-
1
-
-
84920262090
-
The CRISPR/Cas9 system for plant genome editing and beyond
-
Bortesi, L. & Fischer, R. The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol. Adv. 33, 41-52 (2015).
-
(2015)
Biotechnol. Adv.
, vol.33
, pp. 41-52
-
-
Bortesi, L.1
Fischer, R.2
-
2
-
-
84976346465
-
A quick guide to CRISPR sgRNA design tools
-
Brazelton, V. A. Jr et al. A quick guide to CRISPR sgRNA design tools. GM Crops Food 6, 266-276 (2015).
-
(2015)
GM Crops Food
, vol.6
, pp. 266-276
-
-
Brazelton, V.A.1
-
3
-
-
84991355188
-
Morphogenic regulators Baby boom and Wuschel improve monocot transformation
-
Lowe, K. et al. Morphogenic regulators Baby boom and Wuschel improve monocot transformation. Plant Cell 28, 1998-2015 (2016).
-
(2016)
Plant Cell
, vol.28
, pp. 1998-2015
-
-
Lowe, K.1
-
4
-
-
84983783288
-
Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA
-
Zhang, Y. et al. Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nat. Commun. 7, 12617 (2016).
-
(2016)
Nat. Commun.
, vol.7
, pp. 12617
-
-
Zhang, Y.1
-
5
-
-
84901834420
-
Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins
-
Kim, S., Kim, D., Cho, S. W., Kim, J. & Kim, J. S. Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res. 24, 1012-1019 (2014).
-
(2014)
Genome Res.
, vol.24
, pp. 1012-1019
-
-
Kim, S.1
Kim, D.2
Cho, S.W.3
Kim, J.4
Kim, J.S.5
-
6
-
-
84965013564
-
Regulatory hurdles for genome editing: Process- vs. Product-based approaches in different regulatory contexts
-
Sprink, T., Eriksson, D., Schiemann, J. & Hartung, F. Regulatory hurdles for genome editing: process- vs. product-based approaches in different regulatory contexts. Plant Cell Rep. 35, 1493-1506 (2016).
-
(2016)
Plant Cell Rep.
, vol.35
, pp. 1493-1506
-
-
Sprink, T.1
Eriksson, D.2
Schiemann, J.3
Hartung, F.4
-
7
-
-
84947255513
-
DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins
-
Woo, J. W. et al. DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat. Biotechnol. 33, 1162-1164 (2015).
-
(2015)
Nat. Biotechnol.
, vol.33
, pp. 1162-1164
-
-
Woo, J.W.1
-
8
-
-
84995550201
-
Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes
-
Svitashev, S. et al. Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes. Nat. Commun. 7, 13274 (2016).
-
(2016)
Nat. Commun.
, vol.7
, pp. 13274
-
-
Svitashev, S.1
-
9
-
-
85010058709
-
Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes
-
Liang, Z. et al. Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nat. Commun. 8, 14261 (2017).
-
(2017)
Nat. Commun.
, vol.8
, pp. 14261
-
-
Liang, Z.1
-
10
-
-
84976228869
-
Modified RNAs in CRISPR/Cas9: An old trick works again
-
Latorre, A., Latorre, A. & Somoza, Á. Modified RNAs in CRISPR/Cas9: an old trick works again. Angew. Chem. Int. Ed. Engl. 55, 3548-3550 (2016).
-
(2016)
Angew. Chem. Int. Ed. Engl.
, vol.55
, pp. 3548-3550
-
-
Latorre, A.1
Latorre, A.2
Somoza, Á.3
-
11
-
-
84873729095
-
Multiplex genome engineering using CRISPR/Cas systems
-
Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823 (2013).
-
(2013)
Science
, vol.339
, pp. 819-823
-
-
Cong, L.1
-
12
-
-
84880570576
-
High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells
-
Fu, Y. et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat. Biotechnol. 31, 822-826 (2013).
-
(2013)
Nat. Biotechnol.
, vol.31
, pp. 822-826
-
-
Fu, Y.1
-
13
-
-
84884165315
-
DNA targeting specificity of RNA-guided Cas9 nucleases
-
Hsu, P. D. et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 31, 827-832 (2013).
-
(2013)
Nat. Biotechnol.
, vol.31
, pp. 827-832
-
-
Hsu, P.D.1
-
14
-
-
85026667238
-
-
(eds Kumlehn, J. & Stein, N.) Springer
-
Salvi, S., Druka, A., Milner, S. G. & Gruszka, D. in Biotechnological Approaches to Barley Improvement (eds Kumlehn, J. & Stein, N.) 287-310 (Springer, 2014).
-
(2014)
Biotechnological Approaches to Barley Improvement
, pp. 287-310
-
-
Salvi, S.1
Druka, A.2
Milner, S.G.3
Gruszka, D.4
-
15
-
-
84975179107
-
Targeted gene manipulation in plants using the CRISPR/Cas technology
-
Zhang, D., Li, Z. & Li, J. F. Targeted gene manipulation in plants using the CRISPR/Cas technology. J. Genet. Genomics 43, 251-262 (2016).
-
(2016)
J. Genet. Genomics
, vol.43
, pp. 251-262
-
-
Zhang, D.1
Li, Z.2
Li, J.F.3
-
16
-
-
84904639258
-
The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation
-
Zhang, H. et al. The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnol. J. 12, 797-807 (2014).
-
(2014)
Plant Biotechnol. J.
, vol.12
, pp. 797-807
-
-
Zhang, H.1
-
17
-
-
84875754465
-
Nucleotide-resolution DNA double-strand break mapping by next-generation sequencing
-
Crosetto, N. et al. Nucleotide-resolution DNA double-strand break mapping by next-generation sequencing. Nat. Methods 10, 361-365 (2013).
-
(2013)
Nat. Methods
, vol.10
, pp. 361-365
-
-
Crosetto, N.1
-
18
-
-
84923266604
-
GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases
-
Tsai, S. Q. et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat. Biotechnol. 33, 187-197 (2015).
-
(2015)
Nat. Biotechnol.
, vol.33
, pp. 187-197
-
-
Tsai, S.Q.1
-
19
-
-
84923275611
-
Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases
-
Frock, R. L. et al. Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases. Nat. Biotechnol. 33, 179-186 (2015).
-
(2015)
Nat. Biotechnol.
, vol.33
, pp. 179-186
-
-
Frock, R.L.1
-
20
-
-
84923846574
-
Digenome-seq: Genome-wide profiling of CRISPR-Cas9 off-target effects in human cells
-
Kim, D. et al. Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells. Nat. Methods 12, 237-243 (2015).
-
(2015)
Nat. Methods
, vol.12
, pp. 237-243
-
-
Kim, D.1
-
21
-
-
84902096048
-
Development and applications of CRISPR-Cas9 for genome engineering
-
Hsu, P. D., Lander, E. S. & Zhang, F. Development and applications of CRISPR-Cas9 for genome engineering. Cell 157, 1262-1278 (2014).
-
(2014)
Cell
, vol.157
, pp. 1262-1278
-
-
Hsu, P.D.1
Lander, E.S.2
Zhang, F.3
-
22
-
-
84916624400
-
The CRISPR/Cas system can be used as nuclease for in planta gene targeting and as paired nickases for directed mutagenesis in Arabidopsis resulting in heritable progeny
-
Schiml, S., Fauser, F. & Puchta, H. The CRISPR/Cas system can be used as nuclease for in planta gene targeting and as paired nickases for directed mutagenesis in Arabidopsis resulting in heritable progeny. Plant J. 80, 1139-1150 (2014).
-
(2014)
Plant J.
, vol.80
, pp. 1139-1150
-
-
Schiml, S.1
Fauser, F.2
Puchta, H.3
-
23
-
-
84952943845
-
Rationally engineered Cas9 nucleases with improved specificity
-
Slaymaker, I. M. et al. Rationally engineered Cas9 nucleases with improved specificity. Science 351, 84-88 (2016).
-
(2016)
Science
, vol.351
, pp. 84-88
-
-
Slaymaker, I.M.1
-
24
-
-
84963941043
-
High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects
-
Kleinstiver, B. P. et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529, 490-495 (2016).
-
(2016)
Nature
, vol.529
, pp. 490-495
-
-
Kleinstiver, B.P.1
-
25
-
-
84878211288
-
The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems
-
Chylinski, K., Le Rhun, A. & Charpentier, E. The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems. RNA Biol. 10, 726-737 (2013).
-
(2013)
RNA Biol.
, vol.10
, pp. 726-737
-
-
Chylinski, K.1
Le Rhun, A.2
Charpentier, E.3
-
26
-
-
84887104139
-
Orthogonal Cas9 proteins for RNA-guided gene regulation and editing
-
Esvelt K. M. et al. Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat. Methods 10, 1116-1121 (2013).
-
(2013)
Nat. Methods
, vol.10
, pp. 1116-1121
-
-
Esvelt, K.M.1
-
27
-
-
84884663630
-
Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis
-
Hou, Z. et al. Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis. Proc. Natl Acad. Sci. USA 110, 15644-15649 (2013).
-
(2013)
Proc. Natl Acad. Sci. USA
, vol.110
, pp. 15644-15649
-
-
Hou, Z.1
-
28
-
-
84937908208
-
Engineered CRISPR-Cas9 nucleases with altered PAM specificities
-
Kleinstiver, B. P. et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523, 481-485 (2015).
-
(2015)
Nature
, vol.523
, pp. 481-485
-
-
Kleinstiver, B.P.1
-
29
-
-
84927514894
-
In vivo genome editing using Staphylococcus aureus Cas9
-
Ran, F. A. et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature 520, 186-191 (2015).
-
(2015)
Nature
, vol.520
, pp. 186-191
-
-
Ran, F.A.1
-
30
-
-
84965006411
-
Expanding the range of CRISPR/Cas9 genome editing in rice
-
Hu, X. et al. Expanding the range of CRISPR/Cas9 genome editing in rice. Mol. Plant 9, 943-945 (2016).
-
(2016)
Mol. Plant
, vol.9
, pp. 943-945
-
-
Hu, X.1
-
31
-
-
84947730555
-
Rapid characterization of CRISPR-Cas9 protospacer adjacent motif sequence elements
-
Karvelis, T. et al. Rapid characterization of CRISPR-Cas9 protospacer adjacent motif sequence elements. Genome Biol. 16, 253 (2015).
-
(2015)
Genome Biol.
, vol.16
, pp. 253
-
-
Karvelis, T.1
-
32
-
-
84961350912
-
Highly efficient heritable plant genome engineering using Cas9 orthologues from Streptococcus thermophilus and Staphylococcus aureus
-
Steinert, J., Schiml, S., Fauser, F. & Puchta, H. Highly efficient heritable plant genome engineering using Cas9 orthologues from Streptococcus thermophilus and Staphylococcus aureus. Plant J. 84, 1295-1305 (2015).
-
(2015)
Plant J.
, vol.84
, pp. 1295-1305
-
-
Steinert, J.1
Schiml, S.2
Fauser, F.3
Puchta, H.4
-
33
-
-
84971254394
-
Highly specific targeted mutagenesis in plants using Staphylococcus aureus Cas9
-
Kaya, H. et al. Highly specific targeted mutagenesis in plants using Staphylococcus aureus Cas9. Sci. Rep. 6, 26871 (2016).
-
(2016)
Sci. Rep.
, vol.6
, pp. 26871
-
-
Kaya, H.1
-
34
-
-
84975678715
-
Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system
-
Zetsche, B. et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163, 759-771 (2015).
-
(2015)
Cell
, vol.163
, pp. 759-771
-
-
Zetsche, B.1
-
35
-
-
84874613680
-
Obligate ligation-gated recombination (ObLiGaRe): Custom-designed nuclease-mediated targeted integration through nonhomologous end joining
-
Maresca, M., Lin, V. G., Guo, N. & Yang, Y. Obligate ligation-gated recombination (ObLiGaRe): custom-designed nuclease-mediated targeted integration through nonhomologous end joining. Genome Res. 23, 539-546 (2013).
-
(2013)
Genome Res.
, vol.23
, pp. 539-546
-
-
Maresca, M.1
Lin, V.G.2
Guo, N.3
Yang, Y.4
-
36
-
-
85042815594
-
Targeted genome modification of crop plants using a CRISPR-Cas system
-
Shan, Q. et al. Targeted genome modification of crop plants using a CRISPR-Cas system. Nat. Biotechnol. 31, 686-688 (2013).
-
(2013)
Nat. Biotechnol.
, vol.31
, pp. 686-688
-
-
Shan, Q.1
-
37
-
-
85013471837
-
Generation of targeted mutant rice using a CRISPR-Cpf1 system
-
Xu, R. et al. Generation of targeted mutant rice using a CRISPR-Cpf1 system. Plant Biotechnol. J. 15, 713-717 (2017).
-
(2017)
Plant Biotechnol. J.
, vol.15
, pp. 713-717
-
-
Xu, R.1
-
38
-
-
85009495102
-
Targeted mutagenesis in rice using CRISPR-Cpf1 system
-
Hu, X., Wang, C., Liu, Q., Fu, Y. & Wang, K. Targeted mutagenesis in rice using CRISPR-Cpf1 system. J. Genet. Genomics 44, 71-73 (2017).
-
(2017)
J. Genet. Genomics
, vol.44
, pp. 71-73
-
-
Hu, X.1
Wang, C.2
Liu, Q.3
Fu, Y.4
Wang, K.5
-
39
-
-
85013155616
-
CRISPR/Cpf1-mediated DNA-free plant genome editing
-
Kim, H. et al. CRISPR/Cpf1-mediated DNA-free plant genome editing. Nat. Commun. 8, 14406 (2017).
-
(2017)
Nat. Commun.
, vol.8
, pp. 14406
-
-
Kim, H.1
-
40
-
-
85013304812
-
A CRISPR-Cpf1 system for efficient genome editing and transcriptional repression in plants
-
Tang, X. et al. A CRISPR-Cpf1 system for efficient genome editing and transcriptional repression in plants. Nat. Plants 3, 17018 (2017).
-
(2017)
Nat. Plants
, vol.3
, pp. 17018
-
-
Tang, X.1
-
41
-
-
85011556564
-
MISSA 2.0: An updated synthetic biology toolbox for assembly of orthogonal CRISPR/Cas systems
-
Zhang, H. Y. et al. MISSA 2.0: an updated synthetic biology toolbox for assembly of orthogonal CRISPR/Cas systems. Sci. Rep. 7, 41993 (2017).
-
(2017)
Sci. Rep.
, vol.7
, pp. 41993
-
-
Zhang, H.Y.1
-
42
-
-
0028061666
-
Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease
-
Rouet, P., Smih, F. & Jasin, M. Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol. Cell. Biol. 14, 8096-8106 (1994).
-
(1994)
Mol. Cell. Biol.
, vol.14
, pp. 8096-8106
-
-
Rouet, P.1
Smih, F.2
Jasin, M.3
-
43
-
-
0029946668
-
Two different but related mechanisms are used in plants for the repair of genomic double-strand breaks by homologous recombination
-
Puchta, H., Dujon, B. & Hohn, B. Two different but related mechanisms are used in plants for the repair of genomic double-strand breaks by homologous recombination. Proc. Natl Acad. Sci. USA 93, 5055-5060 (1996).
-
(1996)
Proc. Natl Acad. Sci. USA
, vol.93
, pp. 5055-5060
-
-
Puchta, H.1
Dujon, B.2
Hohn, B.3
-
44
-
-
84901386271
-
Synthetic nucleases for genome engineering in plants: Prospects for a bright future
-
Puchta, H. & Fauser, F. Synthetic nucleases for genome engineering in plants: prospects for a bright future. Plant J. 78, 727-741 (2014).
-
(2014)
Plant J.
, vol.78
, pp. 727-741
-
-
Puchta, H.1
Fauser, F.2
-
45
-
-
84903317244
-
Precision genome engineering and agriculture: Opportunities and regulatory challenges
-
Voytas, D. F. & Gao, C. Precision genome engineering and agriculture: opportunities and regulatory challenges. PLoS Biol. 12, e1001877 (2014).
-
(2014)
PLoS Biol.
, vol.12
, pp. e1001877
-
-
Voytas, D.F.1
Gao, C.2
-
46
-
-
84942901283
-
Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA
-
Svitashev, S. et al. Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiol. 169, 931-945 (2015).
-
(2015)
Plant Physiol.
, vol.169
, pp. 931-945
-
-
Svitashev, S.1
-
47
-
-
84956760665
-
Biallelic gene targeting in rice
-
Endo, M., Mikami, M. & Toki, S. Biallelic gene targeting in rice. Plant Physiol. 170, 667-677 (2016).
-
(2016)
Plant Physiol.
, vol.170
, pp. 667-677
-
-
Endo, M.1
Mikami, M.2
Toki, S.3
-
48
-
-
84896882685
-
DNA replicons for plant genome engineering
-
Baltes, N. J., Gil-Humanes, J., Cermak, T., Atkins, P. A. & Voytas D. F. DNA replicons for plant genome engineering. Plant Cell 26, 151-163 (2014).
-
(2014)
Plant Cell
, vol.26
, pp. 151-163
-
-
Baltes, N.J.1
Gil-Humanes, J.2
Cermak, T.3
Atkins, P.A.4
Voytas, D.F.5
-
49
-
-
84946416320
-
High-frequency, precise modification of the tomato genome
-
Cermák, T., Baltes, N. J., Cegan, R., Zhang, Y. & Voytas, D. F. High-frequency, precise modification of the tomato genome. Genome Biol. 16, 232 (2015).
-
(2015)
Genome Biol.
, vol.16
, pp. 232
-
-
Cermák, T.1
Baltes, N.J.2
Cegan, R.3
Zhang, Y.4
Voytas, D.F.5
-
50
-
-
84979703446
-
Geminivirus-mediated genome editing in potato (Solanum tuberosum L.) using sequence-specific nucleases
-
Butler, N. M., Baltes, N. J., Voytas, D. F. & Douches, D. S. Geminivirus-mediated genome editing in potato (Solanum tuberosum L.) using sequence-specific nucleases. Front. Plant Sci. 7, 1045 (2016).
-
(2016)
Front. Plant Sci.
, vol.7
, pp. 1045
-
-
Butler, N.M.1
Baltes, N.J.2
Voytas, D.F.3
Douches, D.S.4
-
51
-
-
85012996363
-
High-efficiency gene targeting in hexaploid wheat using DNA replicons and CRISPR/Cas9
-
Gil-Humanes, J. et al. High-efficiency gene targeting in hexaploid wheat using DNA replicons and CRISPR/Cas9. Plant J. 89, 1251-1262 (2017).
-
(2017)
Plant J.
, vol.89
, pp. 1251-1262
-
-
Gil-Humanes, J.1
-
52
-
-
85017338258
-
Gene targeting by homology-directed repair in rice using a geminivirus-based CRISPR/Cas9 System
-
Wang, M. et al. Gene targeting by homology-directed repair in rice using a geminivirus-based CRISPR/Cas9 System. Mol. Plant 10, 1007-1010 (2017).
-
(2017)
Mol. Plant
, vol.10
, pp. 1007-1010
-
-
Wang, M.1
-
53
-
-
84877033242
-
Nonhomologous end joining-mediated gene replacement in plant cells
-
Weinthal, D. M., Taylor, R. A. & Tzfira, T. Nonhomologous end joining-mediated gene replacement in plant cells. Plant Physiol. 162, 390-400 (2013).
-
(2013)
Plant Physiol.
, vol.162
, pp. 390-400
-
-
Weinthal, D.M.1
Taylor, R.A.2
Tzfira, T.3
-
54
-
-
84990199472
-
Gene replacements and insertions in rice by intron targeting using CRISPR-Cas9
-
Li, J. et al. Gene replacements and insertions in rice by intron targeting using CRISPR-Cas9. Nat. Plants 2, 16139 (2016).
-
(2016)
Nat. Plants
, vol.2
, pp. 16139
-
-
Li, J.1
-
55
-
-
84971006562
-
Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage
-
Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420-424 (2016).
-
(2016)
Nature
, vol.533
, pp. 420-424
-
-
Komor, A.C.1
Kim, Y.B.2
Packer, M.S.3
Zuris, J.A.4
Liu, D.R.5
-
56
-
-
84981516964
-
Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems
-
Nishida, K. et al. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science 353, aaf8729 (2016).
-
(2016)
Science
, vol.353
, pp. aaf8729
-
-
Nishida, K.1
-
57
-
-
84990898361
-
Targeted AID-mediated mutagenesis (TAM) enables efficient genomic diversification in mammalian cells
-
Ma, Y. et al. Targeted AID-mediated mutagenesis (TAM) enables efficient genomic diversification in mammalian cells. Nat. Methods 13, 1029-1035 (2016).
-
(2016)
Nat. Methods
, vol.13
, pp. 1029-1035
-
-
Ma, Y.1
-
58
-
-
84992745786
-
Directed evolution using dCas9-targeted somatic hypermutation in mammalian cells
-
Hess, G. et al. Directed evolution using dCas9-targeted somatic hypermutation in mammalian cells. Nat. Methods 13, 1036-1042 (2016).
-
(2016)
Nat. Methods
, vol.13
, pp. 1036-1042
-
-
Hess, G.1
-
59
-
-
84994320280
-
Engineering and optimising deaminase fusions for genome editing
-
Yang, L. et al. Engineering and optimising deaminase fusions for genome editing. Nat. Commun. 7, 13330 (2016).
-
(2016)
Nat. Commun.
, vol.7
, pp. 13330
-
-
Yang, L.1
-
60
-
-
85009243700
-
Generation of targeted point mutations in rice by a modified CRISPR/Cas9 system
-
Li, J., Sun, Y., Du, J., Zhao, Y. & Xia, L. Generation of targeted point mutations in rice by a modified CRISPR/Cas9 system. Mol. Plant 10, 526-529 (2017).
-
(2017)
Mol. Plant
, vol.10
, pp. 526-529
-
-
Li, J.1
Sun, Y.2
Du, J.3
Zhao, Y.4
Xia, L.5
-
61
-
-
85009355218
-
Precise editing of a target base in the rice genome using a modified CRISPR/Cas9 System
-
Lu, Y. & Zhu, J. K. Precise editing of a target base in the rice genome using a modified CRISPR/Cas9 System. Mol. Plant 10, 523-525 (2017).
-
(2017)
Mol. Plant
, vol.10
, pp. 523-525
-
-
Lu, Y.1
Zhu, J.K.2
-
62
-
-
85018618268
-
Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion
-
Zong, Y. et al. Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nat. Biotechnol. 35, 438-440 (2017).
-
(2017)
Nat. Biotechnol.
, vol.35
, pp. 438-440
-
-
Zong, Y.1
-
63
-
-
85014301471
-
A CRISPR/Cas9 toolkit for efficient targeted base editing to induce genetic variations in rice
-
Ren, B. et al. A CRISPR/Cas9 toolkit for efficient targeted base editing to induce genetic variations in rice. Sci. China Life Sci. 60, 516-519 (2017).
-
(2017)
Sci. China Life Sci.
, vol.60
, pp. 516-519
-
-
Ren, B.1
-
64
-
-
85018594542
-
Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion
-
Shimatani, Z. et al. Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Nat. Biotechnol. 35, 441-443 (2017).
-
(2017)
Nat. Biotechnol.
, vol.35
, pp. 441-443
-
-
Shimatani, Z.1
-
65
-
-
85017397628
-
Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions
-
Kim, Y. B. et al. Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions. Nat. Biotechnol. 35, 371-376 (2017).
-
(2017)
Nat. Biotechnol.
, vol.35
, pp. 371-376
-
-
Kim, Y.B.1
-
66
-
-
84894101033
-
Negative selection and stringency modulation in phage-assisted continuous evolution
-
Carlson, J. C., Badran, A. H., Guggiana-Nilo, D. A. & Liu, D. R. Negative selection and stringency modulation in phage-assisted continuous evolution. Nat. Chem. Biol. 10, 216-222 (2014).
-
(2014)
Nat. Chem. Biol.
, vol.10
, pp. 216-222
-
-
Carlson, J.C.1
Badran, A.H.2
Guggiana-Nilo, D.A.3
Liu, D.R.4
-
67
-
-
84928212884
-
RNA-guided transcriptional regulation in planta via synthetic dCas9-based transcription factors
-
Piatek, A. et al. RNA-guided transcriptional regulation in planta via synthetic dCas9-based transcription factors. Plant Biotechnol. J. 13, 578-589 (2015).
-
(2015)
Plant Biotechnol. J.
, vol.13
, pp. 578-589
-
-
Piatek, A.1
-
68
-
-
84942931752
-
A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation
-
Lowder, L. G. et al. A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation. Plant Physiol. 169, 971-985 (2015).
-
(2015)
Plant Physiol.
, vol.169
, pp. 971-985
-
-
Lowder, L.G.1
-
69
-
-
84894063115
-
Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system
-
Chen, B. et al. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155, 1479-1491 (2013).
-
(2013)
Cell
, vol.155
, pp. 1479-1491
-
-
Chen, B.1
-
70
-
-
84908328232
-
A protein-tagging system for signal amplification in gene expression and fluorescence imaging
-
Tanenbaum, M. E., Gilbert, L. A., Qi, L. S., Weissman, J. S. & Vale, R. D. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159, 635-646 (2014).
-
(2014)
Cell
, vol.159
, pp. 635-646
-
-
Tanenbaum, M.E.1
Gilbert, L.A.2
Qi, L.S.3
Weissman, J.S.4
Vale, R.D.5
-
71
-
-
84942845731
-
CASFISH: CRISPR/Cas9-mediated in situ labeling of genomic loci in fixed cells
-
Deng, W., Shi, X., Tjian, R., Lionnet, T. & Singer, R. H. CASFISH: CRISPR/Cas9-mediated in situ labeling of genomic loci in fixed cells. Proc. Natl Acad. Sci. USA 112, 11870-11875 (2015).
-
(2015)
Proc. Natl Acad. Sci. USA
, vol.112
, pp. 11870-11875
-
-
Deng, W.1
Shi, X.2
Tjian, R.3
Lionnet, T.4
Singer, R.H.5
-
72
-
-
84924347318
-
Multicolor CRISPR labeling of chromosomal loci in human cells
-
Ma, H. et al. Multicolor CRISPR labeling of chromosomal loci in human cells. Proc. Natl Acad. Sci. USA 112, 3002-3007 (2015).
-
(2015)
Proc. Natl Acad. Sci. USA
, vol.112
, pp. 3002-3007
-
-
Ma, H.1
-
73
-
-
84959330720
-
Simultaneous live imaging of the transcription and nuclear position of specific genes
-
Ochiai, H., Sugawara, T. & Yamamoto, T. Simultaneous live imaging of the transcription and nuclear position of specific genes. Nucleic Acids Res. 43, e127 (2015).
-
(2015)
Nucleic Acids Res.
, vol.43
, pp. e127
-
-
Ochiai, H.1
Sugawara, T.2
Yamamoto, T.3
-
74
-
-
84929135130
-
Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers
-
Hilton, I. B. et al. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat. Biotechnol. 33, 510-517 (2015).
-
(2015)
Nat. Biotechnol.
, vol.33
, pp. 510-517
-
-
Hilton, I.B.1
-
75
-
-
84949100864
-
Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements
-
Thakore, P. I. et al. Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements. Nat. Methods 12, 1143-1149 (2015).
-
(2015)
Nat. Methods
, vol.12
, pp. 1143-1149
-
-
Thakore, P.I.1
-
76
-
-
84979034770
-
Repurposing the CRISPR-Cas9 system for targeted DNA methylation
-
Vojta, A. et al. Repurposing the CRISPR-Cas9 system for targeted DNA methylation. Nucleic Acids Res. 44, 5615-5628 (2016).
-
(2016)
Nucleic Acids Res.
, vol.44
, pp. 5615-5628
-
-
Vojta, A.1
-
77
-
-
84952317656
-
Making sense of GWAS: Using epigenomics and genome engineering to understand the functional relevance of SNPs in non-coding regions of the human genome
-
Tak, Y. G. & Farnham, P. J. Making sense of GWAS: using epigenomics and genome engineering to understand the functional relevance of SNPs in non-coding regions of the human genome. Epigenetics Chromatin 8, 57 (2015).
-
(2015)
Epigenetics Chromatin
, vol.8
, pp. 57
-
-
Tak, Y.G.1
Farnham, P.J.2
-
78
-
-
84966293747
-
CRISPR-directed mitotic recombination enables genetic mapping without crosses
-
Sadhu, M. J., Bloom, J. S., Day, L. & Kruglyak, L. CRISPR-directed mitotic recombination enables genetic mapping without crosses. Science 352, 1113-1116 (2016).
-
(2016)
Science
, vol.352
, pp. 1113-1116
-
-
Sadhu, M.J.1
Bloom, J.S.2
Day, L.3
Kruglyak, L.4
-
79
-
-
85014112709
-
Accelerating the domestication of new crops: Feasibility and approaches
-
Østerberg, J. T. et al. Accelerating the domestication of new crops: feasibility and approaches. Trends Plant Sci. 22, 373-384 (2017).
-
(2017)
Trends Plant Sci.
, vol.22
, pp. 373-384
-
-
Østerberg, J.T.1
-
80
-
-
84946745735
-
CRISPR/Cas9-mediated viral interference in plants
-
Ali, Z. et al. CRISPR/Cas9-mediated viral interference in plants. Genome Biol. 16, 238 (2015).
-
(2015)
Genome Biol.
, vol.16
, pp. 238
-
-
Ali, Z.1
-
81
-
-
85009919974
-
Conferring resistance to geminiviruses with the CRISPR-Cas prokaryotic immune system
-
Baltes, N. J. et al. Conferring resistance to geminiviruses with the CRISPR-Cas prokaryotic immune system. Nat. Plants 1, 15145 (2015).
-
(2015)
Nat. Plants
, vol.1
, pp. 15145
-
-
Baltes, N.J.1
-
82
-
-
84947775797
-
Establishing a CRISPR-Cas-like immune system conferring DNA virus resistance in plants
-
Ji, X. et al. Establishing a CRISPR-Cas-like immune system conferring DNA virus resistance in plants. Nat. Plants 1, 15144 (2015).
-
(2015)
Nat. Plants
, vol.1
, pp. 15144
-
-
Ji, X.1
-
83
-
-
84885180177
-
Targeted mutagenesis in rice using CRISPR-Cas system
-
Miao, J. et al. Targeted mutagenesis in rice using CRISPR-Cas system. Cell Res. 23, 1233 (2013).
-
(2013)
Cell Res.
, vol.23
, pp. 1233
-
-
Miao, J.1
-
84
-
-
84938551842
-
Gene targeting using the Agrobacterium tumefaciens-mediated CRISPR-Cas system in rice
-
Xu, R. et al. Gene targeting using the Agrobacterium tumefaciens-mediated CRISPR-Cas system in rice. Rice 7, 5 (2014).
-
(2014)
Rice
, vol.7
, pp. 5
-
-
Xu, R.1
-
85
-
-
84921934205
-
Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew
-
Wang, Y. et al. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat. Biotechnol. 32, 947-951 (2014).
-
(2014)
Nat. Biotechnol.
, vol.32
, pp. 947-951
-
-
Wang, Y.1
-
86
-
-
84944937432
-
CRISPR/Cas9-mediated mutagenesis of the RIN locus that regulates tomato fruit ripening
-
Ito, Y. et al. CRISPR/Cas9-mediated mutagenesis of the RIN locus that regulates tomato fruit ripening. Biochem. Biophys. Res. Commun. 467, 76-82 (2015).
-
(2015)
Biochem. Biophys. Res. Commun.
, vol.467
, pp. 76-82
-
-
Ito, Y.1
-
87
-
-
84992462126
-
-
de Toledo Thomazella, D. P., Brail, Q., Dahlbeck, D. & Staskawicz, B. J. CRISPR-Cas9 mediated mutagenesis of a DMR6 ortholog in tomato confers broad-spectrum disease resistance. Preprint at http://biorxiv.org/content/early/2016/07/20/064824 (2016).
-
(2016)
CRISPR-Cas9 Mediated Mutagenesis of A DMR6 Ortholog in Tomato Confers Broad-spectrum Disease Resistance
-
-
De Toledo Thomazella, D.P.1
Brail, Q.2
Dahlbeck, D.3
Staskawicz, B.J.4
-
88
-
-
84977500985
-
Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922
-
Wang, F. et al. Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922. PLoS ONE 11, e0154027 (2016).
-
(2016)
PLoS ONE
, vol.11
, pp. e0154027
-
-
Wang, F.1
-
89
-
-
84981744893
-
ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions
-
Shi, J. et al. ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnol. J. 15, 207-216 (2016).
-
(2016)
Plant Biotechnol. J.
, vol.15
, pp. 207-216
-
-
Shi, J.1
-
90
-
-
85014906772
-
Generation of high-amylose rice through CRISPR/Cas9- mediated targeted mutagenesis of starch branching enzymes
-
Sun, Y. et al. Generation of high-amylose rice through CRISPR/Cas9- mediated targeted mutagenesis of starch branching enzymes. Front. Plant Sci. https://doi.org/10.3389/fpls.2017.00298 (2017).
-
(2017)
Front. Plant Sci.
-
-
Sun, Y.1
|