메뉴 건너뛰기




Volumn 51, Issue 11, 2007, Pages 5352-5367

Variational approximations in Bayesian model selection for finite mixture distributions

Author keywords

Bayesian analysis; Deviance information criterion (DIC); Mixtures; Variational approximations

Indexed keywords

BAYESIAN NETWORKS; COMPUTATIONAL COMPLEXITY; COMPUTER SIMULATION; DATA REDUCTION; LEARNING SYSTEMS; MATHEMATICAL MODELS; MIXTURES; NEURAL NETWORKS;

EID: 34247869715     PISSN: 01679473     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.csda.2006.07.020     Document Type: Article
Times cited : (126)

References (35)
  • 2
    • 34247856517 scopus 로고    scopus 로고
    • Attias, H., 1999. Inferring parameters and structure of latent variable models by variational Bayes. In: Proceedings of Conference on Uncertainty in Artificial Intelligence.
  • 3
    • 0742271637 scopus 로고    scopus 로고
    • Deviance information criterion for comparing stochastic volatility models
    • Berg A., Meyer R., and Yu J. Deviance information criterion for comparing stochastic volatility models. J. Bus. Econ. Statist. 22 (2004) 107-119
    • (2004) J. Bus. Econ. Statist. , vol.22 , pp. 107-119
    • Berg, A.1    Meyer, R.2    Yu, J.3
  • 4
    • 34247899684 scopus 로고    scopus 로고
    • Bishop, C.M., Winn, J., 2003. Structural variational distributions in VIBES, in: Bishop, C.M., Frey, B. (Eds.), Proceedings of Artificial Intelligence, Florida.
  • 5
    • 70450277983 scopus 로고    scopus 로고
    • Celeux, G., Forbes, F., Robert, C., Titterington, D.M., 2006. Deviance information criteria for missing data models, Bayesian Anal., 1, to appear.
  • 6
    • 4043061882 scopus 로고    scopus 로고
    • Variational Bayesian model selection for mixture distributions
    • Jaakkola T., and Richardson T. (Eds), Morgan Kaufmann, Los Altos, CA
    • Corduneanu A., and Bishop C.M. Variational Bayesian model selection for mixture distributions. In: Jaakkola T., and Richardson T. (Eds). Artificial Intelligence and Statistics (2001), Morgan Kaufmann, Los Altos, CA 27-34
    • (2001) Artificial Intelligence and Statistics , pp. 27-34
    • Corduneanu, A.1    Bishop, C.M.2
  • 7
    • 34247889062 scopus 로고    scopus 로고
    • Dempster, A.P., 1974. The direct use of likelihood for significance testing, in: Proceedings of Conference on Foundational Questions in Statistical Inference, University of Aarhus, pp. 335-352.
  • 8
    • 34247861438 scopus 로고    scopus 로고
    • Doucet, A., de Freitas, N., Gordon, N.J. (Eds.), 2001. Sequential Monte Carlo Methods in Practice, Springer, Berlin.
  • 9
    • 84950453304 scopus 로고
    • Sampling-based approaches to calculating marginal densities
    • Gelfand A.E., and Smith A.F.M. Sampling-based approaches to calculating marginal densities. J. Amer. Statist. Assoc. 85 (1990) 398-409
    • (1990) J. Amer. Statist. Assoc. , vol.85 , pp. 398-409
    • Gelfand, A.E.1    Smith, A.F.M.2
  • 10
    • 84972511893 scopus 로고
    • Practical Markov chain Monte Carlo (with discussion)
    • Geyer C. Practical Markov chain Monte Carlo (with discussion). Statist. Sci. 7 (1992) 473-483
    • (1992) Statist. Sci. , vol.7 , pp. 473-483
    • Geyer, C.1
  • 11
    • 84899003086 scopus 로고    scopus 로고
    • Propagation algorithms for variational learning
    • Touretzky D.S., Mozer M.C., and Hasselmo M.E. (Eds), MIT Press, Cambridge, MA
    • Ghahramani Z., and Beal M. Propagation algorithms for variational learning. In: Touretzky D.S., Mozer M.C., and Hasselmo M.E. (Eds). Advances in Neural Information Processing vol. 13 (2001), MIT Press, Cambridge, MA
    • (2001) Advances in Neural Information Processing , vol.13
    • Ghahramani, Z.1    Beal, M.2
  • 12
    • 0038312668 scopus 로고
    • Adaptive rejection Metropolis sampling within Gibbs sampling
    • Gilks W.R., Best N.G., and Tan K.K.C. Adaptive rejection Metropolis sampling within Gibbs sampling. J. Appl. Statist. 44 (1995) 455-472
    • (1995) J. Appl. Statist. , vol.44 , pp. 455-472
    • Gilks, W.R.1    Best, N.G.2    Tan, K.K.C.3
  • 13
    • 34247879368 scopus 로고    scopus 로고
    • Gilks, W.R., Richardson, S., Spiegelhalter, D.J. (Eds.), 1996. Markov Chain Monte Carlo in Practice, Chapman & Hall, London.
  • 14
    • 77956889087 scopus 로고
    • Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
    • Green P.J. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82 (1995) 711-732
    • (1995) Biometrika , vol.82 , pp. 711-732
    • Green, P.J.1
  • 15
    • 0036970574 scopus 로고    scopus 로고
    • Hidden Markov models and disease mapping
    • Green P.J., and Richardson S. Hidden Markov models and disease mapping. J. Amer. Statist. Assoc. 97 (2002) 1055-1070
    • (2002) J. Amer. Statist. Assoc. , vol.97 , pp. 1055-1070
    • Green, P.J.1    Richardson, S.2
  • 16
    • 0442312140 scopus 로고    scopus 로고
    • Markov chain Monte Carlo methods for computing Bayes factors: a comparative review
    • Han C., and Carlin B.P. Markov chain Monte Carlo methods for computing Bayes factors: a comparative review. J. Amer. Statist. Assoc. 96 (2001) 1122-1132
    • (2001) J. Amer. Statist. Assoc. , vol.96 , pp. 1122-1132
    • Han, C.1    Carlin, B.P.2
  • 17
    • 4043129651 scopus 로고    scopus 로고
    • Graphical models
    • Jordan M.I. Graphical models. Statist. Sci. 19 (2004) 140-155
    • (2004) Statist. Sci. , vol.19 , pp. 140-155
    • Jordan, M.I.1
  • 18
  • 19
    • 34247864449 scopus 로고    scopus 로고
    • McGrory, C.A., Titterington, D.M., 2006. Bayesian analysis of hidden Markov models using variational approximations. Submitted for publication.
  • 20
    • 34247865373 scopus 로고    scopus 로고
    • Neal, R.M., 1996. Bayesian Learning for Neural Networks, Lecture Notes in Statistics, vol. 118, Springer, New York.
  • 21
    • 0001180165 scopus 로고
    • Probes of large-scale structure in the Corona Borealis region
    • Postman M., Huchra J.P., and Geller M.J. Probes of large-scale structure in the Corona Borealis region. Astronomical J. 92 (1986) 1238-1247
    • (1986) Astronomical J. , vol.92 , pp. 1238-1247
    • Postman, M.1    Huchra, J.P.2    Geller, M.J.3
  • 22
    • 18244378520 scopus 로고    scopus 로고
    • On Bayesian analysis of mixtures with an unknown number of components (with discussion)
    • Richardson S., and Green P.J. On Bayesian analysis of mixtures with an unknown number of components (with discussion). J. Roy. Statist. Soc. Ser. B 59 (1997) 731-792
    • (1997) J. Roy. Statist. Soc. Ser. B , vol.59 , pp. 731-792
    • Richardson, S.1    Green, P.J.2
  • 23
    • 0034366269 scopus 로고    scopus 로고
    • Bayesian inference in hidden Markov models through the reversible jump Markov chain Monte Carlo method
    • Robert C.P., Rydén T., and Titterington D.M. Bayesian inference in hidden Markov models through the reversible jump Markov chain Monte Carlo method. J. Roy. Statist. Soc. Ser. B 62 (2000) 57-75
    • (2000) J. Roy. Statist. Soc. Ser. B , vol.62 , pp. 57-75
    • Robert, C.P.1    Rydén, T.2    Titterington, D.M.3
  • 24
    • 0000795635 scopus 로고
    • Density estimation with confidence sets exemplified by superclusters and voids in the galaxies
    • Roeder K. Density estimation with confidence sets exemplified by superclusters and voids in the galaxies. J. Amer. Statist. Assoc. 85 (1990) 617-624
    • (1990) J. Amer. Statist. Assoc. , vol.85 , pp. 617-624
    • Roeder, K.1
  • 25
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz G. Estimating the dimension of a model. Ann. Statist. 6 (1978) 461-464
    • (1978) Ann. Statist. , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 27
    • 0034374610 scopus 로고    scopus 로고
    • Bayesian analysis of mixture models with an unknown number of components-an alternative to reversible jump methods
    • Stephens M. Bayesian analysis of mixture models with an unknown number of components-an alternative to reversible jump methods. Ann. Statist. 28 (2000) 40-74
    • (2000) Ann. Statist. , vol.28 , pp. 40-74
    • Stephens, M.1
  • 28
    • 0000576595 scopus 로고
    • Markov chains for exploring posterior distributions
    • Tierney L. Markov chains for exploring posterior distributions. Ann. Statist. 22 (1994) 1701-1728
    • (1994) Ann. Statist. , vol.22 , pp. 1701-1728
    • Tierney, L.1
  • 29
    • 4043069967 scopus 로고    scopus 로고
    • Bayesian methods for neural networks and related models
    • Titterington D.M. Bayesian methods for neural networks and related models. Statist. Sci. 19 (2004) 128-139
    • (2004) Statist. Sci. , vol.19 , pp. 128-139
    • Titterington, D.M.1
  • 31
    • 0036887504 scopus 로고    scopus 로고
    • Bayesian model search for mixture models based on optimizing variational bounds
    • Ueda N., and Ghahramani Z. Bayesian model search for mixture models based on optimizing variational bounds. Neural Networks 15 (2002) 1223-1241
    • (2002) Neural Networks , vol.15 , pp. 1223-1241
    • Ueda, N.1    Ghahramani, Z.2
  • 32
    • 33745841556 scopus 로고    scopus 로고
    • Wang, B., Titterington, D.M., 2006. Convergence properties of a general algorithm for calculating variational Bayesian estimates for a normal mixture model. Bayesian Anal., 1, 625-650.
  • 35
    • 0034666331 scopus 로고    scopus 로고
    • Comparing hierarchical models for spatio-temporally misaligned data using the deviance information criterion
    • Zhu L., and Carlin B.P. Comparing hierarchical models for spatio-temporally misaligned data using the deviance information criterion. Statist. Med. 19 (2000) 2265-2278
    • (2000) Statist. Med. , vol.19 , pp. 2265-2278
    • Zhu, L.1    Carlin, B.P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.