메뉴 건너뛰기




Volumn 17, Issue , 2016, Pages

Semiparametric mean field variational bayes: General principles and numerical issues

Author keywords

Bayesian Computing; Factor Graph; Fixed form Variational Bayes; Fixedpoint Iteration; Non conjugate Variational Message Passing; Nonlinear Conjugate Gradient Method

Indexed keywords

ITERATIVE METHODS; MESSAGE PASSING; NONLINEAR PROGRAMMING;

EID: 84995444661     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (23)

References (46)
  • 1
    • 85041767174 scopus 로고    scopus 로고
    • A.S. Ackleh, E.J. Allen, R.B. Hearfott, and P. Seshaiyer. Classical and Modern Numerical Analysis: Theory, Methods and Practice. Chapman&Hall, CRC Press, Boca Raton, Florida, 2010.
    • A.S. Ackleh, E.J. Allen, R.B. Hearfott, and P. Seshaiyer. Classical and Modern Numerical Analysis: Theory, Methods and Practice. Chapman&Hall, CRC Press, Boca Raton, Florida, 2010.
  • 2
    • 0000396062 scopus 로고    scopus 로고
    • Natural gradient works efficiently in learning
    • S. Amari. Natural gradient works efficiently in learning. Neural Computation, 10:251-276, 1998.
    • (1998) Neural Computation , vol.10 , pp. 251-276
    • Amari, S.1
  • 4
    • 0001417140 scopus 로고    scopus 로고
    • The Multivariate Skew-Normal distribution
    • A. Azzalini and A. Dalla Valle. The Multivariate Skew-Normal distribution. Biometrika, 83:715-726, 1996.
    • (1996) Biometrika , vol.83 , pp. 715-726
    • Azzalini, A.1    Dalla Valle, A.2
  • 5
    • 84898931951 scopus 로고    scopus 로고
    • Ensemble learning for multi-layer networks
    • M.I. Jordan, K.J. Kearns, and S.A. Solla, editors
    • D. Barber and C.M. Bishop. Ensemble learning for multi-layer networks. In M.I. Jordan, K.J. Kearns, and S.A. Solla, editors, Advances in Neural Information Processing Systems 10, pages 395-401, 1997.
    • (1997) Advances in Neural Information Processing Systems , vol.10 , pp. 395-401
    • Barber, D.1    Bishop, C.M.2
  • 6
    • 33750511893 scopus 로고    scopus 로고
    • Variational Bayesian learning of directed graphical models with hidden variables
    • M.J. Beal and Z. Ghahramani. Variational Bayesian learning of directed graphical models with hidden variables. Bayesian Analysis, 4:793-832, 2006.
    • (2006) Bayesian Analysis , vol.4 , pp. 793-832
    • Beal, M.J.1    Ghahramani, Z.2
  • 7
    • 85041765509 scopus 로고    scopus 로고
    • C.M. Bishop. Pattern Recognition and Machine Learning. Springer, New York, 2006.
    • C.M. Bishop. Pattern Recognition and Machine Learning. Springer, New York, 2006.
  • 8
    • 33947180792 scopus 로고    scopus 로고
    • Stochastic learning
    • O. Bousquet, U. von Luxburg, and G. Rätsch, editors
    • L. Bottou. Stochastic learning. In O. Bousquet, U. von Luxburg, and G. Rätsch, editors, Advanced Lectures on Machine Learning, pages 146-168, 2004.
    • (2004) Advanced Lectures on Machine Learning , pp. 146-168
    • Bottou, L.1
  • 9
    • 85041769587 scopus 로고    scopus 로고
    • S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, Cambridge, UK, 2004.
    • S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, Cambridge, UK, 2004.
  • 11
    • 0033266804 scopus 로고    scopus 로고
    • A nonlinear conjugate gradient method with a strong global convergence property
    • Y.H. Dai and Y. Yuan. A nonlinear conjugate gradient method with a strong global convergence property. SIAM Journal on Optimization, 10:177-182, 1999.
    • (1999) SIAM Journal on Optimization , vol.10 , pp. 177-182
    • Dai, Y.H.1    Yuan, Y.2
  • 13
    • 85041776549 scopus 로고    scopus 로고
    • G.H. Givens and J.A. Hoeting. Computational Statistics. Wiley, Hoboken, New Jersey, 2005.
    • G.H. Givens and J.A. Hoeting. Computational Statistics. Wiley, Hoboken, New Jersey, 2005.
  • 18
    • 34547474118 scopus 로고    scopus 로고
    • Blind separation of nonlinear mixtures by variational Bayesian learning
    • A. Honkela, H. Valpola, A. Ilin, and J. Karhunen. Blind separation of nonlinear mixtures by variational Bayesian learning. Digital Signal Processing, 17:914-934, 2007.
    • (2007) Digital Signal Processing , vol.17 , pp. 914-934
    • Honkela, A.1    Valpola, H.2    Ilin, A.3    Karhunen, J.4
  • 21
    • 85162453650 scopus 로고    scopus 로고
    • Non-conjugate message passing for multinomial and binary regression
    • J. Shawe-Taylor, R.S. Zamel, P. Bartlett, F. Pereira, and K.Q. Weinberger, editors
    • D.A. Knowles and T.P. Minka. Non-conjugate message passing for multinomial and binary regression. In J. Shawe-Taylor, R.S. Zamel, P. Bartlett, F. Pereira, and K.Q. Weinberger, editors, Advances in Neural Information Processing Systems 24, 2011.
    • (2011) Advances in Neural Information Processing Systems , vol.24
    • Knowles, D.A.1    Minka, T.P.2
  • 22
    • 0002144623 scopus 로고    scopus 로고
    • Bayesian nonlinear independent component analysis by multilayer perceptrons
    • M. Girolami, editor
    • H. Lappalainen and A. Honkela. Bayesian nonlinear independent component analysis by multilayer perceptrons. In M. Girolami, editor, Advances in Independent Component Analysis, pages 93-121, 2000.
    • (2000) Advances in Independent Component Analysis , pp. 93-121
    • Lappalainen, H.1    Honkela, A.2
  • 23
    • 85041776439 scopus 로고    scopus 로고
    • D.G. Luenberger and Y. Ye. Linear and Nonlinear Programming, Third Edition. Springer, New York, 2008.
    • D.G. Luenberger and Y. Ye. Linear and Nonlinear Programming, Third Edition. Springer, New York, 2008.
  • 24
    • 84979895357 scopus 로고    scopus 로고
    • Variational inference for count response semiparametric regression
    • J. Luts and M.P. Wand. Variational inference for count response semiparametric regression. Bayesian Analysis, 10:991-1023, 2015.
    • (2015) Bayesian Analysis , vol.10 , pp. 991-1023
    • Luts, J.1    Wand, M.P.2
  • 25
    • 85041758071 scopus 로고    scopus 로고
    • J.R. Magnus and H. Neudecker. Matrix Differential Calculus with Applications in Statistics and Econometrics, Revised Edition. Wiley, Chichester, UK, 1999.
    • J.R. Magnus and H. Neudecker. Matrix Differential Calculus with Applications in Statistics and Econometrics, Revised Edition. Wiley, Chichester, UK, 1999.
  • 27
    • 85041771786 scopus 로고    scopus 로고
    • M.K. Murray and J.W. Rice. Differential Geometry and Statistics. Chapman&Hall, London, 1993.
    • M.K. Murray and J.W. Rice. Differential Geometry and Statistics. Chapman&Hall, London, 1993.
  • 28
    • 0000238336 scopus 로고
    • A simplex method for function minimization
    • J.A. Nelder and R. Mead. A simplex method for function minimization. Computer Journal, 7:308-313, 1965.
    • (1965) Computer Journal , vol.7 , pp. 308-313
    • Nelder, J.A.1    Mead, R.2
  • 29
    • 84938886140 scopus 로고    scopus 로고
    • Mean field variational Bayes for continuous sparse signal shrinkage: Pitfalls and remedies
    • S.E. Neville, J.T. Ormerod, and M.P. Wand. Mean field variational Bayes for continuous sparse signal shrinkage: pitfalls and remedies. Electronic Journal of Statistics, 8:1113-1151, 2014.
    • (2014) Electronic Journal of Statistics , vol.8 , pp. 1113-1151
    • Neville, S.E.1    Ormerod, J.T.2    Wand, M.P.3
  • 31
    • 63249135864 scopus 로고    scopus 로고
    • The variational Gaussian approximation revisited
    • M. Opper and C. Archambeau. The variational Gaussian approximation revisited. Neural Computation, 21:786-792, 2009.
    • (2009) Neural Computation , vol.21 , pp. 786-792
    • Opper, M.1    Archambeau, C.2
  • 32
  • 33
    • 85041785887 scopus 로고    scopus 로고
    • J.M. Ortega. Numerical Analysis: A Second Course. SIAM, Philadelphia, 1990.
    • J.M. Ortega. Numerical Analysis: A Second Course. SIAM, Philadelphia, 1990.
  • 34
    • 84882325509 scopus 로고    scopus 로고
    • Mean field variational Bayesian inference for nonparametric regression with measurement error
    • T. Pham, J.T. Ormerod, and M.P. Wand. Mean field variational Bayesian inference for nonparametric regression with measurement error. Computational Statistics and Data Analysis, 68:375-387, 2013.
    • (2013) Computational Statistics and Data Analysis , vol.68 , pp. 375-387
    • Pham, T.1    Ormerod, J.T.2    Wand, M.P.3
  • 35
    • 85041786219 scopus 로고    scopus 로고
    • W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flanney. Numerical Recipes: The Art of Scientific Computing, Third Edition. Cambridge University Press, New York, 2007.
    • W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flanney. Numerical Recipes: The Art of Scientific Computing, Third Edition. Cambridge University Press, New York, 2007.
  • 37
    • 85041785249 scopus 로고    scopus 로고
    • R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2016. URL http: //www.R-project.org/ .
    • R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2016. URL http: //www.R-project.org/ .
  • 38
    • 84891700107 scopus 로고    scopus 로고
    • Fixed-form variational posterior approximation through stochastic linear regression
    • T. Salimans and D.A. Knowles. Fixed-form variational posterior approximation through stochastic linear regression. Bayesian Analysis, 8:837-882, 2013.
    • (2013) Bayesian Analysis , vol.8 , pp. 837-882
    • Salimans, T.1    Knowles, D.A.2
  • 39
    • 0000147488 scopus 로고    scopus 로고
    • Online model selection based on the variational Bayes
    • M. Sato. Online model selection based on the variational Bayes. Neural Computation, 13: 1649-1681, 2001.
    • (2001) Neural Computation , vol.13 , pp. 1649-1681
    • Sato, M.1
  • 40
    • 84878988007 scopus 로고    scopus 로고
    • Variational inference for generalized linear mixed models using partially noncentered parametrizations
    • L.S.L. Tan and D.J. Nott. Variational inference for generalized linear mixed models using partially noncentered parametrizations. Statistical Science, 28:168-188, 2013.
    • (2013) Statistical Science , vol.28 , pp. 168-188
    • Tan, L.S.L.1    Nott, D.J.2
  • 42
    • 0036003722 scopus 로고    scopus 로고
    • Vector differential calculus in statistics
    • M.P. Wand. Vector differential calculus in statistics. The American Statistician, 56:55-62, 2002.
    • (2002) The American Statistician , vol.56 , pp. 55-62
    • Wand, M.P.1
  • 43
    • 84901597335 scopus 로고    scopus 로고
    • Fully simplified Multivariate Normal updates in non-conjugate variational message passing
    • M.P. Wand. Fully simplified Multivariate Normal updates in non-conjugate variational message passing. Journal of Machine Learning Research, 15:1351-1369, 2014.
    • (2014) Journal of Machine Learning Research , vol.15 , pp. 1351-1369
    • Wand, M.P.1
  • 46
    • 84902472341 scopus 로고    scopus 로고
    • Variational Bayesian inference with Gaussian-mixture approximations
    • O. Zobay. Variational Bayesian inference with Gaussian-mixture approximations. Electronic Journal of Statistics, 8:355-389, 2014.
    • (2014) Electronic Journal of Statistics , vol.8 , pp. 355-389
    • Zobay, O.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.