메뉴 건너뛰기




Volumn 70, Issue 1, 2014, Pages 132-143

A variational Bayes spatiotemporal model for electromagnetic brain mapping

Author keywords

EEG MEG source reconstruction; FMRI based priors; Functional linear model; High dimensional data; Inverse problem; Spatial Spike and slab prior; Variational Bayes

Indexed keywords

BRAIN; BRAIN MAPPING; CLUSTERING ALGORITHMS; ELECTROENCEPHALOGRAPHY; ELECTROPHYSIOLOGY; INVERSE PROBLEMS; LOCATION; MAGNETIC RESONANCE IMAGING; NEURONS; SPECIFICATIONS;

EID: 84895870175     PISSN: 0006341X     EISSN: 15410420     Source Type: Journal    
DOI: 10.1111/biom.12126     Document Type: Article
Times cited : (24)

References (23)
  • 1
    • 84862303225 scopus 로고    scopus 로고
    • Seeking the truly correlated topic posterior-on tight approximate inference of logistic-normal admixture model
    • Ahmed, A. and Xing, E. P. (2007). Seeking the truly correlated topic posterior-on tight approximate inference of logistic-normal admixture model. In International Conference on Artificial Intelligence and Statistics, 19-26.
    • (2007) International Conference on Artificial Intelligence and Statistics , pp. 19-26
    • Ahmed, A.1    Xing, E.2
  • 2
    • 79956201651 scopus 로고    scopus 로고
    • Sparse variational analysis of linear mixed models for large data sets
    • Armagan, A. and Dunson, D. (2011). Sparse variational analysis of linear mixed models for large data sets. Statistics & Probability Letters 81, 1056-1062.
    • (2011) Statistics & Probability Letters , vol.81 , pp. 1056-1062
    • Armagan, A.1    Dunson, D.2
  • 3
    • 85153152908 scopus 로고    scopus 로고
    • Variational algorithms for approximate Bayesian inference. PhD thesis, University of London.
    • Beal, M. J. (2003). Variational algorithms for approximate Bayesian inference. PhD thesis, University of London.
    • (2003)
    • Beal, M.1
  • 4
    • 79951540621 scopus 로고    scopus 로고
    • Evolutionary stochastic search for Bayesian model exploration
    • Bottolo, L. and Richardson, S. (2010). Evolutionary stochastic search for Bayesian model exploration. Bayesian Analysis 5, 583-618.
    • (2010) Bayesian Analysis , vol.5 , pp. 583-618
    • Bottolo, L.1    Richardson, S.2
  • 5
    • 26644437226 scopus 로고    scopus 로고
    • Spatio-temporal modeling of localized brain activity
    • Bowman, F. D. (2005). Spatio-temporal modeling of localized brain activity. Biostatistics 6, 558-575.
    • (2005) Biostatistics , vol.6 , pp. 558-575
    • Bowman, F.1
  • 6
    • 34250780421 scopus 로고    scopus 로고
    • Spatiotemporal models for region of interest analyses of functional neuroimaging data
    • Bowman, F. D. (2007). Spatiotemporal models for region of interest analyses of functional neuroimaging data. Journal of the American Statistical Association 102, 442-453.
    • (2007) Journal of the American Statistical Association , vol.102 , pp. 442-453
    • Bowman, F.1
  • 10
    • 78349267620 scopus 로고    scopus 로고
    • A parametric empirical Bayesian framework for fmri-constrained meg/eeg source reconstruction
    • Henson, R. N., Flandin, G., Friston, K. J., and Mattout, J. (2010). A parametric empirical Bayesian framework for fmri-constrained meg/eeg source reconstruction. Human Brain Mapping 31, 1512-1531.
    • (2010) Human Brain Mapping , vol.31 , pp. 1512-1531
    • Henson, R.1    Flandin, G.2    Friston, K.3    Mattout, J.4
  • 11
    • 0032398552 scopus 로고    scopus 로고
    • Auxiliary variable methods for Markov chain Monte Carlo with applications
    • Higdon, D. M. (1998). Auxiliary variable methods for Markov chain Monte Carlo with applications. Journal of the American Statistical Association 93, 585-595.
    • (1998) Journal of the American Statistical Association , vol.93 , pp. 585-595
    • Higdon, D.1
  • 12
    • 0042685161 scopus 로고    scopus 로고
    • Bayesian parameter estimation via variational methods
    • Jaakkola, T. S. and Jordan, M. I. (2000). Bayesian parameter estimation via variational methods. Statistics and Computing 10, 25-37.
    • (2000) Statistics and Computing , vol.10 , pp. 25-37
    • Jaakkola, T.1    Jordan, M.2
  • 13
    • 0029033726 scopus 로고
    • Selective minimum-norm solution of the biomagnetic inverse problem
    • Matsuura, K. and Okabe, Y. (1995). Selective minimum-norm solution of the biomagnetic inverse problem. IEEE Transactions on Biomedical Engineering 42, 608-615.
    • (1995) IEEE Transactions on Biomedical Engineering , vol.42 , pp. 608-615
    • Matsuura, K.1    Okabe, Y.2
  • 14
    • 77952563168 scopus 로고    scopus 로고
    • Explaining variational approximations
    • Ormerod, J. T. and Wand, M. P. (2010). Explaining variational approximations. The American Statistician 64, 140-153.
    • (2010) The American Statistician , vol.64 , pp. 140-153
    • Ormerod, J.1    Wand, M.2
  • 15
    • 84859847512 scopus 로고    scopus 로고
    • Gaussian variational approximate inference for generalized linear mixed models
    • Ormerod, J. T. and Wand, M. P. (2012). Gaussian variational approximate inference for generalized linear mixed models. Journal of Computational and Graphical Statistics 21, 2-17.
    • (2012) Journal of Computational and Graphical Statistics , vol.21 , pp. 2-17
    • Ormerod, J.1    Wand, M.2
  • 16
    • 0027998259 scopus 로고
    • Low resolution electromagnetic tomography: A new method for localizing electrical activity in the brain
    • Pascual-Marqui, R. D., Michel, C. M., and Lehmann, D. (1994). Low resolution electromagnetic tomography: A new method for localizing electrical activity in the brain. International Journal of Psychophysiology 18, 49-65.
    • (1994) International Journal of Psychophysiology , vol.18 , pp. 49-65
    • Pascual-Marqui, R.1    Michel, C.2    Lehmann, D.3
  • 18
    • 34249029761 scopus 로고    scopus 로고
    • Spatial Bayesian variable selection with application to functional magnetic resonance imaging
    • Smith, M. and Fahrmeir, L. (2007). Spatial Bayesian variable selection with application to functional magnetic resonance imaging. Journal of the American Statistical Association 102, 417-431.
    • (2007) Journal of the American Statistical Association , vol.102 , pp. 417-431
    • Smith, M.1    Fahrmeir, L.2
  • 19
    • 84864386151 scopus 로고    scopus 로고
    • A spatio-temporal solution for the eeg/meg inverse problem using group penalization methods
    • Tian, T. S. and Li, Z. (2011). A spatio-temporal solution for the eeg/meg inverse problem using group penalization methods. Statistics and its Interface 4, 521-533.
    • (2011) Statistics and its Interface , vol.4 , pp. 521-533
    • Tian, T.1    Li, Z.2
  • 21
    • 84895867789 scopus 로고    scopus 로고
    • Inadequacy of interval estimates corresponding to variational Bayesian approximations
    • Proceedings of the 10th International Workshop on Artificial Intelligence R.G. Cowell and Z. Ghahramani (eds), 373-380. Society for Artificial Intelligence and Statistics.
    • Wang, B. and Titterington, D. M. (2005). Inadequacy of interval estimates corresponding to variational Bayesian approximations. In Proceedings of the 10th International Workshop on Artificial Intelligence R.G. Cowell and Z. Ghahramani (eds), 373-380. Society for Artificial Intelligence and Statistics.
    • (2005)
    • Wang, B.1    Titterington, D.M.2
  • 22
    • 57649220812 scopus 로고    scopus 로고
    • A unified Bayesian framework for meg/eeg source imaging
    • Wipf, D. and Nagarajan, S. (2009). A unified Bayesian framework for meg/eeg source imaging. Neuroimage 44, 947-966.
    • (2009) Neuroimage , vol.44 , pp. 947-966
    • Wipf, D.1    Nagarajan, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.