메뉴 건너뛰기




Volumn 39, Issue 1, 2018, Pages 6-18

Mitochondrial Dynamics at the Interface of Immune Cell Metabolism and Function

Author keywords

[No Author keywords available]

Indexed keywords

CELL FUNCTION; CELL FUSION; CELL METABOLISM; HUMAN; IMMUNE RESPONSE; IMMUNOCOMPETENT CELL; LYMPHOCYTE FUNCTION; MACROPHAGE; MACROPHAGE FUNCTION; MITOCHONDRIAL BIOGENESIS; MITOCHONDRIAL DYNAMICS; MITOCHONDRIAL FISSION; MITOCHONDRIAL FRAGMENTATION; NONHUMAN; REVIEW; SIGNAL TRANSDUCTION; T LYMPHOCYTE; ADAPTATION; ANIMAL; CELLULAR IMMUNITY; ENERGY METABOLISM; IMMUNE SYSTEM; METABOLISM; MITOCHONDRION; OXIDATION REDUCTION REACTION; PHYSIOLOGY;

EID: 85028845514     PISSN: 14714906     EISSN: 14714981     Source Type: Journal    
DOI: 10.1016/j.it.2017.08.006     Document Type: Review
Times cited : (244)

References (113)
  • 1
    • 84876758617 scopus 로고    scopus 로고
    • Metabolic pathways in immune cell activation and quiescence
    • Pearce, E.L., Pearce, E.J., Metabolic pathways in immune cell activation and quiescence. Immunity 38 (2013), 633–643.
    • (2013) Immunity , vol.38 , pp. 633-643
    • Pearce, E.L.1    Pearce, E.J.2
  • 2
    • 85030150492 scopus 로고    scopus 로고
    • Mitochondrial control of immunity: beyond ATP
    • Published online July 3, 2017
    • Mehta, M.M., et al. Mitochondrial control of immunity: beyond ATP. Nat. Rev. Immunol., 2017, 10.1038/nri.2017.66 Published online July 3, 2017.
    • (2017) Nat. Rev. Immunol.
    • Mehta, M.M.1
  • 3
    • 85014634323 scopus 로고    scopus 로고
    • Murine mast cells rapidly modulate metabolic pathways essential for distinct effector functions
    • Phong, B., et al. Murine mast cells rapidly modulate metabolic pathways essential for distinct effector functions. J. Immunol. 198 (2017), 640–644.
    • (2017) J. Immunol. , vol.198 , pp. 640-644
    • Phong, B.1
  • 4
    • 85017605327 scopus 로고    scopus 로고
    • Mitochondria are the powerhouses of immunity
    • Mills, E.L., et al. Mitochondria are the powerhouses of immunity. Nat. Immunol. 18 (2017), 488–498.
    • (2017) Nat. Immunol. , vol.18 , pp. 488-498
    • Mills, E.L.1
  • 5
    • 84952838177 scopus 로고    scopus 로고
    • Measurement and analysis of extracellular acid production to determine glycolytic rate
    • e53464
    • Mookerjee, S.A., Brand, M.D., Measurement and analysis of extracellular acid production to determine glycolytic rate. J. Vis. Exp., 2015, 2015 e53464.
    • (2015) J. Vis. Exp. , vol.2015
    • Mookerjee, S.A.1    Brand, M.D.2
  • 6
    • 84858796367 scopus 로고    scopus 로고
    • A two-way street: reciprocal regulation of metabolism and signalling
    • Wellen, K.E., Thompson, C.B., A two-way street: reciprocal regulation of metabolism and signalling. Nat. Rev. Mol. Cell Biol. 13 (2012), 270–276.
    • (2012) Nat. Rev. Mol. Cell Biol. , vol.13 , pp. 270-276
    • Wellen, K.E.1    Thompson, C.B.2
  • 7
    • 84875755814 scopus 로고    scopus 로고
    • Influence of metabolism on epigenetics and disease
    • Kaelin, W.G. Jr., McKnight, S.L., Influence of metabolism on epigenetics and disease. Cell 153 (2013), 56–69.
    • (2013) Cell , vol.153 , pp. 56-69
    • Kaelin, W.G.1    McKnight, S.L.2
  • 8
    • 84869051280 scopus 로고    scopus 로고
    • Mitochondrial disorders as windows into an ancient organelle
    • Vafai, S.B., Mootha, V.K., Mitochondrial disorders as windows into an ancient organelle. Nature 491 (2012), 374–383.
    • (2012) Nature , vol.491 , pp. 374-383
    • Vafai, S.B.1    Mootha, V.K.2
  • 9
    • 67749089562 scopus 로고    scopus 로고
    • A hyperfused mitochondrial state achieved at G1–S regulates cyclin E buildup and entry into S phase
    • Mitra, K., et al. A hyperfused mitochondrial state achieved at G1–S regulates cyclin E buildup and entry into S phase. Proc. Natl. Acad. Sci. U. S. A. 106 (2009), 11960–11965.
    • (2009) Proc. Natl. Acad. Sci. U. S. A. , vol.106 , pp. 11960-11965
    • Mitra, K.1
  • 10
    • 0842325793 scopus 로고    scopus 로고
    • Energy substrate modulates mitochondrial structure and oxidative capacity in cancer cells
    • Rossignol, R., et al. Energy substrate modulates mitochondrial structure and oxidative capacity in cancer cells. Cancer Res. 64 (2004), 985–993.
    • (2004) Cancer Res. , vol.64 , pp. 985-993
    • Rossignol, R.1
  • 11
    • 67049089786 scopus 로고    scopus 로고
    • SLP-2 is required for stress-induced mitochondrial hyperfusion
    • Tondera, D., et al. SLP-2 is required for stress-induced mitochondrial hyperfusion. EMBO J. 28 (2009), 1589–1600.
    • (2009) EMBO J. , vol.28 , pp. 1589-1600
    • Tondera, D.1
  • 12
    • 79955623510 scopus 로고    scopus 로고
    • During autophagy mitochondria elongate, are spared from degradation and sustain cell viability
    • Gomes, L.C., et al. During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat. Cell Biol. 13 (2011), 589–598.
    • (2011) Nat. Cell Biol. , vol.13 , pp. 589-598
    • Gomes, L.C.1
  • 13
    • 84925324049 scopus 로고    scopus 로고
    • Fatty acid trafficking in starved cells: regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics
    • Rambold, A.S., et al. Fatty acid trafficking in starved cells: regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics. Dev. Cell 32 (2015), 678–692.
    • (2015) Dev. Cell , vol.32 , pp. 678-692
    • Rambold, A.S.1
  • 14
    • 79959987510 scopus 로고    scopus 로고
    • Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation
    • Rambold, A.S., et al. Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation. Proc. Natl. Acad. Sci. U. S. A. 108 (2011), 10190–10195.
    • (2011) Proc. Natl. Acad. Sci. U. S. A. , vol.108 , pp. 10190-10195
    • Rambold, A.S.1
  • 15
    • 70349650451 scopus 로고    scopus 로고
    • Mitochondrial networking protects beta-cells from nutrient-induced apoptosis
    • Molina, A.J., et al. Mitochondrial networking protects beta-cells from nutrient-induced apoptosis. Diabetes 58 (2009), 2303–2315.
    • (2009) Diabetes , vol.58 , pp. 2303-2315
    • Molina, A.J.1
  • 16
    • 84863011641 scopus 로고    scopus 로고
    • Mitochondrial fission contributes to mitochondrial dysfunction and insulin resistance in skeletal muscle
    • Jheng, H.F., et al. Mitochondrial fission contributes to mitochondrial dysfunction and insulin resistance in skeletal muscle. Mol. Cell Biol. 32 (2012), 309–319.
    • (2012) Mol. Cell Biol. , vol.32 , pp. 309-319
    • Jheng, H.F.1
  • 17
    • 84865544952 scopus 로고    scopus 로고
    • Mitochondrial fission, fusion, and stress
    • Youle, R.J., van der Bliek, A.M., Mitochondrial fission, fusion, and stress. Science 337 (2012), 1062–1065.
    • (2012) Science , vol.337 , pp. 1062-1065
    • Youle, R.J.1    van der Bliek, A.M.2
  • 18
    • 80054844842 scopus 로고    scopus 로고
    • ER tubules mark sites of mitochondrial division
    • Friedman, J.R., et al. ER tubules mark sites of mitochondrial division. Science 334 (2011), 358–362.
    • (2011) Science , vol.334 , pp. 358-362
    • Friedman, J.R.1
  • 19
    • 84872769447 scopus 로고    scopus 로고
    • An actin-dependent step in mitochondrial fission mediated by the ER-associated formin INF2
    • Korobova, F., et al. An actin-dependent step in mitochondrial fission mediated by the ER-associated formin INF2. Science 339 (2013), 464–467.
    • (2013) Science , vol.339 , pp. 464-467
    • Korobova, F.1
  • 20
    • 84941888608 scopus 로고    scopus 로고
    • A mitochondria-anchored isoform of the actin-nucleating spire protein regulates mitochondrial division
    • e08828
    • Manor, U., et al. A mitochondria-anchored isoform of the actin-nucleating spire protein regulates mitochondrial division. Elife, 4, 2015 e08828.
    • (2015) Elife , vol.4
    • Manor, U.1
  • 21
    • 85000386311 scopus 로고    scopus 로고
    • Multiple dynamin family members collaborate to drive mitochondrial division
    • Lee, J.E., et al. Multiple dynamin family members collaborate to drive mitochondrial division. Nature 540 (2016), 139–143.
    • (2016) Nature , vol.540 , pp. 139-143
    • Lee, J.E.1
  • 22
    • 84908250304 scopus 로고    scopus 로고
    • Determinants and functions of mitochondrial behavior
    • Labbe, K., et al. Determinants and functions of mitochondrial behavior. Annu. Rev. Cell Dev. Biol. 30 (2014), 357–391.
    • (2014) Annu. Rev. Cell Dev. Biol. , vol.30 , pp. 357-391
    • Labbe, K.1
  • 23
    • 84926258887 scopus 로고    scopus 로고
    • Disturbed mitochondrial dynamics and neurodegenerative disorders
    • Burte, F., et al. Disturbed mitochondrial dynamics and neurodegenerative disorders. Nat. Rev. Neurol. 11 (2015), 11–24.
    • (2015) Nat. Rev. Neurol. , vol.11 , pp. 11-24
    • Burte, F.1
  • 24
    • 45349094984 scopus 로고    scopus 로고
    • Mitochondrial dynamics and apoptosis
    • Suen, D.F., et al. Mitochondrial dynamics and apoptosis. Genes. Dev. 22 (2008), 1577–1590.
    • (2008) Genes. Dev. , vol.22 , pp. 1577-1590
    • Suen, D.F.1
  • 25
    • 0037424490 scopus 로고    scopus 로고
    • Dynamin-like protein 1 is involved in peroxisomal fission
    • Koch, A., et al. Dynamin-like protein 1 is involved in peroxisomal fission. J. Biol. Chem. 278 (2003), 8597–8605.
    • (2003) J. Biol. Chem. , vol.278 , pp. 8597-8605
    • Koch, A.1
  • 26
    • 34247525092 scopus 로고    scopus 로고
    • A lethal defect of mitochondrial and peroxisomal fission
    • Waterham, H.R., et al. A lethal defect of mitochondrial and peroxisomal fission. N. Engl. J. Med. 356 (2007), 1736–1741.
    • (2007) N. Engl. J. Med. , vol.356 , pp. 1736-1741
    • Waterham, H.R.1
  • 27
    • 84975635993 scopus 로고    scopus 로고
    • DNM1L-related mitochondrial fission defect presenting as refractory epilepsy
    • Vanstone, J.R., et al. DNM1L-related mitochondrial fission defect presenting as refractory epilepsy. Eur. J. Hum. Genet. 24 (2016), 1084–1088.
    • (2016) Eur. J. Hum. Genet. , vol.24 , pp. 1084-1088
    • Vanstone, J.R.1
  • 28
    • 84864112680 scopus 로고    scopus 로고
    • Genomic analysis of mitochondrial diseases in a consanguineous population reveals novel candidate disease genes
    • Shamseldin, H.E., et al. Genomic analysis of mitochondrial diseases in a consanguineous population reveals novel candidate disease genes. J. Med. Genet. 49 (2012), 234–241.
    • (2012) J. Med. Genet. , vol.49 , pp. 234-241
    • Shamseldin, H.E.1
  • 29
    • 27744491193 scopus 로고    scopus 로고
    • Emerging functions of mammalian mitochondrial fusion and fission
    • Chen, H., Chan, D.C., Emerging functions of mammalian mitochondrial fusion and fission. Hum. Mol. Genet. 14 (2005), R283–R289.
    • (2005) Hum. Mol. Genet. , vol.14 , pp. R283-R289
    • Chen, H.1    Chan, D.C.2
  • 30
    • 22544451586 scopus 로고    scopus 로고
    • Disruption of fusion results in mitochondrial heterogeneity and dysfunction
    • Chen, H., et al. Disruption of fusion results in mitochondrial heterogeneity and dysfunction. J. Biol. Chem. 280 (2005), 26185–26192.
    • (2005) J. Biol. Chem. , vol.280 , pp. 26185-26192
    • Chen, H.1
  • 31
    • 0037455575 scopus 로고    scopus 로고
    • Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development
    • Chen, H., et al. Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J. Cell Biol. 160 (2003), 189–200.
    • (2003) J. Cell Biol. , vol.160 , pp. 189-200
    • Chen, H.1
  • 32
    • 3843075121 scopus 로고    scopus 로고
    • Structural basis of mitochondrial tethering by mitofusin complexes
    • Koshiba, T., et al. Structural basis of mitochondrial tethering by mitofusin complexes. Science 305 (2004), 858–862.
    • (2004) Science , vol.305 , pp. 858-862
    • Koshiba, T.1
  • 33
    • 57349100367 scopus 로고    scopus 로고
    • Mitofusin 2 tethers endoplasmic reticulum to mitochondria
    • de Brito, O.M., Scorrano, L., Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature 456 (2008), 605–610.
    • (2008) Nature , vol.456 , pp. 605-610
    • de Brito, O.M.1    Scorrano, L.2
  • 34
    • 85017395263 scopus 로고    scopus 로고
    • Mfn2 is critical for brown adipose tissue thermogenic function
    • Boutant, M., et al. Mfn2 is critical for brown adipose tissue thermogenic function. EMBO J., 2017.
    • (2017) EMBO J.
    • Boutant, M.1
  • 35
    • 8644270474 scopus 로고    scopus 로고
    • OPA1 requires mitofusin 1 to promote mitochondrial fusion
    • Cipolat, S., et al. OPA1 requires mitofusin 1 to promote mitochondrial fusion. Proc. Natl. Acad. Sci. U. S. A. 101 (2004), 15927–15932.
    • (2004) Proc. Natl. Acad. Sci. U. S. A. , vol.101 , pp. 15927-15932
    • Cipolat, S.1
  • 36
    • 84976483506 scopus 로고    scopus 로고
    • OPA1 processing in cell death and disease – the long and short of it
    • MacVicar, T., Langer, T., OPA1 processing in cell death and disease – the long and short of it. J. Cell Sci. 129 (2016), 2297–2306.
    • (2016) J. Cell Sci. , vol.129 , pp. 2297-2306
    • MacVicar, T.1    Langer, T.2
  • 37
    • 84896264348 scopus 로고    scopus 로고
    • The i-AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission
    • Anand, R., et al. The i-AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission. J. Cell Biol. 204 (2014), 919–929.
    • (2014) J. Cell Biol. , vol.204 , pp. 919-929
    • Anand, R.1
  • 38
    • 84884909413 scopus 로고    scopus 로고
    • Mitochondrial cristae shape determines respiratory chain supercomplexes assembly and respiratory efficiency
    • Cogliati, S., et al. Mitochondrial cristae shape determines respiratory chain supercomplexes assembly and respiratory efficiency. Cell 155 (2013), 160–171.
    • (2013) Cell , vol.155 , pp. 160-171
    • Cogliati, S.1
  • 39
    • 84880008164 scopus 로고    scopus 로고
    • Cyclin-dependent kinases regulate splice-specific targeting of dynamin-related protein 1 to microtubules
    • Strack, S., et al. Cyclin-dependent kinases regulate splice-specific targeting of dynamin-related protein 1 to microtubules. J. Cell Biol. 201 (2013), 1037–1051.
    • (2013) J. Cell Biol. , vol.201 , pp. 1037-1051
    • Strack, S.1
  • 40
    • 84976478216 scopus 로고    scopus 로고
    • Mitochondrial dynamics controls T cell fate through metabolic programming
    • Buck, M.D., et al. Mitochondrial dynamics controls T cell fate through metabolic programming. Cell 166 (2016), 63–76.
    • (2016) Cell , vol.166 , pp. 63-76
    • Buck, M.D.1
  • 41
    • 79957839365 scopus 로고    scopus 로고
    • Human mast cell degranulation and preformed TNF secretion require mitochondrial translocation to exocytosis sites: relevance to atopic dermatitis
    • 1522–1531.e8
    • Zhang, B., et al. Human mast cell degranulation and preformed TNF secretion require mitochondrial translocation to exocytosis sites: relevance to atopic dermatitis. J. Allergy Clin. Immunol., 127, 2011 1522–1531.e8.
    • (2011) J. Allergy Clin. Immunol. , vol.127
    • Zhang, B.1
  • 42
    • 78651393239 scopus 로고    scopus 로고
    • A role for mitochondria in NLRP3 inflammasome activation
    • Zhou, R., et al. A role for mitochondria in NLRP3 inflammasome activation. Nature 469 (2011), 221–225.
    • (2011) Nature , vol.469 , pp. 221-225
    • Zhou, R.1
  • 43
    • 84904392273 scopus 로고    scopus 로고
    • + T cells use cell-intrinsic lipolysis to support the metabolic programming necessary for development
    • + T cells use cell-intrinsic lipolysis to support the metabolic programming necessary for development. Immunity 41 (2014), 75–88.
    • (2014) Immunity , vol.41 , pp. 75-88
    • O'Sullivan, D.1
  • 44
    • 84856183120 scopus 로고    scopus 로고
    • + T cell memory development
    • + T cell memory development. Immunity 36 (2012), 68–78.
    • (2012) Immunity , vol.36 , pp. 68-78
    • van der Windt, G.J.1
  • 45
    • 34047173074 scopus 로고    scopus 로고
    • Mitochondrial bioenergetics and structural network organization
    • Benard, G., et al. Mitochondrial bioenergetics and structural network organization. J. Cell Sci. 120:Pt 5 (2007), 838–848.
    • (2007) J. Cell Sci. , vol.120 , pp. 838-848
    • Benard, G.1
  • 46
    • 84876514626 scopus 로고    scopus 로고
    • Control of amino-acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation
    • Sinclair, L.V., et al. Control of amino-acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation. Nat. Immunol. 14 (2013), 500–508.
    • (2013) Nat. Immunol. , vol.14 , pp. 500-508
    • Sinclair, L.V.1
  • 47
    • 84865285455 scopus 로고    scopus 로고
    • Metabolic switching and fuel choice during T-cell differentiation and memory development
    • van der Windt, G.J., et al. Metabolic switching and fuel choice during T-cell differentiation and memory development. Immunol. Rev. 249 (2012), 27–42.
    • (2012) Immunol. Rev. , vol.249 , pp. 27-42
    • van der Windt, G.J.1
  • 48
    • 79953776337 scopus 로고    scopus 로고
    • The mitochondrial fission factor dynamin-related protein 1 modulates T-cell receptor signalling at the immune synapse
    • Baixauli, F., et al. The mitochondrial fission factor dynamin-related protein 1 modulates T-cell receptor signalling at the immune synapse. EMBO J. 30 (2011), 1238–1250.
    • (2011) EMBO J. , vol.30 , pp. 1238-1250
    • Baixauli, F.1
  • 49
    • 84863200362 scopus 로고    scopus 로고
    • Mitochondrial dynamics and their impact on T cell function
    • Quintana, A., Hoth, M., Mitochondrial dynamics and their impact on T cell function. Cell Calcium 52 (2012), 57–63.
    • (2012) Cell Calcium , vol.52 , pp. 57-63
    • Quintana, A.1    Hoth, M.2
  • 50
    • 33845908501 scopus 로고    scopus 로고
    • Orchestration of lymphocyte chemotaxis by mitochondrial dynamics
    • Campello, S., et al. Orchestration of lymphocyte chemotaxis by mitochondrial dynamics. J. Exp. Med. 203 (2006), 2879–2886.
    • (2006) J. Exp. Med. , vol.203 , pp. 2879-2886
    • Campello, S.1
  • 51
    • 84960399221 scopus 로고    scopus 로고
    • Immunometabolism governs dendritic cell and macrophage function
    • O'Neill, L.A., Pearce, E.J., Immunometabolism governs dendritic cell and macrophage function. J. Exp. Med. 213 (2016), 15–23.
    • (2016) J. Exp. Med. , vol.213 , pp. 15-23
    • O'Neill, L.A.1    Pearce, E.J.2
  • 52
    • 84924935721 scopus 로고    scopus 로고
    • Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization
    • Jha, A.K., et al. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity 42 (2015), 419–430.
    • (2015) Immunity , vol.42 , pp. 419-430
    • Jha, A.K.1
  • 53
    • 84994797642 scopus 로고    scopus 로고
    • Metabolic reprogramming mediated by the mTORC2–IRF4 signaling axis is essential for macrophage alternative activation
    • Huang, S.C., et al. Metabolic reprogramming mediated by the mTORC2–IRF4 signaling axis is essential for macrophage alternative activation. Immunity 45 (2016), 817–830.
    • (2016) Immunity , vol.45 , pp. 817-830
    • Huang, S.C.1
  • 54
    • 85016487669 scopus 로고    scopus 로고
    • The putative Drp1 inhibitor mdivi-1 is a reversible mitochondrial complex I inhibitor that modulates reactive oxygen species
    • 583–594.e6
    • Bordt, E.A., et al. The putative Drp1 inhibitor mdivi-1 is a reversible mitochondrial complex I inhibitor that modulates reactive oxygen species. Dev. Cell, 40, 2017 583–594.e6.
    • (2017) Dev. Cell , vol.40
    • Bordt, E.A.1
  • 55
    • 79957597757 scopus 로고    scopus 로고
    • Mitochondria in innate immune responses
    • West, A.P., et al. Mitochondria in innate immune responses. Nat. Rev. Immunol. 11 (2011), 389–402.
    • (2011) Nat. Rev. Immunol. , vol.11 , pp. 389-402
    • West, A.P.1
  • 56
    • 79961133270 scopus 로고    scopus 로고
    • MAVS forms functional prion-like aggregates to activate and propagate antiviral innate immune response
    • Hou, F., et al. MAVS forms functional prion-like aggregates to activate and propagate antiviral innate immune response. Cell 146 (2011), 448–461.
    • (2011) Cell , vol.146 , pp. 448-461
    • Hou, F.1
  • 57
    • 79551716551 scopus 로고    scopus 로고
    • Mitochondrial membrane potential is required for MAVS-mediated antiviral signaling
    • ra7
    • Koshiba, T., et al. Mitochondrial membrane potential is required for MAVS-mediated antiviral signaling. Sci. Signal., 4, 2011 ra7.
    • (2011) Sci. Signal. , vol.4
    • Koshiba, T.1
  • 58
    • 75949098312 scopus 로고    scopus 로고
    • Mitochondrial dynamics regulate the RIG-I-like receptor antiviral pathway
    • Castanier, C., et al. Mitochondrial dynamics regulate the RIG-I-like receptor antiviral pathway. EMBO Rep. 11 (2010), 133–138.
    • (2010) EMBO Rep. , vol.11 , pp. 133-138
    • Castanier, C.1
  • 59
    • 84882614243 scopus 로고    scopus 로고
    • Mitochondrial cardiolipin is required for Nlrp3 inflammasome activation
    • Iyer, S.S., et al. Mitochondrial cardiolipin is required for Nlrp3 inflammasome activation. Immunity 39 (2013), 311–323.
    • (2013) Immunity , vol.39 , pp. 311-323
    • Iyer, S.S.1
  • 60
    • 84887086945 scopus 로고    scopus 로고
    • Mitochondrial protein mitofusin 2 is required for NLRP3 inflammasome activation after RNA virus infection
    • Ichinohe, T., et al. Mitochondrial protein mitofusin 2 is required for NLRP3 inflammasome activation after RNA virus infection. Proc. Natl. Acad. Sci. U. S. A. 110 (2013), 17963–17968.
    • (2013) Proc. Natl. Acad. Sci. U. S. A. , vol.110 , pp. 17963-17968
    • Ichinohe, T.1
  • 61
    • 84944910164 scopus 로고    scopus 로고
    • Defective mitochondrial fission augments NLRP3 inflammasome activation
    • Park, S., et al. Defective mitochondrial fission augments NLRP3 inflammasome activation. Sci. Rep., 5, 2015, 15489.
    • (2015) Sci. Rep. , vol.5
    • Park, S.1
  • 62
    • 84911192502 scopus 로고    scopus 로고
    • RNA viruses promote activation of the NLRP3 inflammasome through a RIP1–RIP3–DRP1 signaling pathway
    • Wang, X., et al. RNA viruses promote activation of the NLRP3 inflammasome through a RIP1–RIP3–DRP1 signaling pathway. Nat. Immunol. 15 (2014), 1126–1133.
    • (2014) Nat. Immunol. , vol.15 , pp. 1126-1133
    • Wang, X.1
  • 63
    • 56349133547 scopus 로고    scopus 로고
    • Positioning mitochondrial plasticity within cellular signaling cascades
    • Soubannier, V., McBride, H.M., Positioning mitochondrial plasticity within cellular signaling cascades. Biochim. Biophys. Acta 1793 (2009), 154–170.
    • (2009) Biochim. Biophys. Acta , vol.1793 , pp. 154-170
    • Soubannier, V.1    McBride, H.M.2
  • 64
    • 84959516439 scopus 로고    scopus 로고
    • Metabolic regulation of mitochondrial dynamics
    • Mishra, P., Chan, D.C., Metabolic regulation of mitochondrial dynamics. J. Cell Biol. 212 (2016), 379–387.
    • (2016) J. Cell Biol. , vol.212 , pp. 379-387
    • Mishra, P.1    Chan, D.C.2
  • 65
    • 84958850926 scopus 로고    scopus 로고
    • Mitochondrial dynamics and metabolic regulation
    • Wai, T., Langer, T., Mitochondrial dynamics and metabolic regulation. Trends Endocrinol. Metab. 27 (2016), 105–117.
    • (2016) Trends Endocrinol. Metab. , vol.27 , pp. 105-117
    • Wai, T.1    Langer, T.2
  • 66
    • 34547611925 scopus 로고    scopus 로고
    • Cyclic AMP-dependent protein kinase phosphorylation of Drp1 regulates its GTPase activity and mitochondrial morphology
    • Chang, C.R., Blackstone, C., Cyclic AMP-dependent protein kinase phosphorylation of Drp1 regulates its GTPase activity and mitochondrial morphology. J. Biol. Chem. 282 (2007), 21583–21587.
    • (2007) J. Biol. Chem. , vol.282 , pp. 21583-21587
    • Chang, C.R.1    Blackstone, C.2
  • 67
    • 84955242874 scopus 로고    scopus 로고
    • Pharmacological activation of AMPK prevents Drp1-mediated mitochondrial fission and alleviates endoplasmic reticulum stress-associated endothelial dysfunction
    • Li, J., et al. Pharmacological activation of AMPK prevents Drp1-mediated mitochondrial fission and alleviates endoplasmic reticulum stress-associated endothelial dysfunction. J. Mol. Cell Cardiol. 86 (2015), 62–74.
    • (2015) J. Mol. Cell Cardiol. , vol.86 , pp. 62-74
    • Li, J.1
  • 68
    • 84911958739 scopus 로고    scopus 로고
    • MFN1 deacetylation activates adaptive mitochondrial fusion and protects metabolically challenged mitochondria
    • Lee, J.Y., et al. MFN1 deacetylation activates adaptive mitochondrial fusion and protects metabolically challenged mitochondria. J. Cell Sci. 127:Pt 22 (2014), 4954–4963.
    • (2014) J. Cell Sci. , vol.127 , pp. 4954-4963
    • Lee, J.Y.1
  • 69
    • 67650096912 scopus 로고    scopus 로고
    • Enhancing CD8 T-cell memory by modulating fatty acid metabolism
    • Pearce, E.L., et al. Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature 460 (2009), 103–107.
    • (2009) Nature , vol.460 , pp. 103-107
    • Pearce, E.L.1
  • 70
    • 58849115949 scopus 로고    scopus 로고
    • Adenosine 5'-monophosphate-activated protein kinase promotes macrophage polarization to an anti-inflammatory functional phenotype
    • Sag, D., et al. Adenosine 5'-monophosphate-activated protein kinase promotes macrophage polarization to an anti-inflammatory functional phenotype. J. Immunol. 181 (2008), 8633–8641.
    • (2008) J. Immunol. , vol.181 , pp. 8633-8641
    • Sag, D.1
  • 71
    • 84874271196 scopus 로고    scopus 로고
    • mTOR, linking metabolism and immunity
    • Xu, X., et al. mTOR, linking metabolism and immunity. Semin. Immunol. 24 (2012), 429–435.
    • (2012) Semin. Immunol. , vol.24 , pp. 429-435
    • Xu, X.1
  • 72
    • 34848840991 scopus 로고    scopus 로고
    • Reversible phosphorylation of Drp1 by cyclic AMP-dependent protein kinase and calcineurin regulates mitochondrial fission and cell death
    • Cribbs, J.T., Strack, S., Reversible phosphorylation of Drp1 by cyclic AMP-dependent protein kinase and calcineurin regulates mitochondrial fission and cell death. EMBO Rep. 8 (2007), 939–944.
    • (2007) EMBO Rep. , vol.8 , pp. 939-944
    • Cribbs, J.T.1    Strack, S.2
  • 73
    • 34249689057 scopus 로고    scopus 로고
    • Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission
    • Taguchi, N., et al. Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. J. Biol. Chem. 282 (2007), 11521–11529.
    • (2007) J. Biol. Chem. , vol.282 , pp. 11521-11529
    • Taguchi, N.1
  • 74
    • 84924761433 scopus 로고    scopus 로고
    • Erk2 phosphorylation of Drp1 promotes mitochondrial fission and MAPK-driven tumor growth
    • Kashatus, J.A., et al. Erk2 phosphorylation of Drp1 promotes mitochondrial fission and MAPK-driven tumor growth. Mol. Cell 57 (2015), 537–551.
    • (2015) Mol. Cell , vol.57 , pp. 537-551
    • Kashatus, J.A.1
  • 75
    • 84962920513 scopus 로고    scopus 로고
    • Early ERK1/2 activation promotes DRP1-dependent mitochondrial fission necessary for cell reprogramming
    • Prieto, J., et al. Early ERK1/2 activation promotes DRP1-dependent mitochondrial fission necessary for cell reprogramming. Nat. Commun., 7, 2016, 11124.
    • (2016) Nat. Commun. , vol.7
    • Prieto, J.1
  • 76
    • 84865457924 scopus 로고    scopus 로고
    • Modulation of dynamin-related protein 1 (DRP1) function by increased O-linked-beta-N-acetylglucosamine modification (O-GlcNAc) in cardiac myocytes
    • Gawlowski, T., et al. Modulation of dynamin-related protein 1 (DRP1) function by increased O-linked-beta-N-acetylglucosamine modification (O-GlcNAc) in cardiac myocytes. J. Biol. Chem. 287 (2012), 30024–30034.
    • (2012) J. Biol. Chem. , vol.287 , pp. 30024-30034
    • Gawlowski, T.1
  • 77
    • 84928254126 scopus 로고    scopus 로고
    • A little sugar goes a long way: the cell biology of O-GlcNAc
    • Bond, M.R., Hanover, J.A., A little sugar goes a long way: the cell biology of O-GlcNAc. J. Cell Biol. 208 (2015), 869–880.
    • (2015) J. Cell Biol. , vol.208 , pp. 869-880
    • Bond, M.R.1    Hanover, J.A.2
  • 78
    • 84964265506 scopus 로고    scopus 로고
    • Glucose and glutamine fuel protein O-GlcNAcylation to control T cell self-renewal and malignancy
    • Swamy, M., et al. Glucose and glutamine fuel protein O-GlcNAcylation to control T cell self-renewal and malignancy. Nat. Immunol. 17 (2016), 712–720.
    • (2016) Nat. Immunol. , vol.17 , pp. 712-720
    • Swamy, M.1
  • 79
    • 84954318420 scopus 로고    scopus 로고
    • AMP-activated protein kinase mediates mitochondrial fission in response to energy stress
    • Toyama, E.Q., et al. AMP-activated protein kinase mediates mitochondrial fission in response to energy stress. Science 351 (2016), 275–281.
    • (2016) Science , vol.351 , pp. 275-281
    • Toyama, E.Q.1
  • 80
    • 84867032955 scopus 로고    scopus 로고
    • The intracellular redox state is a core determinant of mitochondrial fusion
    • Shutt, T., et al. The intracellular redox state is a core determinant of mitochondrial fusion. EMBO Rep. 13 (2012), 909–915.
    • (2012) EMBO Rep. , vol.13 , pp. 909-915
    • Shutt, T.1
  • 81
    • 84938751663 scopus 로고    scopus 로고
    • Redox homeostasis and mitochondrial dynamics
    • Willems, P.H., et al. Redox homeostasis and mitochondrial dynamics. Cell Metab. 22 (2015), 207–218.
    • (2015) Cell Metab. , vol.22 , pp. 207-218
    • Willems, P.H.1
  • 82
    • 84903975888 scopus 로고    scopus 로고
    • Glucose regulates mitochondrial motility via Milton modification by O-GlcNAc transferase
    • Pekkurnaz, G., et al. Glucose regulates mitochondrial motility via Milton modification by O-GlcNAc transferase. Cell 158 (2014), 54–68.
    • (2014) Cell , vol.158 , pp. 54-68
    • Pekkurnaz, G.1
  • 83
    • 58149091896 scopus 로고    scopus 로고
    • 2+-dependent regulation of kinesin-mediated mitochondrial motility
    • 2+-dependent regulation of kinesin-mediated mitochondrial motility. Cell 136 (2009), 163–174.
    • (2009) Cell , vol.136 , pp. 163-174
    • Wang, X.1    Schwarz, T.L.2
  • 84
    • 10044264391 scopus 로고    scopus 로고
    • Calcium and mitochondria: mechanisms and functions of a troubled relationship
    • Bianchi, K., et al. Calcium and mitochondria: mechanisms and functions of a troubled relationship. Biochim. Biophys. Acta 1742 (2004), 119–131.
    • (2004) Biochim. Biophys. Acta , vol.1742 , pp. 119-131
    • Bianchi, K.1
  • 86
    • 80455143668 scopus 로고    scopus 로고
    • Optic atrophy 1 is an A-kinase anchoring protein on lipid droplets that mediates adrenergic control of lipolysis
    • Pidoux, G., et al. Optic atrophy 1 is an A-kinase anchoring protein on lipid droplets that mediates adrenergic control of lipolysis. EMBO J. 30 (2011), 4371–4386.
    • (2011) EMBO J. , vol.30 , pp. 4371-4386
    • Pidoux, G.1
  • 87
    • 84959512966 scopus 로고    scopus 로고
    • The emerging network of mitochondria–organelle contacts
    • Murley, A., Nunnari, J., The emerging network of mitochondria–organelle contacts. Mol. Cell 61 (2016), 648–653.
    • (2016) Mol. Cell , vol.61 , pp. 648-653
    • Murley, A.1    Nunnari, J.2
  • 88
    • 84859448265 scopus 로고    scopus 로고
    • Mitofusin 2 (Mfn2) links mitochondrial and endoplasmic reticulum function with insulin signaling and is essential for normal glucose homeostasis
    • Sebastian, D., et al. Mitofusin 2 (Mfn2) links mitochondrial and endoplasmic reticulum function with insulin signaling and is essential for normal glucose homeostasis. Proc. Natl. Acad. Sci. U. S. A. 109 (2012), 5523–5528.
    • (2012) Proc. Natl. Acad. Sci. U. S. A. , vol.109 , pp. 5523-5528
    • Sebastian, D.1
  • 89
    • 84883271527 scopus 로고    scopus 로고
    • Mfn2 modulates the UPR and mitochondrial function via repression of PERK
    • Munoz, J.P., et al. Mfn2 modulates the UPR and mitochondrial function via repression of PERK. EMBO J. 32 (2013), 2348–2361.
    • (2013) EMBO J. , vol.32 , pp. 2348-2361
    • Munoz, J.P.1
  • 90
    • 84995615128 scopus 로고    scopus 로고
    • Mitochondria-associated membranes response to nutrient availability and role in metabolic diseases
    • Theurey, P., Rieusset, J., Mitochondria-associated membranes response to nutrient availability and role in metabolic diseases. Trends Endocrinol. Metab. 28 (2017), 32–45.
    • (2017) Trends Endocrinol. Metab. , vol.28 , pp. 32-45
    • Theurey, P.1    Rieusset, J.2
  • 91
    • 84942195533 scopus 로고    scopus 로고
    • Disruption of mitochondrial fission in the liver protects mice from diet-induced obesity and metabolic deterioration
    • Wang, L., et al. Disruption of mitochondrial fission in the liver protects mice from diet-induced obesity and metabolic deterioration. Diabetologia 58 (2015), 2371–2380.
    • (2015) Diabetologia , vol.58 , pp. 2371-2380
    • Wang, L.1
  • 92
    • 84957975315 scopus 로고    scopus 로고
    • FGF21 mediates endocrine control of simple sugar intake and sweet taste preference by the liver
    • von Holstein-Rathlou, S., et al. FGF21 mediates endocrine control of simple sugar intake and sweet taste preference by the liver. Cell Metab. 23 (2016), 335–343.
    • (2016) Cell Metab. , vol.23 , pp. 335-343
    • von Holstein-Rathlou, S.1
  • 93
    • 84936139805 scopus 로고    scopus 로고
    • Implications of mitochondrial dynamics on neurodegeneration and on hypothalamic dysfunction
    • Zorzano, A., Claret, M., Implications of mitochondrial dynamics on neurodegeneration and on hypothalamic dysfunction. Front. Aging Neurosci., 7, 2015, 101.
    • (2015) Front. Aging Neurosci. , vol.7 , pp. 101
    • Zorzano, A.1    Claret, M.2
  • 94
    • 84884823792 scopus 로고    scopus 로고
    • Mitofusin 2 in POMC neurons connects ER stress with leptin resistance and energy imbalance
    • Schneeberger, M., et al. Mitofusin 2 in POMC neurons connects ER stress with leptin resistance and energy imbalance. Cell 155 (2013), 172–187.
    • (2013) Cell , vol.155 , pp. 172-187
    • Schneeberger, M.1
  • 95
    • 85012925584 scopus 로고    scopus 로고
    • DRP1 suppresses leptin and glucose sensing of POMC neurons
    • Santoro, A., et al. DRP1 suppresses leptin and glucose sensing of POMC neurons. Cell Metab. 25 (2017), 647–660.
    • (2017) Cell Metab. , vol.25 , pp. 647-660
    • Santoro, A.1
  • 96
    • 84951837246 scopus 로고    scopus 로고
    • Mitochondrial proteins moonlighting in the nucleus
    • Monaghan, R.M., Whitmarsh, A.J., Mitochondrial proteins moonlighting in the nucleus. Trends Biochem. Sci. 40 (2015), 728–735.
    • (2015) Trends Biochem. Sci. , vol.40 , pp. 728-735
    • Monaghan, R.M.1    Whitmarsh, A.J.2
  • 97
    • 33645530745 scopus 로고    scopus 로고
    • Nrf2 is a critical regulator of the innate immune response and survival during experimental sepsis
    • Thimmulappa, R.K., et al. Nrf2 is a critical regulator of the innate immune response and survival during experimental sepsis. J. Clin. Invest. 116 (2006), 984–995.
    • (2006) J. Clin. Invest. , vol.116 , pp. 984-995
    • Thimmulappa, R.K.1
  • 98
    • 84879602902 scopus 로고    scopus 로고
    • Evaluating and responding to mitochondrial dysfunction: the mitochondrial unfolded-protein response and beyond
    • Haynes, C.M., et al. Evaluating and responding to mitochondrial dysfunction: the mitochondrial unfolded-protein response and beyond. Trends Cell. Biol. 23 (2013), 311–318.
    • (2013) Trends Cell. Biol. , vol.23 , pp. 311-318
    • Haynes, C.M.1
  • 99
    • 0037009521 scopus 로고    scopus 로고
    • A mitochondrial specific stress response in mammalian cells
    • Zhao, Q., et al. A mitochondrial specific stress response in mammalian cells. EMBO J. 21 (2002), 4411–4419.
    • (2002) EMBO J. , vol.21 , pp. 4411-4419
    • Zhao, Q.1
  • 100
    • 84926180334 scopus 로고    scopus 로고
    • Mitochondrial and nuclear accumulation of the transcription factor ATFS-1 promotes OXPHOS recovery during the UPR(mt)
    • Nargund, A.M., et al. Mitochondrial and nuclear accumulation of the transcription factor ATFS-1 promotes OXPHOS recovery during the UPR(mt). Mol. Cell 58 (2015), 123–133.
    • (2015) Mol. Cell , vol.58 , pp. 123-133
    • Nargund, A.M.1
  • 101
    • 84921774753 scopus 로고    scopus 로고
    • Mitochondrial UPR-regulated innate immunity provides resistance to pathogen infection
    • Pellegrino, M.W., et al. Mitochondrial UPR-regulated innate immunity provides resistance to pathogen infection. Nature 516 (2014), 414–417.
    • (2014) Nature , vol.516 , pp. 414-417
    • Pellegrino, M.W.1
  • 102
    • 84978821914 scopus 로고    scopus 로고
    • The transcription factor ATF5 mediates a mammalian mitochondrial UPR
    • Fiorese, C.J., et al. The transcription factor ATF5 mediates a mammalian mitochondrial UPR. Curr. Biol. 26 (2016), 2037–2043.
    • (2016) Curr. Biol. , vol.26 , pp. 2037-2043
    • Fiorese, C.J.1
  • 103
    • 84892989225 scopus 로고    scopus 로고
    • SirT3 regulates the mitochondrial unfolded protein response
    • Papa, L., Germain, D., SirT3 regulates the mitochondrial unfolded protein response. Mol. Cell Biol. 34 (2014), 699–710.
    • (2014) Mol. Cell Biol. , vol.34 , pp. 699-710
    • Papa, L.1    Germain, D.2
  • 104
    • 84896490633 scopus 로고    scopus 로고
    • Toward a new STATe: the role of STATs in mitochondrial function
    • Meier, J.A., Larner, A.C., Toward a new STATe: the role of STATs in mitochondrial function. Semin. Immunol. 26 (2014), 20–28.
    • (2014) Semin. Immunol. , vol.26 , pp. 20-28
    • Meier, J.A.1    Larner, A.C.2
  • 105
    • 79954571354 scopus 로고    scopus 로고
    • The interplay between mitochondrial dynamics and mitophagy
    • Twig, G., Shirihai, O.S., The interplay between mitochondrial dynamics and mitophagy. Antioxid. Redox Signal. 14 (2011), 1939–1951.
    • (2011) Antioxid. Redox Signal. , vol.14 , pp. 1939-1951
    • Twig, G.1    Shirihai, O.S.2
  • 106
    • 84904270185 scopus 로고    scopus 로고
    • A dynamic interface between vacuoles and mitochondria in yeast
    • Elbaz-Alon, Y., et al. A dynamic interface between vacuoles and mitochondria in yeast. Dev. Cell 30 (2014), 95–102.
    • (2014) Dev. Cell , vol.30 , pp. 95-102
    • Elbaz-Alon, Y.1
  • 107
    • 84904255813 scopus 로고    scopus 로고
    • Cellular metabolism regulates contact sites between vacuoles and mitochondria
    • Honscher, C., et al. Cellular metabolism regulates contact sites between vacuoles and mitochondria. Dev. Cell 30 (2014), 86–94.
    • (2014) Dev. Cell , vol.30 , pp. 86-94
    • Honscher, C.1
  • 108
    • 77951716870 scopus 로고    scopus 로고
    • ERMES-mediated ER–mitochondria contacts: molecular hubs for the regulation of mitochondrial biology
    • Kornmann, B., Walter, P., ERMES-mediated ER–mitochondria contacts: molecular hubs for the regulation of mitochondrial biology. J. Cell Sci. 123:Pt 9 (2010), 1389–1393.
    • (2010) J. Cell Sci. , vol.123 , pp. 1389-1393
    • Kornmann, B.1    Walter, P.2
  • 109
    • 80455135722 scopus 로고    scopus 로고
    • Perilipin 5, a lipid droplet-associated protein, provides physical and metabolic linkage to mitochondria
    • Wang, H., et al. Perilipin 5, a lipid droplet-associated protein, provides physical and metabolic linkage to mitochondria. J. Lipid Res. 52 (2011), 2159–2168.
    • (2011) J. Lipid Res. , vol.52 , pp. 2159-2168
    • Wang, H.1
  • 110
    • 85012180650 scopus 로고    scopus 로고
    • Metabolic signaling functions of ER–mitochondria contact sites: role in metabolic diseases
    • Tubbs, E., Rieusset, J., Metabolic signaling functions of ER–mitochondria contact sites: role in metabolic diseases. J. Mol. Endocrinol. 58 (2017), R87–R106.
    • (2017) J. Mol. Endocrinol. , vol.58 , pp. R87-R106
    • Tubbs, E.1    Rieusset, J.2
  • 111
    • 84871011474 scopus 로고    scopus 로고
    • An early age increase in vacuolar pH limits mitochondrial function and lifespan in yeast
    • Hughes, A.L., Gottschling, D.E., An early age increase in vacuolar pH limits mitochondrial function and lifespan in yeast. Nature 492 (2012), 261–265.
    • (2012) Nature , vol.492 , pp. 261-265
    • Hughes, A.L.1    Gottschling, D.E.2
  • 112
    • 84971519354 scopus 로고    scopus 로고
    • Selective sorting and destruction of mitochondrial membrane proteins in aged yeast
    • Hughes, A.L., et al. Selective sorting and destruction of mitochondrial membrane proteins in aged yeast. Elife, 5, 2016, e13943.
    • (2016) Elife , vol.5 , pp. e13943
    • Hughes, A.L.1
  • 113
    • 84969761352 scopus 로고    scopus 로고
    • Mitochondrial respiration controls lysosomal function during inflammatory T cell responses
    • Baixauli, F., et al. Mitochondrial respiration controls lysosomal function during inflammatory T cell responses. Cell Metab. 22 (2015), 485–498.
    • (2015) Cell Metab. , vol.22 , pp. 485-498
    • Baixauli, F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.