Chem. 287 (2012), 30024–30034.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 30024-30034
-
-
Gawlowski, T.1
-
77
-
-
84928254126
-
A little sugar goes a long way: the cell biology of O-GlcNAc
-
Bond, M.R., Hanover, J.A., A little sugar goes a long way: the cell biology of O-GlcNAc. J. Cell Biol. 208 (2015), 869–880.
-
(2015)
J. Cell Biol.
, vol.208
, pp. 869-880
-
-
Bond, M.R.1
Hanover, J.A.2
-
78
-
-
84964265506
-
Glucose and glutamine fuel protein O-GlcNAcylation to control T cell self-renewal and malignancy
-
Swamy, M., et al. Glucose and glutamine fuel protein O-GlcNAcylation to control T cell self-renewal and malignancy. Nat. Immunol. 17 (2016), 712–720.
-
(2016)
Nat. Immunol.
, vol.17
, pp. 712-720
-
-
Swamy, M.1
-
79
-
-
84954318420
-
AMP-activated protein kinase mediates mitochondrial fission in response to energy stress
-
Toyama, E.Q., et al. AMP-activated protein kinase mediates mitochondrial fission in response to energy stress. Science 351 (2016), 275–281.
-
(2016)
Science
, vol.351
, pp. 275-281
-
-
Toyama, E.Q.1
-
80
-
-
84867032955
-
The intracellular redox state is a core determinant of mitochondrial fusion
-
Shutt, T., et al. The intracellular redox state is a core determinant of mitochondrial fusion. EMBO Rep. 13 (2012), 909–915.
-
(2012)
EMBO Rep.
, vol.13
, pp. 909-915
-
-
Shutt, T.1
-
81
-
-
84938751663
-
Redox homeostasis and mitochondrial dynamics
-
Willems, P.H., et al. Redox homeostasis and mitochondrial dynamics. Cell Metab. 22 (2015), 207–218.
-
(2015)
Cell Metab.
, vol.22
, pp. 207-218
-
-
Willems, P.H.1
-
82
-
-
84903975888
-
Glucose regulates mitochondrial motility via Milton modification by O-GlcNAc transferase
-
Pekkurnaz, G., et al. Glucose regulates mitochondrial motility via Milton modification by O-GlcNAc transferase. Cell 158 (2014), 54–68.
-
(2014)
Cell
, vol.158
, pp. 54-68
-
-
Pekkurnaz, G.1
-
83
-
-
58149091896
-
2+-dependent regulation of kinesin-mediated mitochondrial motility
-
2+-dependent regulation of kinesin-mediated mitochondrial motility. Cell 136 (2009), 163–174.
-
(2009)
Cell
, vol.136
, pp. 163-174
-
-
Wang, X.1
Schwarz, T.L.2
-
84
-
-
10044264391
-
Calcium and mitochondria: mechanisms and functions of a troubled relationship
-
Bianchi, K., et al. Calcium and mitochondria: mechanisms and functions of a troubled relationship. Biochim. Biophys. Acta 1742 (2004), 119–131.
-
(2004)
Biochim. Biophys. Acta
, vol.1742
, pp. 119-131
-
-
Bianchi, K.1
-
86
-
-
80455143668
-
Optic atrophy 1 is an A-kinase anchoring protein on lipid droplets that mediates adrenergic control of lipolysis
-
Pidoux, G., et al. Optic atrophy 1 is an A-kinase anchoring protein on lipid droplets that mediates adrenergic control of lipolysis. EMBO J. 30 (2011), 4371–4386.
-
(2011)
EMBO J.
, vol.30
, pp. 4371-4386
-
-
Pidoux, G.1
-
87
-
-
84959512966
-
The emerging network of mitochondria–organelle contacts
-
Murley, A., Nunnari, J., The emerging network of mitochondria–organelle contacts. Mol. Cell 61 (2016), 648–653.
-
(2016)
Mol. Cell
, vol.61
, pp. 648-653
-
-
Murley, A.1
Nunnari, J.2
-
88
-
-
84859448265
-
Mitofusin 2 (Mfn2) links mitochondrial and endoplasmic reticulum function with insulin signaling and is essential for normal glucose homeostasis
-
Sebastian, D., et al. Mitofusin 2 (Mfn2) links mitochondrial and endoplasmic reticulum function with insulin signaling and is essential for normal glucose homeostasis. Proc. Natl. Acad. Sci. U. S. A. 109 (2012), 5523–5528.
-
(2012)
Proc. Natl. Acad. Sci. U. S. A.
, vol.109
, pp. 5523-5528
-
-
Sebastian, D.1
-
89
-
-
84883271527
-
Mfn2 modulates the UPR and mitochondrial function via repression of PERK
-
Munoz, J.P., et al. Mfn2 modulates the UPR and mitochondrial function via repression of PERK. EMBO J. 32 (2013), 2348–2361.
-
(2013)
EMBO J.
, vol.32
, pp. 2348-2361
-
-
Munoz, J.P.1
-
90
-
-
84995615128
-
Mitochondria-associated membranes response to nutrient availability and role in metabolic diseases
-
Theurey, P., Rieusset, J., Mitochondria-associated membranes response to nutrient availability and role in metabolic diseases. Trends Endocrinol. Metab. 28 (2017), 32–45.
-
(2017)
Trends Endocrinol. Metab.
, vol.28
, pp. 32-45
-
-
Theurey, P.1
Rieusset, J.2
-
91
-
-
84942195533
-
Disruption of mitochondrial fission in the liver protects mice from diet-induced obesity and metabolic deterioration
-
Wang, L., et al. Disruption of mitochondrial fission in the liver protects mice from diet-induced obesity and metabolic deterioration. Diabetologia 58 (2015), 2371–2380.
-
(2015)
Diabetologia
, vol.58
, pp. 2371-2380
-
-
Wang, L.1
-
92
-
-
84957975315
-
FGF21 mediates endocrine control of simple sugar intake and sweet taste preference by the liver
-
von Holstein-Rathlou, S., et al. FGF21 mediates endocrine control of simple sugar intake and sweet taste preference by the liver. Cell Metab. 23 (2016), 335–343.
-
(2016)
Cell Metab.
, vol.23
, pp. 335-343
-
-
von Holstein-Rathlou, S.1
-
93
-
-
84936139805
-
Implications of mitochondrial dynamics on neurodegeneration and on hypothalamic dysfunction
-
Zorzano, A., Claret, M., Implications of mitochondrial dynamics on neurodegeneration and on hypothalamic dysfunction. Front. Aging Neurosci., 7, 2015, 101.
-
(2015)
Front. Aging Neurosci.
, vol.7
, pp. 101
-
-
Zorzano, A.1
Claret, M.2
-
94
-
-
84884823792
-
Mitofusin 2 in POMC neurons connects ER stress with leptin resistance and energy imbalance
-
Schneeberger, M., et al. Mitofusin 2 in POMC neurons connects ER stress with leptin resistance and energy imbalance. Cell 155 (2013), 172–187.
-
(2013)
Cell
, vol.155
, pp. 172-187
-
-
Schneeberger, M.1
-
95
-
-
85012925584
-
DRP1 suppresses leptin and glucose sensing of POMC neurons
-
Santoro, A., et al. DRP1 suppresses leptin and glucose sensing of POMC neurons. Cell Metab. 25 (2017), 647–660.
-
(2017)
Cell Metab.
, vol.25
, pp. 647-660
-
-
Santoro, A.1
-
96
-
-
84951837246
-
Mitochondrial proteins moonlighting in the nucleus
-
Monaghan, R.M., Whitmarsh, A.J., Mitochondrial proteins moonlighting in the nucleus. Trends Biochem. Sci. 40 (2015), 728–735.
-
(2015)
Trends Biochem. Sci.
, vol.40
, pp. 728-735
-
-
Monaghan, R.M.1
Whitmarsh, A.J.2
-
97
-
-
33645530745
-
Nrf2 is a critical regulator of the innate immune response and survival during experimental sepsis
-
Thimmulappa, R.K., et al. Nrf2 is a critical regulator of the innate immune response and survival during experimental sepsis. J. Clin. Invest. 116 (2006), 984–995.
-
(2006)
J. Clin. Invest.
, vol.116
, pp. 984-995
-
-
Thimmulappa, R.K.1
-
98
-
-
84879602902
-
Evaluating and responding to mitochondrial dysfunction: the mitochondrial unfolded-protein response and beyond
-
Haynes, C.M., et al. Evaluating and responding to mitochondrial dysfunction: the mitochondrial unfolded-protein response and beyond. Trends Cell. Biol. 23 (2013), 311–318.
-
(2013)
Trends Cell. Biol.
, vol.23
, pp. 311-318
-
-
Haynes, C.M.1
-
99
-
-
0037009521
-
A mitochondrial specific stress response in mammalian cells
-
Zhao, Q., et al. A mitochondrial specific stress response in mammalian cells. EMBO J. 21 (2002), 4411–4419.
-
(2002)
EMBO J.
, vol.21
, pp. 4411-4419
-
-
Zhao, Q.1
-
100
-
-
84926180334
-
Mitochondrial and nuclear accumulation of the transcription factor ATFS-1 promotes OXPHOS recovery during the UPR(mt)
-
Nargund, A.M., et al. Mitochondrial and nuclear accumulation of the transcription factor ATFS-1 promotes OXPHOS recovery during the UPR(mt). Mol. Cell 58 (2015), 123–133.
-
(2015)
Mol. Cell
, vol.58
, pp. 123-133
-
-
Nargund, A.M.1
-
101
-
-
84921774753
-
Mitochondrial UPR-regulated innate immunity provides resistance to pathogen infection
-
Pellegrino, M.W., et al. Mitochondrial UPR-regulated innate immunity provides resistance to pathogen infection. Nature 516 (2014), 414–417.
-
(2014)
Nature
, vol.516
, pp. 414-417
-
-
Pellegrino, M.W.1
-
102
-
-
84978821914
-
The transcription factor ATF5 mediates a mammalian mitochondrial UPR
-
Fiorese, C.J., et al. The transcription factor ATF5 mediates a mammalian mitochondrial UPR. Curr. Biol. 26 (2016), 2037–2043.
-
(2016)
Curr. Biol.
, vol.26
, pp. 2037-2043
-
-
Fiorese, C.J.1
-
103
-
-
84892989225
-
SirT3 regulates the mitochondrial unfolded protein response
-
Papa, L., Germain, D., SirT3 regulates the mitochondrial unfolded protein response. Mol. Cell Biol. 34 (2014), 699–710.
-
(2014)
Mol. Cell Biol.
, vol.34
, pp. 699-710
-
-
Papa, L.1
Germain, D.2
-
104
-
-
84896490633
-
Toward a new STATe: the role of STATs in mitochondrial function
-
Meier, J.A., Larner, A.C., Toward a new STATe: the role of STATs in mitochondrial function. Semin. Immunol. 26 (2014), 20–28.
-
(2014)
Semin. Immunol.
, vol.26
, pp. 20-28
-
-
Meier, J.A.1
Larner, A.C.2
-
105
-
-
79954571354
-
The interplay between mitochondrial dynamics and mitophagy
-
Twig, G., Shirihai, O.S., The interplay between mitochondrial dynamics and mitophagy. Antioxid. Redox Signal. 14 (2011), 1939–1951.
-
(2011)
Antioxid. Redox Signal.
, vol.14
, pp. 1939-1951
-
-
Twig, G.1
Shirihai, O.S.2
-
106
-
-
84904270185
-
A dynamic interface between vacuoles and mitochondria in yeast
-
Elbaz-Alon, Y., et al. A dynamic interface between vacuoles and mitochondria in yeast. Dev. Cell 30 (2014), 95–102.
-
(2014)
Dev. Cell
, vol.30
, pp. 95-102
-
-
Elbaz-Alon, Y.1
-
107
-
-
84904255813
-
Cellular metabolism regulates contact sites between vacuoles and mitochondria
-
Honscher, C., et al. Cellular metabolism regulates contact sites between vacuoles and mitochondria. Dev. Cell 30 (2014), 86–94.
-
(2014)
Dev. Cell
, vol.30
, pp. 86-94
-
-
Honscher, C.1
-
108
-
-
77951716870
-
ERMES-mediated ER–mitochondria contacts: molecular hubs for the regulation of mitochondrial biology
-
Kornmann, B., Walter, P., ERMES-mediated ER–mitochondria contacts: molecular hubs for the regulation of mitochondrial biology. J. Cell Sci. 123:Pt 9 (2010), 1389–1393.
-
(2010)
J. Cell Sci.
, vol.123
, pp. 1389-1393
-
-
Kornmann, B.1
Walter, P.2
-
109
-
-
80455135722
-
Perilipin 5, a lipid droplet-associated protein, provides physical and metabolic linkage to mitochondria
-
Wang, H., et al. Perilipin 5, a lipid droplet-associated protein, provides physical and metabolic linkage to mitochondria. J. Lipid Res. 52 (2011), 2159–2168.
-
(2011)
J. Lipid Res.
, vol.52
, pp. 2159-2168
-
-
Wang, H.1
-
110
-
-
85012180650
-
Metabolic signaling functions of ER–mitochondria contact sites: role in metabolic diseases
-
Tubbs, E., Rieusset, J., Metabolic signaling functions of ER–mitochondria contact sites: role in metabolic diseases. J. Mol. Endocrinol. 58 (2017), R87–R106.
-
(2017)
J. Mol. Endocrinol.
, vol.58
, pp. R87-R106
-
-
Tubbs, E.1
Rieusset, J.2
-
111
-
-
84871011474
-
An early age increase in vacuolar pH limits mitochondrial function and lifespan in yeast
-
Hughes, A.L., Gottschling, D.E., An early age increase in vacuolar pH limits mitochondrial function and lifespan in yeast. Nature 492 (2012), 261–265.
-
(2012)
Nature
, vol.492
, pp. 261-265
-
-
Hughes, A.L.1
Gottschling, D.E.2
-
112
-
-
84971519354
-
Selective sorting and destruction of mitochondrial membrane proteins in aged yeast
-
Hughes, A.L., et al. Selective sorting and destruction of mitochondrial membrane proteins in aged yeast. Elife, 5, 2016, e13943.
-
(2016)
Elife
, vol.5
, pp. e13943
-
-
Hughes, A.L.1
-
113
-
-
84969761352
-
Mitochondrial respiration controls lysosomal function during inflammatory T cell responses
-
Baixauli, F., et al. Mitochondrial respiration controls lysosomal function during inflammatory T cell responses. Cell Metab. 22 (2015), 485–498.
-
(2015)
Cell Metab.
, vol.22
, pp. 485-498
-
-
Baixauli, F.1
|