-
1
-
-
85041767174
-
-
A.S. Ackleh, E.J. Allen, R.B. Hearfott, and P. Seshaiyer. Classical and Modern Numerical Analysis: Theory, Methods and Practice. Chapman&Hall, CRC Press, Boca Raton, Florida, 2010.
-
A.S. Ackleh, E.J. Allen, R.B. Hearfott, and P. Seshaiyer. Classical and Modern Numerical Analysis: Theory, Methods and Practice. Chapman&Hall, CRC Press, Boca Raton, Florida, 2010.
-
-
-
-
2
-
-
0000396062
-
Natural gradient works efficiently in learning
-
S. Amari. Natural gradient works efficiently in learning. Neural Computation, 10:251-276, 1998.
-
(1998)
Neural Computation
, vol.10
, pp. 251-276
-
-
Amari, S.1
-
3
-
-
44449145192
-
Gaussian process approximations of stochastic differential equations
-
C. Archambeau, D. Cornford, M. Opper, and J. Shawe-Taylor. Gaussian process approximations of stochastic differential equations. Journal of Machine Learning Research: Workshop and Conference Proceedings, 1:1-16, 2007.
-
(2007)
Journal of Machine Learning Research: Workshop and Conference Proceedings
, vol.1
, pp. 1-16
-
-
Archambeau, C.1
Cornford, D.2
Opper, M.3
Shawe-Taylor, J.4
-
4
-
-
0001417140
-
The Multivariate Skew-Normal distribution
-
A. Azzalini and A. Dalla Valle. The Multivariate Skew-Normal distribution. Biometrika, 83:715-726, 1996.
-
(1996)
Biometrika
, vol.83
, pp. 715-726
-
-
Azzalini, A.1
Dalla Valle, A.2
-
5
-
-
84898931951
-
Ensemble learning for multi-layer networks
-
M.I. Jordan, K.J. Kearns, and S.A. Solla, editors
-
D. Barber and C.M. Bishop. Ensemble learning for multi-layer networks. In M.I. Jordan, K.J. Kearns, and S.A. Solla, editors, Advances in Neural Information Processing Systems 10, pages 395-401, 1997.
-
(1997)
Advances in Neural Information Processing Systems
, vol.10
, pp. 395-401
-
-
Barber, D.1
Bishop, C.M.2
-
6
-
-
33750511893
-
Variational Bayesian learning of directed graphical models with hidden variables
-
M.J. Beal and Z. Ghahramani. Variational Bayesian learning of directed graphical models with hidden variables. Bayesian Analysis, 4:793-832, 2006.
-
(2006)
Bayesian Analysis
, vol.4
, pp. 793-832
-
-
Beal, M.J.1
Ghahramani, Z.2
-
7
-
-
85041765509
-
-
C.M. Bishop. Pattern Recognition and Machine Learning. Springer, New York, 2006.
-
C.M. Bishop. Pattern Recognition and Machine Learning. Springer, New York, 2006.
-
-
-
-
8
-
-
33947180792
-
Stochastic learning
-
O. Bousquet, U. von Luxburg, and G. Rätsch, editors
-
L. Bottou. Stochastic learning. In O. Bousquet, U. von Luxburg, and G. Rätsch, editors, Advanced Lectures on Machine Learning, pages 146-168, 2004.
-
(2004)
Advanced Lectures on Machine Learning
, pp. 146-168
-
-
Bottou, L.1
-
9
-
-
85041769587
-
-
S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, Cambridge, UK, 2004.
-
S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, Cambridge, UK, 2004.
-
-
-
-
11
-
-
0033266804
-
A nonlinear conjugate gradient method with a strong global convergence property
-
Y.H. Dai and Y. Yuan. A nonlinear conjugate gradient method with a strong global convergence property. SIAM Journal on Optimization, 10:177-182, 1999.
-
(1999)
SIAM Journal on Optimization
, vol.10
, pp. 177-182
-
-
Dai, Y.H.1
Yuan, Y.2
-
13
-
-
85041776549
-
-
G.H. Givens and J.A. Hoeting. Computational Statistics. Wiley, Hoboken, New Jersey, 2005.
-
G.H. Givens and J.A. Hoeting. Computational Statistics. Wiley, Hoboken, New Jersey, 2005.
-
-
-
-
16
-
-
84878919168
-
Stochastic variational inference
-
M.D. Hoffman, D.M. Blei, C. Wang, and J. Paisley. Stochastic variational inference. Journal of Machine Learning Research, 14:1303-1347, 2013.
-
(2013)
Journal of Machine Learning Research
, vol.14
, pp. 1303-1347
-
-
Hoffman, M.D.1
Blei, D.M.2
Wang, C.3
Paisley, J.4
-
18
-
-
34547474118
-
Blind separation of nonlinear mixtures by variational Bayesian learning
-
A. Honkela, H. Valpola, A. Ilin, and J. Karhunen. Blind separation of nonlinear mixtures by variational Bayesian learning. Digital Signal Processing, 17:914-934, 2007.
-
(2007)
Digital Signal Processing
, vol.17
, pp. 914-934
-
-
Honkela, A.1
Valpola, H.2
Ilin, A.3
Karhunen, J.4
-
19
-
-
54049158947
-
Natural conjugate gradient in variational inference
-
M. Ishikawa, K. Doya, H. Miyamoto, and T. Yamakawa, editors
-
A. Honkela, M. Tornio, T. Raiko, and J. Karhunen. Natural conjugate gradient in variational inference. In M. Ishikawa, K. Doya, H. Miyamoto, and T. Yamakawa, editors, Proceedings of the Fourteenth International Conference on Neural Information Processing, pages 305-314, 2008.
-
(2008)
Proceedings of the Fourteenth International Conference on Neural Information Processing
, pp. 305-314
-
-
Honkela, A.1
Tornio, M.2
Raiko, T.3
Karhunen, J.4
-
20
-
-
79551487646
-
Approximate Riemannian conjugate gradient learning for fixed-form variational Bayes
-
A. Honkela, T. Raiko, M. Kuusela, M. Tornio, and J. Karhunen. Approximate Riemannian conjugate gradient learning for fixed-form variational Bayes. Journal of Machine Learning Research, 11:3235-3268, 2010.
-
(2010)
Journal of Machine Learning Research
, vol.11
, pp. 3235-3268
-
-
Honkela, A.1
Raiko, T.2
Kuusela, M.3
Tornio, M.4
Karhunen, J.5
-
21
-
-
85162453650
-
Non-conjugate message passing for multinomial and binary regression
-
J. Shawe-Taylor, R.S. Zamel, P. Bartlett, F. Pereira, and K.Q. Weinberger, editors
-
D.A. Knowles and T.P. Minka. Non-conjugate message passing for multinomial and binary regression. In J. Shawe-Taylor, R.S. Zamel, P. Bartlett, F. Pereira, and K.Q. Weinberger, editors, Advances in Neural Information Processing Systems 24, 2011.
-
(2011)
Advances in Neural Information Processing Systems
, vol.24
-
-
Knowles, D.A.1
Minka, T.P.2
-
22
-
-
0002144623
-
Bayesian nonlinear independent component analysis by multilayer perceptrons
-
M. Girolami, editor
-
H. Lappalainen and A. Honkela. Bayesian nonlinear independent component analysis by multilayer perceptrons. In M. Girolami, editor, Advances in Independent Component Analysis, pages 93-121, 2000.
-
(2000)
Advances in Independent Component Analysis
, pp. 93-121
-
-
Lappalainen, H.1
Honkela, A.2
-
23
-
-
85041776439
-
-
D.G. Luenberger and Y. Ye. Linear and Nonlinear Programming, Third Edition. Springer, New York, 2008.
-
D.G. Luenberger and Y. Ye. Linear and Nonlinear Programming, Third Edition. Springer, New York, 2008.
-
-
-
-
24
-
-
84979895357
-
Variational inference for count response semiparametric regression
-
J. Luts and M.P. Wand. Variational inference for count response semiparametric regression. Bayesian Analysis, 10:991-1023, 2015.
-
(2015)
Bayesian Analysis
, vol.10
, pp. 991-1023
-
-
Luts, J.1
Wand, M.P.2
-
25
-
-
85041758071
-
-
J.R. Magnus and H. Neudecker. Matrix Differential Calculus with Applications in Statistics and Econometrics, Revised Edition. Wiley, Chichester, UK, 1999.
-
J.R. Magnus and H. Neudecker. Matrix Differential Calculus with Applications in Statistics and Econometrics, Revised Edition. Wiley, Chichester, UK, 1999.
-
-
-
-
27
-
-
85041771786
-
-
M.K. Murray and J.W. Rice. Differential Geometry and Statistics. Chapman&Hall, London, 1993.
-
M.K. Murray and J.W. Rice. Differential Geometry and Statistics. Chapman&Hall, London, 1993.
-
-
-
-
28
-
-
0000238336
-
A simplex method for function minimization
-
J.A. Nelder and R. Mead. A simplex method for function minimization. Computer Journal, 7:308-313, 1965.
-
(1965)
Computer Journal
, vol.7
, pp. 308-313
-
-
Nelder, J.A.1
Mead, R.2
-
29
-
-
84938886140
-
Mean field variational Bayes for continuous sparse signal shrinkage: Pitfalls and remedies
-
S.E. Neville, J.T. Ormerod, and M.P. Wand. Mean field variational Bayes for continuous sparse signal shrinkage: pitfalls and remedies. Electronic Journal of Statistics, 8:1113-1151, 2014.
-
(2014)
Electronic Journal of Statistics
, vol.8
, pp. 1113-1151
-
-
Neville, S.E.1
Ormerod, J.T.2
Wand, M.P.3
-
31
-
-
63249135864
-
The variational Gaussian approximation revisited
-
M. Opper and C. Archambeau. The variational Gaussian approximation revisited. Neural Computation, 21:786-792, 2009.
-
(2009)
Neural Computation
, vol.21
, pp. 786-792
-
-
Opper, M.1
Archambeau, C.2
-
33
-
-
85041785887
-
-
J.M. Ortega. Numerical Analysis: A Second Course. SIAM, Philadelphia, 1990.
-
J.M. Ortega. Numerical Analysis: A Second Course. SIAM, Philadelphia, 1990.
-
-
-
-
34
-
-
84882325509
-
Mean field variational Bayesian inference for nonparametric regression with measurement error
-
T. Pham, J.T. Ormerod, and M.P. Wand. Mean field variational Bayesian inference for nonparametric regression with measurement error. Computational Statistics and Data Analysis, 68:375-387, 2013.
-
(2013)
Computational Statistics and Data Analysis
, vol.68
, pp. 375-387
-
-
Pham, T.1
Ormerod, J.T.2
Wand, M.P.3
-
35
-
-
85041786219
-
-
W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flanney. Numerical Recipes: The Art of Scientific Computing, Third Edition. Cambridge University Press, New York, 2007.
-
W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flanney. Numerical Recipes: The Art of Scientific Computing, Third Edition. Cambridge University Press, New York, 2007.
-
-
-
-
36
-
-
33846519849
-
Building blocks for variational Bayesian learning of latent variable models
-
T. Raiko, H. Valpola, M. Harva, and J. Karhunen. Building blocks for variational Bayesian learning of latent variable models. Journal of Machine Learning Research, 8:155-201, 2007.
-
(2007)
Journal of Machine Learning Research
, vol.8
, pp. 155-201
-
-
Raiko, T.1
Valpola, H.2
Harva, M.3
Karhunen, J.4
-
37
-
-
85041785249
-
-
R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2016. URL http: //www.R-project.org/ .
-
R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2016. URL http: //www.R-project.org/ .
-
-
-
-
38
-
-
84891700107
-
Fixed-form variational posterior approximation through stochastic linear regression
-
T. Salimans and D.A. Knowles. Fixed-form variational posterior approximation through stochastic linear regression. Bayesian Analysis, 8:837-882, 2013.
-
(2013)
Bayesian Analysis
, vol.8
, pp. 837-882
-
-
Salimans, T.1
Knowles, D.A.2
-
39
-
-
0000147488
-
Online model selection based on the variational Bayes
-
M. Sato. Online model selection based on the variational Bayes. Neural Computation, 13: 1649-1681, 2001.
-
(2001)
Neural Computation
, vol.13
, pp. 1649-1681
-
-
Sato, M.1
-
40
-
-
84878988007
-
Variational inference for generalized linear mixed models using partially noncentered parametrizations
-
L.S.L. Tan and D.J. Nott. Variational inference for generalized linear mixed models using partially noncentered parametrizations. Statistical Science, 28:168-188, 2013.
-
(2013)
Statistical Science
, vol.28
, pp. 168-188
-
-
Tan, L.S.L.1
Nott, D.J.2
-
42
-
-
0036003722
-
Vector differential calculus in statistics
-
M.P. Wand. Vector differential calculus in statistics. The American Statistician, 56:55-62, 2002.
-
(2002)
The American Statistician
, vol.56
, pp. 55-62
-
-
Wand, M.P.1
-
43
-
-
84901597335
-
Fully simplified Multivariate Normal updates in non-conjugate variational message passing
-
M.P. Wand. Fully simplified Multivariate Normal updates in non-conjugate variational message passing. Journal of Machine Learning Research, 15:1351-1369, 2014.
-
(2014)
Journal of Machine Learning Research
, vol.15
, pp. 1351-1369
-
-
Wand, M.P.1
-
44
-
-
84856958759
-
Mean field variational Bayes for elaborate distributions
-
M.P. Wand, J.T. Ormerod, S.A. Padoan, and R. Frühwirth. Mean field variational Bayes for elaborate distributions. Bayesian Analysis, 6:847-900, 2011.
-
(2011)
Bayesian Analysis
, vol.6
, pp. 847-900
-
-
Wand, M.P.1
Ormerod, J.T.2
Padoan, S.A.3
Frühwirth, R.4
-
46
-
-
84902472341
-
Variational Bayesian inference with Gaussian-mixture approximations
-
O. Zobay. Variational Bayesian inference with Gaussian-mixture approximations. Electronic Journal of Statistics, 8:355-389, 2014.
-
(2014)
Electronic Journal of Statistics
, vol.8
, pp. 355-389
-
-
Zobay, O.1
|