-
1
-
-
57049142094
-
Metabolic flexibility and insulin resistance
-
1 Galgani, J.E., et al. Metabolic flexibility and insulin resistance. Am. J. Physiol. Endocrinol. Metab. 295 (2008), E1009–E1017.
-
(2008)
Am. J. Physiol. Endocrinol. Metab.
, vol.295
, pp. E1009-E1017
-
-
Galgani, J.E.1
-
2
-
-
65249133510
-
Endoplasmic reticulum: nutrient sensor in physiology and pathology
-
2 Mandl, J., et al. Endoplasmic reticulum: nutrient sensor in physiology and pathology. Trends Endocrinol. Metab. 20 (2009), 194–201.
-
(2009)
Trends Endocrinol. Metab.
, vol.20
, pp. 194-201
-
-
Mandl, J.1
-
3
-
-
84899955772
-
Mitochondrial response to nutrient availability and its role in metabolic disease
-
3 Gao, A.W., et al. Mitochondrial response to nutrient availability and its role in metabolic disease. EMBO Mol. Med. 6 (2014), 580–589.
-
(2014)
EMBO Mol. Med.
, vol.6
, pp. 580-589
-
-
Gao, A.W.1
-
4
-
-
84926681917
-
Mitochondria-associated membranes: composition, molecular mechanisms, and physiopathological implications
-
4 Giorgi, C., et al. Mitochondria-associated membranes: composition, molecular mechanisms, and physiopathological implications. Antioxid. Redox Signal. 22 (2015), 995–1019.
-
(2015)
Antioxid. Redox Signal.
, vol.22
, pp. 995-1019
-
-
Giorgi, C.1
-
5
-
-
84965079464
-
Mitochondria-associated endoplasmic reticulum membranes allow adaptation of mitochondrial metabolism to glucose availability in the liver
-
5 Theurey, P., et al. Mitochondria-associated endoplasmic reticulum membranes allow adaptation of mitochondrial metabolism to glucose availability in the liver. J. Mol. Cell Biol. 8 (2016), 129–143.
-
(2016)
J. Mol. Cell Biol.
, vol.8
, pp. 129-143
-
-
Theurey, P.1
-
6
-
-
0034076660
-
Fuel selection in human skeletal muscle in insulin resistance: a reexamination
-
6 Kelley, D.E., et al. Fuel selection in human skeletal muscle in insulin resistance: a reexamination. Diabetes 49 (2000), 677–683.
-
(2000)
Diabetes
, vol.49
, pp. 677-683
-
-
Kelley, D.E.1
-
7
-
-
0033645223
-
Impaired oxidation of plasma-derived fatty acids in type 2 diabetic subjects during moderate-intensity exercise
-
7 Blaak, E.E., et al. Impaired oxidation of plasma-derived fatty acids in type 2 diabetic subjects during moderate-intensity exercise. Diabetes 49 (2000), 2102–2107.
-
(2000)
Diabetes
, vol.49
, pp. 2102-2107
-
-
Blaak, E.E.1
-
8
-
-
0028128529
-
Beta-adrenergic stimulation of energy expenditure and forearm skeletal muscle metabolism in lean and obese men
-
8 Blaak, E.E., et al. Beta-adrenergic stimulation of energy expenditure and forearm skeletal muscle metabolism in lean and obese men. Am. J. Physiol. 267 (1994), E306–E315.
-
(1994)
Am. J. Physiol.
, vol.267
, pp. E306-E315
-
-
Blaak, E.E.1
-
9
-
-
0027946529
-
Impaired free fatty acid utilization by skeletal muscle in non-insulin-dependent diabetes mellitus
-
9 Kelley, D.E., et al. Impaired free fatty acid utilization by skeletal muscle in non-insulin-dependent diabetes mellitus. J. Clin. Invest. 94 (1994), 2349–2356.
-
(1994)
J. Clin. Invest.
, vol.94
, pp. 2349-2356
-
-
Kelley, D.E.1
-
10
-
-
42449089346
-
Metabolic flexibility in response to glucose is not impaired in people with type 2 diabetes after controlling for glucose disposal rate
-
10 Galgani, J.E., et al. Metabolic flexibility in response to glucose is not impaired in people with type 2 diabetes after controlling for glucose disposal rate. Diabetes 57 (2008), 841–845.
-
(2008)
Diabetes
, vol.57
, pp. 841-845
-
-
Galgani, J.E.1
-
11
-
-
33845542745
-
Molecular mechanisms of insulin resistance in humans and their potential links with mitochondrial dysfunction
-
11 Morino, K., et al. Molecular mechanisms of insulin resistance in humans and their potential links with mitochondrial dysfunction. Diabetes 55 (2006), S9–S15.
-
(2006)
Diabetes
, vol.55
, pp. S9-S15
-
-
Morino, K.1
-
12
-
-
42949109650
-
Impaired skeletal muscle substrate oxidation in glucose-intolerant men improves after weight loss
-
12 Corpeleijn, E., et al. Impaired skeletal muscle substrate oxidation in glucose-intolerant men improves after weight loss. Obesity (Silver Spring) 16 (2008), 1025–1032.
-
(2008)
Obesity (Silver Spring)
, vol.16
, pp. 1025-1032
-
-
Corpeleijn, E.1
-
13
-
-
84897108918
-
Hepatic glucose sensing and integrative pathways in the liver
-
13 Oosterveer, M.H., et al. Hepatic glucose sensing and integrative pathways in the liver. Cell. Mol. Life Sci. 71 (2014), 1453–1467.
-
(2014)
Cell. Mol. Life Sci.
, vol.71
, pp. 1453-1467
-
-
Oosterveer, M.H.1
-
14
-
-
67650868959
-
Mitochondrial dynamics in mammalian health and disease
-
14 Liesa, M., et al. Mitochondrial dynamics in mammalian health and disease. Physiol. Rev. 89 (2009), 799–845.
-
(2009)
Physiol. Rev.
, vol.89
, pp. 799-845
-
-
Liesa, M.1
-
15
-
-
79955623510
-
During autophagy mitochondria elongate, are spared from degradation and sustain cell viability
-
15 Gomes, L.C., et al. During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat. Cell Biol. 13 (2011), 589–598.
-
(2011)
Nat. Cell Biol.
, vol.13
, pp. 589-598
-
-
Gomes, L.C.1
-
16
-
-
84955242874
-
Pharmacological activation of AMPK prevents Drp1-mediated mitochondrial fission and alleviates endoplasmic reticulum stress-associated endothelial dysfunction
-
16 Li, J., et al. Pharmacological activation of AMPK prevents Drp1-mediated mitochondrial fission and alleviates endoplasmic reticulum stress-associated endothelial dysfunction. J. Mol. Cell. Cardiol. 86 (2015), 62–74.
-
(2015)
J. Mol. Cell. Cardiol.
, vol.86
, pp. 62-74
-
-
Li, J.1
-
17
-
-
84954318420
-
Metabolism. AMP-activated protein kinase mediates mitochondrial fission in response to energy stress
-
17 Toyama, E.Q., et al. Metabolism. AMP-activated protein kinase mediates mitochondrial fission in response to energy stress. Science 351 (2016), 275–281.
-
(2016)
Science
, vol.351
, pp. 275-281
-
-
Toyama, E.Q.1
-
18
-
-
84867740975
-
Mitophagy is triggered by mild oxidative stress in a mitochondrial fission dependent manner
-
18 Frank, M., et al. Mitophagy is triggered by mild oxidative stress in a mitochondrial fission dependent manner. Biochim. Biophys. Acta 1823 (2012), 2297–2310.
-
(2012)
Biochim. Biophys. Acta
, vol.1823
, pp. 2297-2310
-
-
Frank, M.1
-
19
-
-
0037593949
-
Mitofusin-2 determines mitochondrial network architecture and mitochondrial metabolism. A novel regulatory mechanism altered in obesity
-
19 Bach, D., et al. Mitofusin-2 determines mitochondrial network architecture and mitochondrial metabolism. A novel regulatory mechanism altered in obesity. J. Biol. Chem. 278 (2003), 17190–17197.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 17190-17197
-
-
Bach, D.1
-
20
-
-
26244456362
-
Could the low level of expression of the gene encoding skeletal muscle mitofusin-2 account for the metabolic inflexibility of obesity?
-
20 Mingrone, G., et al. Could the low level of expression of the gene encoding skeletal muscle mitofusin-2 account for the metabolic inflexibility of obesity?. Diabetologia 48 (2005), 2108–2114.
-
(2005)
Diabetologia
, vol.48
, pp. 2108-2114
-
-
Mingrone, G.1
-
21
-
-
55749084738
-
A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis
-
21 Ahn, B.H., et al. A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc. Natl. Acad. Sci. U.S.A. 105 (2008), 14447–14452.
-
(2008)
Proc. Natl. Acad. Sci. U.S.A.
, vol.105
, pp. 14447-14452
-
-
Ahn, B.H.1
-
22
-
-
84891506172
-
Sirt3 regulates metabolic flexibility of skeletal muscle through reversible enzymatic deacetylation
-
22 Jing, E., et al. Sirt3 regulates metabolic flexibility of skeletal muscle through reversible enzymatic deacetylation. Diabetes 62 (2013), 3404–3417.
-
(2013)
Diabetes
, vol.62
, pp. 3404-3417
-
-
Jing, E.1
-
23
-
-
67349276169
-
+ metabolism and SIRT1 activity
-
+ metabolism and SIRT1 activity. Nature 458 (2009), 1056–1060.
-
(2009)
Nature
, vol.458
, pp. 1056-1060
-
-
Canto, C.1
-
24
-
-
81055122671
-
Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase
-
24 Du, J., et al. Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. Science 334 (2011), 806–809.
-
(2011)
Science
, vol.334
, pp. 806-809
-
-
Du, J.1
-
25
-
-
83055173304
-
The first identification of lysine malonylation substrates and its regulatory enzyme
-
M111.012658
-
25 Peng, C., et al. The first identification of lysine malonylation substrates and its regulatory enzyme. Mol. Cell. Proteomics, 10, 2011 M111.012658.
-
(2011)
Mol. Cell. Proteomics
, vol.10
-
-
Peng, C.1
-
26
-
-
84981517030
-
Mitochondrial biogenesis and clearance: a balancing act
-
Published online July 27, 2016
-
26 Ploumi, C., et al. Mitochondrial biogenesis and clearance: a balancing act. FEBS J., 2016, 10.1111/febs.13820 Published online July 27, 2016.
-
(2016)
FEBS J.
-
-
Ploumi, C.1
-
27
-
-
77957349477
-
AMP-activated protein kinase and its downstream transcriptional pathways
-
27 Canto, C., et al. AMP-activated protein kinase and its downstream transcriptional pathways. Cell. Mol. Life Sci. 67 (2010), 3407–3423.
-
(2010)
Cell. Mol. Life Sci.
, vol.67
, pp. 3407-3423
-
-
Canto, C.1
-
28
-
-
79251587803
-
Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy
-
28 Egan, D.F., et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331 (2011), 456–461.
-
(2011)
Science
, vol.331
, pp. 456-461
-
-
Egan, D.F.1
-
29
-
-
14544282413
-
Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1
-
29 Rodgers, J.T., et al. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 434 (2005), 113–118.
-
(2005)
Nature
, vol.434
, pp. 113-118
-
-
Rodgers, J.T.1
-
30
-
-
77249156847
-
Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle
-
30 Canto, C., et al. Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle. Cell Metab. 11 (2010), 213–219.
-
(2010)
Cell Metab.
, vol.11
, pp. 213-219
-
-
Canto, C.1
-
31
-
-
34247259630
-
Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha
-
31 Gerhart-Hines, Z., et al. Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha. EMBO J. 26 (2007), 1913–1923.
-
(2007)
EMBO J.
, vol.26
, pp. 1913-1923
-
-
Gerhart-Hines, Z.1
-
32
-
-
77955918482
-
Reversible acetylation of PGC-1: connecting energy sensors and effectors to guarantee metabolic flexibility
-
32 Jeninga, E.H., et al. Reversible acetylation of PGC-1: connecting energy sensors and effectors to guarantee metabolic flexibility. Oncogene 29 (2010), 4617–4624.
-
(2010)
Oncogene
, vol.29
, pp. 4617-4624
-
-
Jeninga, E.H.1
-
33
-
-
79951706196
-
Skeletal muscle mitochondria in insulin resistance: differences in intermyofibrillar versus subsarcolemmal subpopulations and relationship to metabolic flexibility
-
33 Chomentowski, P., et al. Skeletal muscle mitochondria in insulin resistance: differences in intermyofibrillar versus subsarcolemmal subpopulations and relationship to metabolic flexibility. J. Clin. Endocrinol. Metab. 96 (2011), 494–503.
-
(2011)
J. Clin. Endocrinol. Metab.
, vol.96
, pp. 494-503
-
-
Chomentowski, P.1
-
34
-
-
43249109174
-
Endoplasmic reticulum stress responses
-
34 Schroder, M., Endoplasmic reticulum stress responses. Cell. Mol. Life Sci. 65 (2008), 862–894.
-
(2008)
Cell. Mol. Life Sci.
, vol.65
, pp. 862-894
-
-
Schroder, M.1
-
35
-
-
0036086064
-
The unfolded protein response in nutrient sensing and differentiation
-
35 Kaufman, R.J., et al. The unfolded protein response in nutrient sensing and differentiation. Nat. Rev. Mol. Cell Biol. 3 (2002), 411–421.
-
(2002)
Nat. Rev. Mol. Cell Biol.
, vol.3
, pp. 411-421
-
-
Kaufman, R.J.1
-
36
-
-
51249112769
-
Chemical induction of the unfolded protein response in the liver increases glucose production and is activated during insulin-induced hypoglycaemia in rats
-
36 Gonzales, J.C., et al. Chemical induction of the unfolded protein response in the liver increases glucose production and is activated during insulin-induced hypoglycaemia in rats. Diabetologia 51 (2008), 1920–1929.
-
(2008)
Diabetologia
, vol.51
, pp. 1920-1929
-
-
Gonzales, J.C.1
-
37
-
-
34249933087
-
Acute nutrient regulation of the unfolded protein response and integrated stress response in cultured rat pancreatic islets
-
37 Elouil, H., et al. Acute nutrient regulation of the unfolded protein response and integrated stress response in cultured rat pancreatic islets. Diabetologia 50 (2007), 1442–1452.
-
(2007)
Diabetologia
, vol.50
, pp. 1442-1452
-
-
Elouil, H.1
-
38
-
-
49649084031
-
Initiation and execution of lipotoxic ER stress in pancreatic beta-cells
-
38 Cunha, D.A., et al. Initiation and execution of lipotoxic ER stress in pancreatic beta-cells. J. Cell Sci. 121 (2008), 2308–2318.
-
(2008)
J. Cell Sci.
, vol.121
, pp. 2308-2318
-
-
Cunha, D.A.1
-
39
-
-
84884735588
-
AMPK regulates ER morphology and function in stressed pancreatic beta-cells via phosphorylation of DRP1
-
39 Wikstrom, J.D., et al. AMPK regulates ER morphology and function in stressed pancreatic beta-cells via phosphorylation of DRP1. Mol. Endocrinol. 27 (2013), 1706–1723.
-
(2013)
Mol. Endocrinol.
, vol.27
, pp. 1706-1723
-
-
Wikstrom, J.D.1
-
40
-
-
84859232387
-
2+ fluxes at the endoplasmic reticulum-mitochondria interface (MAM)
-
2+ fluxes at the endoplasmic reticulum-mitochondria interface (MAM). Antioxid. Redox Signal. 16 (2012), 1077–1087.
-
(2012)
Antioxid. Redox Signal.
, vol.16
, pp. 1077-1087
-
-
Anelli, T.1
-
41
-
-
84870984470
-
PERK is required at the ER-mitochondrial contact sites to convey apoptosis after ROS-based ER stress
-
41 Verfaillie, T., et al. PERK is required at the ER-mitochondrial contact sites to convey apoptosis after ROS-based ER stress. Cell Death Differ. 19 (2012), 1880–1891.
-
(2012)
Cell Death Differ.
, vol.19
, pp. 1880-1891
-
-
Verfaillie, T.1
-
42
-
-
84883271527
-
Mfn2 modulates the UPR and mitochondrial function via repression of PERK
-
42 Munoz, J.P., et al. Mfn2 modulates the UPR and mitochondrial function via repression of PERK. EMBO J. 32 (2013), 2348–2361.
-
(2013)
EMBO J.
, vol.32
, pp. 2348-2361
-
-
Munoz, J.P.1
-
43
-
-
84902332964
-
Calcium-dependent regulation of glucose homeostasis in the liver
-
43 Bartlett, P.J., et al. Calcium-dependent regulation of glucose homeostasis in the liver. Cell Calcium 55 (2014), 306–316.
-
(2014)
Cell Calcium
, vol.55
, pp. 306-316
-
-
Bartlett, P.J.1
-
44
-
-
84860427618
-
Calcium signaling through CaMKII regulates hepatic glucose production in fasting and obesity
-
44 Ozcan, L., et al. Calcium signaling through CaMKII regulates hepatic glucose production in fasting and obesity. Cell Metab. 15 (2012), 739–751.
-
(2012)
Cell Metab.
, vol.15
, pp. 739-751
-
-
Ozcan, L.1
-
45
-
-
84860510820
-
Inositol-1,4,5-trisphosphate receptor regulates hepatic gluconeogenesis in fasting and diabetes
-
45 Wang, Y., et al. Inositol-1,4,5-trisphosphate receptor regulates hepatic gluconeogenesis in fasting and diabetes. Nature 485 (2012), 128–132.
-
(2012)
Nature
, vol.485
, pp. 128-132
-
-
Wang, Y.1
-
47
-
-
68649090226
-
Regulation of mitochondrial dehydrogenases by calcium ions
-
47 Denton, R.M., Regulation of mitochondrial dehydrogenases by calcium ions. Biochim. Biophys. Acta 1787 (2009), 1309–1316.
-
(2009)
Biochim. Biophys. Acta
, vol.1787
, pp. 1309-1316
-
-
Denton, R.M.1
-
48
-
-
0034052542
-
2+ activation of heart mitochondrial oxidative phosphorylation: role of the F(0)/F(1)-ATPase
-
2+ activation of heart mitochondrial oxidative phosphorylation: role of the F(0)/F(1)-ATPase. Am. J. Physiol. Cell Physiol. 278 (2000), C423–C435.
-
(2000)
Am. J. Physiol. Cell Physiol.
, vol.278
, pp. C423-C435
-
-
Territo, P.R.1
-
49
-
-
0036154857
-
Control of mitochondrial beta-oxidation flux
-
49 Eaton, S., Control of mitochondrial beta-oxidation flux. Prog. Lipid Res. 41 (2002), 197–239.
-
(2002)
Prog. Lipid Res.
, vol.41
, pp. 197-239
-
-
Eaton, S.1
-
50
-
-
77957842939
-
2+ exchange, metabolic flexibility, and propensity for heart failure in mice
-
2+ exchange, metabolic flexibility, and propensity for heart failure in mice. J. Clin. Invest. 120 (2010), 3680–3687.
-
(2010)
J. Clin. Invest.
, vol.120
, pp. 3680-3687
-
-
Elrod, J.W.1
-
51
-
-
84909595098
-
A Mitofusin-2-dependent inactivating cleavage of Opa1 links changes in mitochondria cristae and ER contacts in the postprandial liver
-
51 Sood, A., et al. A Mitofusin-2-dependent inactivating cleavage of Opa1 links changes in mitochondria cristae and ER contacts in the postprandial liver. Proc. Natl. Acad. Sci. U.S.A. 111 (2014), 16017–16022.
-
(2014)
Proc. Natl. Acad. Sci. U.S.A.
, vol.111
, pp. 16017-16022
-
-
Sood, A.1
-
52
-
-
84907486490
-
Mitochondria-associated endoplasmic reticulum membrane (MAM) integrity is required for insulin signaling and is implicated in hepatic insulin resistance
-
52 Tubbs, E., et al. Mitochondria-associated endoplasmic reticulum membrane (MAM) integrity is required for insulin signaling and is implicated in hepatic insulin resistance. Diabetes 63 (2014), 3279–3294.
-
(2014)
Diabetes
, vol.63
, pp. 3279-3294
-
-
Tubbs, E.1
-
53
-
-
0032511112
-
2+ responses
-
2+ responses. Science 280 (1998), 1763–1766.
-
(1998)
Science
, vol.280
, pp. 1763-1766
-
-
Rizzuto, R.1
-
54
-
-
33749022800
-
Structural and functional features and significance of the physical linkage between ER and mitochondria
-
54 Csordas, G., et al. Structural and functional features and significance of the physical linkage between ER and mitochondria. J. Cell Biol. 174 (2006), 915–921.
-
(2006)
J. Cell Biol.
, vol.174
, pp. 915-921
-
-
Csordas, G.1
-
56
-
-
84904967279
-
New functions of mitochondria associated membranes in cellular signaling
-
56 van Vliet, A.R., et al. New functions of mitochondria associated membranes in cellular signaling. Biochim. Biophys. Acta 1843 (2014), 2253–2262.
-
(2014)
Biochim. Biophys. Acta
, vol.1843
, pp. 2253-2262
-
-
van Vliet, A.R.1
-
57
-
-
78649425814
-
PML regulates apoptosis at endoplasmic reticulum by modulating calcium release
-
57 Giorgi, C., et al. PML regulates apoptosis at endoplasmic reticulum by modulating calcium release. Science 330 (2010), 1247–1251.
-
(2010)
Science
, vol.330
, pp. 1247-1251
-
-
Giorgi, C.1
-
58
-
-
84881098989
-
Feature article: mTOR complex 2-Akt signaling at mitochondria-associated endoplasmic reticulum membranes (MAM) regulates mitochondrial physiology
-
58 Betz, C., et al. Feature article: mTOR complex 2-Akt signaling at mitochondria-associated endoplasmic reticulum membranes (MAM) regulates mitochondrial physiology. Proc. Natl. Acad. Sci. U.S.A. 110 (2013), 12526–12534.
-
(2013)
Proc. Natl. Acad. Sci. U.S.A.
, vol.110
, pp. 12526-12534
-
-
Betz, C.1
-
60
-
-
84887589243
-
2+ signaling and apoptosis in a protein phosphatase-dependent manner
-
2+ signaling and apoptosis in a protein phosphatase-dependent manner. Cell Death Differ. 20 (2013), 1631–1643.
-
(2013)
Cell Death Differ.
, vol.20
, pp. 1631-1643
-
-
Bononi, A.1
-
61
-
-
84991968015
-
2+ uptake disrupts insulin signaling in hypertrophic cardiomyocytes
-
2+ uptake disrupts insulin signaling in hypertrophic cardiomyocytes. Cell Commun. Signal., 12, 2014, 68.
-
(2014)
Cell Commun. Signal.
, vol.12
, pp. 68
-
-
Gutierrez, T.1
-
62
-
-
0038561165
-
Xylulose 5-phosphate mediates glucose-induced lipogenesis by xylulose 5-phosphate-activated protein phosphatase in rat liver
-
62 Kabashima, T., et al. Xylulose 5-phosphate mediates glucose-induced lipogenesis by xylulose 5-phosphate-activated protein phosphatase in rat liver. Proc. Natl. Acad. Sci. U.S.A. 100 (2003), 5107–5112.
-
(2003)
Proc. Natl. Acad. Sci. U.S.A.
, vol.100
, pp. 5107-5112
-
-
Kabashima, T.1
-
63
-
-
84864397831
-
Hyperactivation of protein phosphatase 2A in models of glucolipotoxicity and diabetes: potential mechanisms and functional consequences
-
63 Kowluru, A., et al. Hyperactivation of protein phosphatase 2A in models of glucolipotoxicity and diabetes: potential mechanisms and functional consequences. Biochem. Pharmacol. 84 (2012), 591–597.
-
(2012)
Biochem. Pharmacol.
, vol.84
, pp. 591-597
-
-
Kowluru, A.1
-
64
-
-
28844434558
-
mTOR.RICTOR is the Ser473 kinase for Akt/protein kinase B in 3T3-L1 adipocytes
-
64 Hresko, R.C., et al. mTOR.RICTOR is the Ser473 kinase for Akt/protein kinase B in 3T3-L1 adipocytes. J. Biol. Chem. 280 (2005), 40406–40416.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 40406-40416
-
-
Hresko, R.C.1
-
65
-
-
0032734577
-
The dynamin-like protein DLP1 is essential for normal distribution and morphology of the endoplasmic reticulum and mitochondria in mammalian cells
-
65 Pitts, K.R., et al. The dynamin-like protein DLP1 is essential for normal distribution and morphology of the endoplasmic reticulum and mitochondria in mammalian cells. Mol. Biol. Cell 10 (1999), 4403–4417.
-
(1999)
Mol. Biol. Cell
, vol.10
, pp. 4403-4417
-
-
Pitts, K.R.1
-
66
-
-
82755163057
-
Determinants for substrate specificity of protein phosphatase 2A
-
66 Slupe, A.M., et al. Determinants for substrate specificity of protein phosphatase 2A. Enzyme Res., 2011, 2011, 398751.
-
(2011)
Enzyme Res.
, vol.2011
, pp. 398751
-
-
Slupe, A.M.1
-
67
-
-
85043221259
-
Mitochondrial dysfunction and insulin resistance: an update
-
67 Montgomery, M.K., et al. Mitochondrial dysfunction and insulin resistance: an update. Endocr. Connect. 4 (2015), R1–R15.
-
(2015)
Endocr. Connect.
, vol.4
, pp. R1-R15
-
-
Montgomery, M.K.1
-
68
-
-
84938287688
-
Targeting endoplasmic reticulum stress in insulin resistance
-
68 Salvado, L., et al. Targeting endoplasmic reticulum stress in insulin resistance. Trends Endocrinol. Metab. 26 (2015), 438–448.
-
(2015)
Trends Endocrinol. Metab.
, vol.26
, pp. 438-448
-
-
Salvado, L.1
-
69
-
-
84940721655
-
Calcium homeostasis and organelle function in the pathogenesis of obesity and diabetes
-
69 Arruda, A.P., et al. Calcium homeostasis and organelle function in the pathogenesis of obesity and diabetes. Cell Metab. 22 (2015), 381–397.
-
(2015)
Cell Metab.
, vol.22
, pp. 381-397
-
-
Arruda, A.P.1
-
70
-
-
84938217139
-
ER-to-mitochondria miscommunication and metabolic diseases
-
70 Lopez-Crisosto, C., et al. ER-to-mitochondria miscommunication and metabolic diseases. Cell Metab. 1852 (2015), 2096–2105.
-
(2015)
Cell Metab.
, vol.1852
, pp. 2096-2105
-
-
Lopez-Crisosto, C.1
-
71
-
-
56949089426
-
Coupling mitochondrial dysfunction to endoplasmic reticulum stress response: a molecular mechanism leading to hepatic insulin resistance
-
71 Lim, J.H., et al. Coupling mitochondrial dysfunction to endoplasmic reticulum stress response: a molecular mechanism leading to hepatic insulin resistance. Cell. Signal. 21 (2009), 169–177.
-
(2009)
Cell. Signal.
, vol.21
, pp. 169-177
-
-
Lim, J.H.1
-
72
-
-
84889674935
-
Activation of calcium/calmodulin-dependent protein kinase II in obesity mediates suppression of hepatic insulin signaling
-
72 Ozcan, L., et al. Activation of calcium/calmodulin-dependent protein kinase II in obesity mediates suppression of hepatic insulin signaling. Cell Metab. 18 (2013), 803–815.
-
(2013)
Cell Metab.
, vol.18
, pp. 803-815
-
-
Ozcan, L.1
-
73
-
-
79957605136
-
Aberrant lipid metabolism disrupts calcium homeostasis causing liver endoplasmic reticulum stress in obesity
-
73 Fu, S., et al. Aberrant lipid metabolism disrupts calcium homeostasis causing liver endoplasmic reticulum stress in obesity. Nature 473 (2011), 528–531.
-
(2011)
Nature
, vol.473
, pp. 528-531
-
-
Fu, S.1
-
74
-
-
57349100367
-
Mitofusin 2 tethers endoplasmic reticulum to mitochondria
-
74 de Brito, O.M., et al. Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature 456 (2008), 605–610.
-
(2008)
Nature
, vol.456
, pp. 605-610
-
-
de Brito, O.M.1
-
75
-
-
84859448265
-
Mitofusin 2 (Mfn2) links mitochondrial and endoplasmic reticulum function with insulin signaling and is essential for normal glucose homeostasis
-
75 Sebastian, D., et al. Mitofusin 2 (Mfn2) links mitochondrial and endoplasmic reticulum function with insulin signaling and is essential for normal glucose homeostasis. Proc. Natl. Acad. Sci. U.S.A. 109 (2012), 5523–5528.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 5523-5528
-
-
Sebastian, D.1
-
76
-
-
84860454425
-
Hepatic mTORC2 activates glycolysis and lipogenesis through Akt, glucokinase, and SREBP1c
-
76 Hagiwara, A., et al. Hepatic mTORC2 activates glycolysis and lipogenesis through Akt, glucokinase, and SREBP1c. Cell Metab. 15 (2012), 725–738.
-
(2012)
Cell Metab.
, vol.15
, pp. 725-738
-
-
Hagiwara, A.1
-
77
-
-
80052556278
-
Inositol 1,4,5-trisphosphate receptor 1 mutation perturbs glucose homeostasis and enhances susceptibility to diet-induced diabetes
-
77 Ye, R., et al. Inositol 1,4,5-trisphosphate receptor 1 mutation perturbs glucose homeostasis and enhances susceptibility to diet-induced diabetes. J. Endocrinol. 210 (2011), 209–217.
-
(2011)
J. Endocrinol.
, vol.210
, pp. 209-217
-
-
Ye, R.1
-
78
-
-
84885020405
-
Depressing mitochondria-reticulum interactions protects cardiomyocytes from lethal hypoxia-reoxygenation injury
-
78 Paillard, M., et al. Depressing mitochondria-reticulum interactions protects cardiomyocytes from lethal hypoxia-reoxygenation injury. Circulation 128 (2013), 1555–1565.
-
(2013)
Circulation
, vol.128
, pp. 1555-1565
-
-
Paillard, M.1
-
79
-
-
84957436899
-
Disruption of calcium transfer from ER to mitochondria links alterations of mitochondria-associated ER membrane integrity to hepatic insulin resistance
-
79 Rieusset, J., et al. Disruption of calcium transfer from ER to mitochondria links alterations of mitochondria-associated ER membrane integrity to hepatic insulin resistance. Diabetologia 59 (2016), 614–623.
-
(2016)
Diabetologia
, vol.59
, pp. 614-623
-
-
Rieusset, J.1
-
80
-
-
84884823792
-
Mitofusin 2 in POMC neurons connects ER stress with leptin resistance and energy imbalance
-
80 Schneeberger, M., et al. Mitofusin 2 in POMC neurons connects ER stress with leptin resistance and energy imbalance. Cell 155 (2013), 172–187.
-
(2013)
Cell
, vol.155
, pp. 172-187
-
-
Schneeberger, M.1
-
81
-
-
66149104113
-
Cisd2 deficiency drives premature aging and causes mitochondria-mediated defects in mice
-
81 Chen, Y.F., et al. Cisd2 deficiency drives premature aging and causes mitochondria-mediated defects in mice. Genes Dev. 23 (2009), 1183–1194.
-
(2009)
Genes Dev.
, vol.23
, pp. 1183-1194
-
-
Chen, Y.F.1
-
82
-
-
84906826961
-
2+ homeostasis
-
2+ homeostasis. Hum. Mol. Genet. 23 (2014), 4770–4785.
-
(2014)
Hum. Mol. Genet.
, vol.23
, pp. 4770-4785
-
-
Wang, C.H.1
-
83
-
-
84925581335
-
Chronic enrichment of hepatic endoplasmic reticulum-mitochondria contact leads to mitochondrial dysfunction in obesity
-
83 Arruda, A.P., et al. Chronic enrichment of hepatic endoplasmic reticulum-mitochondria contact leads to mitochondrial dysfunction in obesity. Nat. Med. 20 (2014), 1427–1435.
-
(2014)
Nat. Med.
, vol.20
, pp. 1427-1435
-
-
Arruda, A.P.1
-
84
-
-
84940550513
-
Regulation of autophagy by coordinated action of mTORC1 and protein phosphatase 2A
-
84 Wong, P.M., et al. Regulation of autophagy by coordinated action of mTORC1 and protein phosphatase 2A. Nat. Commun., 6, 2015, 8048.
-
(2015)
Nat. Commun.
, vol.6
, pp. 8048
-
-
Wong, P.M.1
-
85
-
-
34248199965
-
Activation of protein phosphatase 2A by palmitate inhibits AMP-activated protein kinase
-
85 Wu, Y., et al. Activation of protein phosphatase 2A by palmitate inhibits AMP-activated protein kinase. J. Biol. Chem. 282 (2007), 9777–9788.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 9777-9788
-
-
Wu, Y.1
-
86
-
-
0030786078
-
Ceramide-activated protein phosphatase-2A activity in insulin-secreting cells
-
86 Kowluru, A., et al. Ceramide-activated protein phosphatase-2A activity in insulin-secreting cells. FEBS Lett. 418 (1997), 179–182.
-
(1997)
FEBS Lett.
, vol.418
, pp. 179-182
-
-
Kowluru, A.1
-
87
-
-
84893187581
-
High glucose exposure promotes activation of protein phosphatase 2A in rodent islets and INS-1 832/13 beta-cells by increasing the posttranslational carboxylmethylation of its catalytic subunit
-
87 Arora, D.K., et al. High glucose exposure promotes activation of protein phosphatase 2A in rodent islets and INS-1 832/13 beta-cells by increasing the posttranslational carboxylmethylation of its catalytic subunit. Endocrinology 155 (2014), 380–391.
-
(2014)
Endocrinology
, vol.155
, pp. 380-391
-
-
Arora, D.K.1
-
88
-
-
80455174428
-
Free fatty acid-induced PP2A hyperactivity selectively impairs hepatic insulin action on glucose metabolism
-
88 Galbo, T., et al. Free fatty acid-induced PP2A hyperactivity selectively impairs hepatic insulin action on glucose metabolism. PLoS ONE, 6, 2011, e27424.
-
(2011)
PLoS ONE
, vol.6
, pp. e27424
-
-
Galbo, T.1
-
89
-
-
84898471718
-
Enhanced insulin sensitivity associated with provision of mono and polyunsaturated fatty acids in skeletal muscle cells involves counter modulation of PP2A
-
89 Nardi, F., et al. Enhanced insulin sensitivity associated with provision of mono and polyunsaturated fatty acids in skeletal muscle cells involves counter modulation of PP2A. PLoS ONE, 9, 2014, e92255.
-
(2014)
PLoS ONE
, vol.9
, pp. e92255
-
-
Nardi, F.1
-
90
-
-
84959206870
-
Quantitative proteomics reveals novel protein interaction partners of PP2A catalytic subunit in pancreatic beta-cells
-
90 Zhang, X., et al. Quantitative proteomics reveals novel protein interaction partners of PP2A catalytic subunit in pancreatic beta-cells. Mol. Cell. Endocrinol. 424 (2016), 1–11.
-
(2016)
Mol. Cell. Endocrinol.
, vol.424
, pp. 1-11
-
-
Zhang, X.1
-
91
-
-
84924251717
-
Hepatocyte-specific ablation of PP2A catalytic subunit alpha attenuates liver fibrosis progression via TGF-beta1/Smad signaling
-
91 Lu, N., et al. Hepatocyte-specific ablation of PP2A catalytic subunit alpha attenuates liver fibrosis progression via TGF-beta1/Smad signaling. Biomed. Res. Int., 2015, 2015, 794862.
-
(2015)
Biomed. Res. Int.
, vol.2015
, pp. 794862
-
-
Lu, N.1
-
92
-
-
84929302268
-
Liver-specific deletion of CPpp2calpha enhances glucose metabolism and insulin sensitivity
-
92 Xian, L., et al. Liver-specific deletion of CPpp2calpha enhances glucose metabolism and insulin sensitivity. Aging (Albany NY) 7 (2015), 223–232.
-
(2015)
Aging (Albany NY)
, vol.7
, pp. 223-232
-
-
Xian, L.1
-
93
-
-
84946592901
-
PPP2R5C couples hepatic glucose and lipid homeostasis
-
93 Cheng, Y.S., et al. PPP2R5C couples hepatic glucose and lipid homeostasis. PLoS Genet., 11, 2015, e1005561.
-
(2015)
PLoS Genet.
, vol.11
, pp. e1005561
-
-
Cheng, Y.S.1
-
94
-
-
80054844842
-
ER tubules mark sites of mitochondrial division
-
94 Friedman, J.R., et al. ER tubules mark sites of mitochondrial division. Science 334 (2011), 358–362.
-
(2011)
Science
, vol.334
, pp. 358-362
-
-
Friedman, J.R.1
-
95
-
-
84928600551
-
Mitofusin 2 ablation increases endoplasmic reticulum-mitochondria coupling
-
95 Filadi, R., et al. Mitofusin 2 ablation increases endoplasmic reticulum-mitochondria coupling. Proc. Natl. Acad. Sci. U.S.A. 112 (2015), E2174–E2181.
-
(2015)
Proc. Natl. Acad. Sci. U.S.A.
, vol.112
, pp. E2174-E2181
-
-
Filadi, R.1
-
96
-
-
70350012303
-
Isolation of mitochondria-associated membranes and mitochondria from animal tissues and cells
-
96 Wieckowski, M.R., et al. Isolation of mitochondria-associated membranes and mitochondria from animal tissues and cells. Nat. Protoc. 4 (2009), 1582–1590.
-
(2009)
Nat. Protoc.
, vol.4
, pp. 1582-1590
-
-
Wieckowski, M.R.1
-
97
-
-
84946882435
-
Detection of isolated mitochondria-associated ER membranes using the Sigma-1 receptor
-
97 Lewis, A., et al. Detection of isolated mitochondria-associated ER membranes using the Sigma-1 receptor. Methods Mol. Biol. 1376 (2016), 133–140.
-
(2016)
Methods Mol. Biol.
, vol.1376
, pp. 133-140
-
-
Lewis, A.1
-
98
-
-
0025273937
-
Phospholipid synthesis in a membrane fraction associated with mitochondria
-
98 Vance, J.E., Phospholipid synthesis in a membrane fraction associated with mitochondria. J. Biol. Chem. 265 (1990), 7248–7256.
-
(1990)
J. Biol. Chem.
, vol.265
, pp. 7248-7256
-
-
Vance, J.E.1
-
99
-
-
33646570865
-
2+ indicators based on computationally redesigned calmodulin-peptide pairs
-
2+ indicators based on computationally redesigned calmodulin-peptide pairs. Chem. Biol. 13 (2006), 521–530.
-
(2006)
Chem. Biol.
, vol.13
, pp. 521-530
-
-
Palmer, A.E.1
-
100
-
-
0026659512
-
2+ revealed by specifically targeted recombinant aequorin
-
2+ revealed by specifically targeted recombinant aequorin. Nature 358 (1992), 325–327.
-
(1992)
Nature
, vol.358
, pp. 325-327
-
-
Rizzuto, R.1
-
101
-
-
77954301751
-
Imaging interorganelle contacts and local calcium dynamics at the ER-mitochondrial interface
-
101 Csordas, G., et al. Imaging interorganelle contacts and local calcium dynamics at the ER-mitochondrial interface. Mol. Cell 39 (2010), 121–132.
-
(2010)
Mol. Cell
, vol.39
, pp. 121-132
-
-
Csordas, G.1
|