메뉴 건너뛰기




Volumn , Issue , 2014, Pages 192-199

Iterative splits of quadratic bounds for scalable binary tensor factorization

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; ARTIFICIAL INTELLIGENCE; ITERATIVE METHODS; MEAN SQUARE ERROR;

EID: 84923313033     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (3)

References (25)
  • 3
    • 85120807674 scopus 로고    scopus 로고
    • Learning structured embeddings of knowledge bases
    • Antoine Bordes, Jason Weston, Ronan Collobert, and Yoshua Bengio. Learning structured embeddings of knowledge bases. In AAAI, 2011.
    • (2011) AAAI
    • Bordes, A.1    Weston, J.2    Collobert, R.3    Bengio, Y.4
  • 4
    • 82555195625 scopus 로고    scopus 로고
    • 2nd workshop on information heterogeneity and fusion in recommender systems (hetrec 2011)
    • RecSys 2011, New York, NY, USA, ACM
    • Iván Cantador, Peter Brusilovsky, and Tsvi Kuflik. 2nd workshop on information heterogeneity and fusion in recommender systems (hetrec 2011). In Proceedings of the 5th ACM conference on Recommender systems, RecSys 2011, New York, NY, USA, 2011. ACM.
    • (2011) Proceedings of the 5th ACM Conference on Recommender Systems
    • Cantador, I.1    Brusilovsky, P.2    Kuflik, T.3
  • 5
    • 0042420026 scopus 로고    scopus 로고
    • A generalization of principal component analysis to the exponential family
    • Michael Collins, Sanjoy Dasgupta, and Robert E Schapire. A generalization of principal component analysis to the exponential family. In NIPS, volume 13, page 23, 2001.
    • (2001) NIPS , vol.13 , Issue.23
    • Collins, M.1    Dasgupta, S.2    Schapire, R.E.3
  • 6
    • 0002258223 scopus 로고
    • The PARAFAC model for three-way factor analysis and multidimensional scaling
    • Richard A Harshman and Margaret E Lundy. The PARAFAC model for three-way factor analysis and multidimensional scaling. Research methods for multimode data analysis, pages 122-215, 1984.
    • (1984) Research Methods for Multimode Data Analysis , pp. 122-215
    • Harshman, R.A.1    Lundy, M.E.2
  • 7
    • 84867840191 scopus 로고    scopus 로고
    • Exploiting the circulant structure of tracking-bydetection with kernels
    • Joo F. Henriques, Rui Caseiro, Pedro Martins, and Jorge Batista. Exploiting the circulant structure of tracking-bydetection with kernels. In ECCV (4), pages 702-715, 2012.
    • (2012) ECCV , Issue.4 , pp. 702-715
    • Henriques, J.F.1    Caseiro, R.2    Martins, P.3    Batista, J.4
  • 8
    • 84923276141 scopus 로고    scopus 로고
    • Fast ALS-Based tensor factorization for context-aware recommendation from implicit feedback
    • Bristol, UK
    • Balzs Hidasi and Domonkos Tikk. Fast ALS-Based tensor factorization for context-aware recommendation from implicit feedback. ECML PKDD, page 6782, Bristol, UK, 2012.
    • (2012) ECML PKDD , pp. 6782
    • Hidasi, B.1    Tikk, D.2
  • 9
    • 79951757531 scopus 로고    scopus 로고
    • Collaborative filtering for implicit feedback datasets
    • Yifan Hu, Yehuda Koren, and Chris Volinsky. Collaborative filtering for implicit feedback datasets. In ICDM, page 263272, 2008.
    • (2008) ICDM , pp. 263272
    • Hu, Y.1    Koren, Y.2    Volinsky, C.3
  • 11
    • 84877742658 scopus 로고    scopus 로고
    • A latent factor model for highly multi-relational data
    • Rodolphe Jenatton, Nicolas Le Roux, Antoine Bordes, and Guillaume Obozinski. A latent factor model for highly multi-relational data. In NIPS, pages 3176-3184, 2012.
    • (2012) NIPS , pp. 3176-3184
    • Jenatton, R.1    Le Roux, N.2    Bordes, A.3    Obozinski, G.4
  • 13
    • 85162389868 scopus 로고    scopus 로고
    • Variational bounds for mixed-data factor analysis
    • Mohammad Emtiyaz Khan, Benjamin M. Marlin, Guillaume Bouchard, and Kevin P. Murphy. Variational bounds for mixed-data factor analysis. In NIPS, pages 1108-1116, 2010.
    • (2010) NIPS , pp. 1108-1116
    • Emtiyaz Khan, M.1    Marlin, B.M.2    Bouchard, G.3    Murphy, K.P.4
  • 16
    • 84897534825 scopus 로고    scopus 로고
    • Optimization with first-order surrogate functions
    • Julien Mairal. Optimization with first-order surrogate functions. In ICML, 2013.
    • (2013) ICML
    • Mairal, J.1
  • 17
    • 80053441013 scopus 로고    scopus 로고
    • Piecewise bounds for estimating bernoulli-logistic latent gaussian models
    • Benjamin M. Marlin, Mohammad Emtiyaz Khan, and Kevin P. Murphy. Piecewise Bounds for Estimating Bernoulli-Logistic Latent Gaussian Models. In ICML, pages 633-640, 2011.
    • (2011) ICML , pp. 633-640
    • Marlin, B.M.1    Emtiyaz Khan, M.2    Murphy, K.P.3
  • 20
    • 85019992279 scopus 로고    scopus 로고
    • A three-way model for collective learning on multirelational data
    • Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. A three-way model for collective learning on multirelational data. In ICML, page 809816, 2011.
    • (2011) ICML , pp. 809816
    • Nickel, M.1    Tresp, V.2    Kriegel, H.3
  • 21
    • 84880537868 scopus 로고    scopus 로고
    • Factorizing YAGO: Scalable machine learning for linked data
    • Lyon, France
    • Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. Factorizing YAGO: scalable machine learning for linked data. In WWW, page 271280, Lyon, France, 2012.
    • (2012) WWW , pp. 271280
    • Nickel, M.1    Tresp, V.2    Kriegel, H.3
  • 22
    • 84923267724 scopus 로고    scopus 로고
    • Fast ALS-based matrix factorization for explicit and implicit feedback datasets
    • Istvn Pilszy, Dvid Zibriczky, and Domonkos Tikk. Fast ALS-based matrix factorization for explicit and implicit feedback datasets. In ACM RecSys, page 7178, 2010.
    • (2010) ACM RecSys , pp. 7178
    • Pilszy, I.1    Zibriczky, D.2    Tikk, D.3
  • 23
    • 84881340462 scopus 로고    scopus 로고
    • Factorizing personalized Markov chains for nextbasket recommendation
    • Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme. Factorizing personalized Markov chains for nextbasket recommendation. In WWW, page 811820, 2010.
    • (2010) WWW , pp. 811820
    • Rendle, S.1    Freudenthaler, C.2    Schmidt-Thieme, L.3
  • 24
    • 84919880360 scopus 로고    scopus 로고
    • Fast variational bayesian inference for non-conjugate matrix factorization models
    • Matthias Seeger and Guillaume Bouchard. Fast Variational Bayesian Inference for Non-Conjugate Matrix Factorization Models. Journal of Machine Learning Research-Proceedings Track, 22:1012-1018, 2012.
    • (2012) Journal of Machine Learning Research-Proceedings Track , vol.22 , pp. 1012-1018
    • Seeger, M.1    Bouchard, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.