-
1
-
-
80755187812
-
CRISPR-Cas systems in bacteria and archaea: Versatile small RNAs for adaptive defense and regulation
-
Bhaya, D., Davison, M., Barrangou, R. CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annu Rev Genet 45, 273-297, doi: 10.1146/annurev-genet-110410-132430 (2011).
-
(2011)
Annu Rev Genet
, vol.45
, pp. 273-297
-
-
Bhaya, D.1
Davison, M.2
Barrangou, R.3
-
2
-
-
84942864979
-
CRISPR-Cas: New tools for genetic manipulations from bacterial immunity systems
-
Jiang, W., Marraffini, L. A. CRISPR-Cas: New Tools for Genetic Manipulations from Bacterial Immunity Systems. Annu Rev Microbiol 69, 209-228, doi: 10.1146/annurev-micro-091014-104441 (2015).
-
(2015)
Annu Rev Microbiol
, vol.69
, pp. 209-228
-
-
Jiang, W.1
Marraffini, L.A.2
-
3
-
-
84913594397
-
Genome editing. The new frontier of genome engineering with CRISPR-Cas9
-
Doudna, J. A., Charpentier, E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346, 1258096, doi: 10.1126/science.1258096 (2014).
-
(2014)
Science
, vol.346
, pp. 1258096
-
-
Doudna, J.A.1
Charpentier, E.2
-
4
-
-
84902185906
-
Genome engineering with targetable nucleases
-
Carroll, D. Genome engineering with targetable nucleases. Annu Rev Biochem 83, 409-439, doi: 10.1146/annurevbiochem-060713-035418 (2014).
-
(2014)
Annu Rev Biochem
, vol.83
, pp. 409-439
-
-
Carroll, D.1
-
5
-
-
84931846154
-
Editing plant genomes with CRISPR/Cas9
-
Belhaj, K., Chaparro-Garcia, A., Kamoun, S., Patron, N. J., Nekrasov, V. Editing plant genomes with CRISPR/Cas9. Curr Opin Biotechnol 32, 76-84, doi: 10.1016/j.copbio.2014.11.007 (2015).
-
(2015)
Curr Opin Biotechnol
, vol.32
, pp. 76-84
-
-
Belhaj, K.1
Chaparro-Garcia, A.2
Kamoun, S.3
Patron, N.J.4
Nekrasov, V.5
-
6
-
-
84938521400
-
Genome editing with engineered nucleases in plants
-
Osakabe, Y., Osakabe, K. Genome editing with engineered nucleases in plants. Plant Cell Physiol 56, 389-400, doi: 10.1093/pcp/pcu170 (2015).
-
(2015)
Plant Cell Physiol
, vol.56
, pp. 389-400
-
-
Osakabe, Y.1
Osakabe, K.2
-
7
-
-
84921594086
-
Enabling plant synthetic biology through genome engineering
-
Baltes, N. J., Voytas, D. F. Enabling plant synthetic biology through genome engineering. Trends Biotechnol 33, 120-131, doi: 10.1016/j.tibtech.2014.11.008 (2015).
-
(2015)
Trends Biotechnol
, vol.33
, pp. 120-131
-
-
Baltes, N.J.1
Voytas, D.F.2
-
8
-
-
84941956073
-
CRISPR/Cas9-mediated genome editing and gene replacement in plants: Transitioning from lab to field
-
Schaeffer, S. M., Nakata, P. A. CRISPR/Cas9-mediated genome editing and gene replacement in plants: Transitioning from lab to field. Plant Sci 240, 130-142, doi: 10.1016/j.plantsci.2015.09.011 (2015).
-
(2015)
Plant Sci
, vol.240
, pp. 130-142
-
-
Schaeffer, S.M.1
Nakata, P.A.2
-
9
-
-
84920262090
-
The CRISPR/Cas9 system for plant genome editing and beyond
-
Bortesi, L., Fischer, R. The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv 33, 41-52, doi: 10.1016/j. biotechadv.2014.12.006 (2015).
-
(2015)
Biotechnol Adv
, vol.33
, pp. 41-52
-
-
Bortesi, L.1
Fischer, R.2
-
10
-
-
84873729095
-
Multiplex genome engineering using CRISPR/Cas systems
-
Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823, doi: 10.1126/science.1231143 (2013).
-
(2013)
Science
, vol.339
, pp. 819-823
-
-
Cong, L.1
-
11
-
-
84873734105
-
RNA-guided human genome engineering via Cas9
-
Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823-826, doi: 10.1126/science.1232033 (2013).
-
(2013)
Science
, vol.339
, pp. 823-826
-
-
Mali, P.1
-
12
-
-
79953250082
-
CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III
-
Deltcheva, E. et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471, 602-607, doi: 10.1038/nature09886 (2011).
-
(2011)
Nature
, vol.471
, pp. 602-607
-
-
Deltcheva, E.1
-
13
-
-
84865070369
-
A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
-
Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816-821, doi: 10.1126/science.1225829 (2012).
-
(2012)
Science
, vol.337
, pp. 816-821
-
-
Jinek, M.1
-
14
-
-
84895871173
-
DNA interrogation by the CRISPR RNA-guided endonuclease Cas9
-
Sternberg, S. H., Redding, S., Jinek, M., Greene, E. C., Doudna, J. A. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 507, 62-67, doi: 10.1038/nature13011 (2014).
-
(2014)
Nature
, vol.507
, pp. 62-67
-
-
Sternberg, S.H.1
Redding, S.2
Jinek, M.3
Greene, E.C.4
Doudna, J.A.5
-
15
-
-
64049118040
-
Short motif sequences determine the targets of the prokaryotic CRISPR defence system
-
Mojica, F. J., Diez-Villasenor, C., Garcia-Martinez, J., Almendros, C. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 155, 733-740, doi: 10.1099/mic.0.023960-0 (2009).
-
(2009)
Microbiology
, vol.155
, pp. 733-740
-
-
Mojica, F.J.1
Diez-Villasenor, C.2
Garcia-Martinez, J.3
Almendros, C.4
-
16
-
-
84895832944
-
Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems
-
Fonfara, I. et al. Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems. Nucleic Acids Res 42, 2577-2590, doi: 10.1093/nar/gkt1074 (2014).
-
(2014)
Nucleic Acids Res
, vol.42
, pp. 2577-2590
-
-
Fonfara, I.1
-
17
-
-
84927514894
-
In vivo genome editing using Staphylococcus aureus Cas9
-
Ran, F. A. et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature 520, 186-191, doi: 10.1038/nature14299 (2015).
-
(2015)
Nature
, vol.520
, pp. 186-191
-
-
Ran, F.A.1
-
18
-
-
84961350912
-
Highly efficient heritable plant genome engineering using Cas9 orthologues from Streptococcus thermophilus and Staphylococcus aureus
-
Steinert, J., Schiml, S., Fauser, F., Puchta, H. Highly efficient heritable plant genome engineering using Cas9 orthologues from Streptococcus thermophilus and Staphylococcus aureus. Plant J, doi: 10.1111/tpj.13078 (2015).
-
(2015)
Plant J
-
-
Steinert, J.1
Schiml, S.2
Fauser, F.3
Puchta, H.4
-
19
-
-
84904068340
-
Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana
-
Fauser, F., Schiml, S., Puchta, H. Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana. Plant J 79, 348-359, doi: 10.1111/tpj.12554 (2014).
-
(2014)
Plant J
, vol.79
, pp. 348-359
-
-
Fauser, F.1
Schiml, S.2
Puchta, H.3
-
20
-
-
33947612596
-
Varied transcriptional efficiencies of multiple Arabidopsis U6 small nuclear RNA genes
-
Li, X., Jiang, D. H., Yong, K. L., Zhang, D. B. Varied transcriptional efficiencies of multiple Arabidopsis U6 small nuclear RNA genes. J Integr Plant Biol 49, 222-229, doi: 10.1111/j.1672-9072.2007.00393.x (2007).
-
(2007)
J Integr Plant Biol
, vol.49
, pp. 222-229
-
-
Li, X.1
Jiang, D.H.2
Yong, K.L.3
Zhang, D.B.4
-
21
-
-
85047683461
-
Functional analysis of the early steps of carotenoid biosynthesis in tobacco
-
Busch, M., Seuter, A., Hain, R. Functional analysis of the early steps of carotenoid biosynthesis in tobacco. Plant Physiol 128, 439-453, doi: 10.1104/pp.010573 (2002).
-
(2002)
Plant Physiol
, vol.128
, pp. 439-453
-
-
Busch, M.1
Seuter, A.2
Hain, R.3
-
22
-
-
84871996929
-
Proteins from the FLOWERING LOCUS T-like subclade of the PEBP family act antagonistically to regulate floral initiation in tobacco
-
Harig, L. et al. Proteins from the FLOWERING LOCUS T-like subclade of the PEBP family act antagonistically to regulate floral initiation in tobacco. Plant J 72, 908-921, doi: 10.1111/j.1365-313X.2012.05125.x (2012).
-
(2012)
Plant J
, vol.72
, pp. 908-921
-
-
Harig, L.1
-
23
-
-
34248587049
-
Disruption of phytoene desaturase gene results in albino and dwarf phenotypes in Arabidopsis by impairing chlorophyll, carotenoid, and gibberellin biosynthesis
-
Qin, G. et al. Disruption of phytoene desaturase gene results in albino and dwarf phenotypes in Arabidopsis by impairing chlorophyll, carotenoid, and gibberellin biosynthesis. Cell Res 17, 471-482, doi: 10.1038/cr.2007.40 (2007).
-
(2007)
Cell Res
, vol.17
, pp. 471-482
-
-
Qin, G.1
-
24
-
-
84922664019
-
Multigene Knockout Utilizing Off-Target Mutations of the CRISPR/Cas9 System in Rice
-
Endo, M., Mikami, M., Toki, S. Multigene Knockout Utilizing Off-Target Mutations of the CRISPR/Cas9 System in Rice. Plant Cell Physiol 56, 41-47, doi: 10.1093/pcp/pcu154 (2015).
-
(2015)
Plant Cell Physiol
, vol.56
, pp. 41-47
-
-
Endo, M.1
Mikami, M.2
Toki, S.3
-
25
-
-
84938551854
-
Comparison of CRISPR/Cas9 expression constructs for efficient targeted mutagenesis in rice
-
Mikami, M., Toki, S., Endo, M. Comparison of CRISPR/Cas9 expression constructs for efficient targeted mutagenesis in rice. Plant Mol Biol 88, 561-572, doi: 10.1007/s11103-015-0342-x (2015).
-
(2015)
Plant Mol Biol
, vol.88
, pp. 561-572
-
-
Mikami, M.1
Toki, S.2
Endo, M.3
-
26
-
-
84885181396
-
Efficient genome editing in plants using a CRISPR/Cas system
-
Feng, Z. Y. et al. Efficient genome editing in plants using a CRISPR/Cas system. Cell Res 23, 1229-1232, doi: 10.1038/cr.2013.114 (2013).
-
(2013)
Cell Res
, vol.23
, pp. 1229-1232
-
-
Feng, Z.Y.1
-
27
-
-
1042290704
-
The YABBY gene DROOPING LEAF regulates carpel specification and midrib development in Oryza sativa
-
Yamaguchi, T. et al. The YABBY gene DROOPING LEAF regulates carpel specification and midrib development in Oryza sativa. Plant Cell 16, 500-509, doi: 10.1105/tpc.018044 (2004).
-
(2004)
Plant Cell
, vol.16
, pp. 500-509
-
-
Yamaguchi, T.1
-
28
-
-
0037324745
-
SUPERWOMAN1 and DROOPING LEAF genes control floral organ identity in rice
-
Nagasawa, N. et al. SUPERWOMAN1 and DROOPING LEAF genes control floral organ identity in rice. Development 130, 705-718 (2003).
-
(2003)
Development
, vol.130
, pp. 705-718
-
-
Nagasawa, N.1
-
29
-
-
84878349760
-
Efficient identification of TALEN-mediated genome modifications using heteroduplex mobility assays
-
Ota, S. et al. Efficient identification of TALEN-mediated genome modifications using heteroduplex mobility assays. Genes Cells 18, 450-458, doi: 10.1111/gtc.12050 (2013).
-
(2013)
Genes Cells
, vol.18
, pp. 450-458
-
-
Ota, S.1
-
30
-
-
84979523619
-
Targeted mutagenesis using CRISPR/Cas system in medaka
-
Ansai, S., Kinoshita, M. Targeted mutagenesis using CRISPR/Cas system in medaka. Biol Open 3, 362-371, doi: 10.1242/bio.20148177 (2014).
-
(2014)
Biol Open
, vol.3
, pp. 362-371
-
-
Ansai, S.1
Kinoshita, M.2
-
31
-
-
84937908208
-
Engineered CRISPR-Cas9 nucleases with altered PAM specificities
-
Kleinstiver, B. P. et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523, 481-485, doi: 10.1038/nature14592 (2015).
-
(2015)
Nature
, vol.523
, pp. 481-485
-
-
Kleinstiver, B.P.1
-
32
-
-
84880570576
-
High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells
-
Fu, Y. et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 31, 822-826, doi: 10.1038/nbt.2623 (2013).
-
(2013)
Nat Biotechnol
, vol.31
, pp. 822-826
-
-
Fu, Y.1
-
33
-
-
84884165315
-
DNA targeting specificity of RNA-guided Cas9 nucleases
-
Hsu, P. D. et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31, 827-832, doi: 10.1038/nbt.2647 (2013).
-
(2013)
Nat Biotechnol
, vol.31
, pp. 827-832
-
-
Hsu, P.D.1
-
34
-
-
84884155038
-
High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity
-
Pattanayak, V. et al. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat Biotechnol 31, 839-843, doi: 10.1038/nbt.2673 (2013).
-
(2013)
Nat Biotechnol
, vol.31
, pp. 839-843
-
-
Pattanayak, V.1
-
35
-
-
84947714470
-
Characterization of Staphylococcus aureus Cas9: A smaller Cas9 for all-in-one adeno-associated virus delivery and paired nickase applications
-
Friedland, A. E. et al. Characterization of Staphylococcus aureus Cas9: a smaller Cas9 for all-in-one adeno-associated virus delivery and paired nickase applications. Genome Biol 16, 257, doi: 10.1186/s13059-015-0817-8 (2015).
-
(2015)
Genome Biol
, vol.16
, pp. 257
-
-
Friedland, A.E.1
-
36
-
-
0031524467
-
Rapid and efficient Agrobacterium-mediated transformation in rice
-
Toki, S. Rapid and efficient Agrobacterium-mediated transformation in rice. Plant Mol Biol Rep 15, 16-21, doi: 10.1007/Bf02772109 (1997).
-
(1997)
Plant Mol Biol Rep
, vol.15
, pp. 16-21
-
-
Toki, S.1
-
37
-
-
33748319354
-
Early infection of scutellum tissue with Agrobacterium allows high-speed transformation of rice
-
Toki, S. et al. Early infection of scutellum tissue with Agrobacterium allows high-speed transformation of rice. Plant Journal 47, 969-976, doi: 10.1111/j.1365-313X.2006.02836.x (2006).
-
(2006)
Plant Journal
, vol.47
, pp. 969-976
-
-
Toki, S.1
-
38
-
-
0033150558
-
Identification of three kinds of mutually related composite elements conferring S phase-specific transcriptional activation
-
Taoka, K. et al. Identification of three kinds of mutually related composite elements conferring S phase-specific transcriptional activation. Plant Journal 18, 611-623, doi: 10.1046/j.1365-313x.1999.00486.x (1999).
-
(1999)
Plant Journal
, vol.18
, pp. 611-623
-
-
Taoka, K.1
|