-
1
-
-
85014235798
-
-
arXiv:1605.08695
-
Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek Gordon Murray, Benoit Steiner, Paul A. Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zhang. Tensorflow: a system for large-scale machine learning. arXiv:1605.08695, 2016.
-
(2016)
Tensorflow: A System for Large-scale Machine Learning
-
-
Abadi, M.1
Barham, P.2
Chen, J.3
Chen, Z.4
Davis, A.5
Dean, J.6
Devin, M.7
Ghemawat, S.8
Irving, G.9
Isard, M.10
Kudlur, M.11
Levenberg, J.12
Monga, R.13
Moore, S.14
Gordon Murray, D.15
Steiner, B.16
Tucker, P.A.17
Vasudevan, V.18
Warden, P.19
Wicke, M.20
Yu, Y.21
Zhang, X.22
more..
-
2
-
-
0000396062
-
Natural gradient works efficiently in learning
-
Shun-Ichi Amari. Natural gradient works efficiently in learning. Neural Computation, 10(2):251-276, 1998.
-
(1998)
Neural Computation
, vol.10
, Issue.2
, pp. 251-276
-
-
Amari, S.1
-
3
-
-
0000708831
-
Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems
-
Charles E Antoniak. Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems. The Annals of Statistics, 2(6):1152-1174, 1974.
-
(1974)
The Annals of Statistics
, vol.2
, Issue.6
, pp. 1152-1174
-
-
Antoniak, C.E.1
-
9
-
-
84906879757
-
Build, compute, critique, repeat: Data analysis with latent variable models
-
David M Blei. Build, compute, critique, repeat: data analysis with latent variable models. Annual Review of Statistics and Its Application, 1:203-232, 2014.
-
(2014)
Annual Review of Statistics and Its Application
, vol.1
, pp. 203-232
-
-
Blei, D.M.1
-
11
-
-
84969752808
-
Weight uncertainty in neural networks
-
Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty in neural networks. In Proceedings of The 32nd International Conference on Machine Learning, pages 1613-1622, 2015.
-
(2015)
Proceedings of the 32nd International Conference on Machine Learning
, pp. 1613-1622
-
-
Blundell, C.1
Cornebise, J.2
Kavukcuoglu, K.3
Wierstra, D.4
-
12
-
-
84872521733
-
Stochastic gradient descent tricks
-
Springer
-
Leon Bottou. Stochastic gradient descent tricks. In Neural Networks: Tricks of the Trade, pages 421-436. Springer, 2012.
-
(2012)
Neural Networks: Tricks of the Trade
, pp. 421-436
-
-
Bottou, L.1
-
14
-
-
85009908079
-
-
arXiv:1509.07164
-
Bob Carpenter, Matthew D Hoffman, Marcus Brubaker, Daniel Lee, Peter Li, and Michael Betancourt. The Stan math library: reverse-mode automatic differentiation in C++. arXiv:1509.07164, 2015.
-
(2015)
The Stan Math Library: Reverse-mode Automatic Differentiation in C++
-
-
Carpenter, B.1
Hoffman, M.D.2
Brubaker, M.3
Lee, D.4
Li, P.5
Betancourt, M.6
-
20
-
-
0000811835
-
Conjugate priors for exponential families
-
Persi Diaconis and Donald Ylvisaker. Conjugate priors for exponential families. The Annals of Statistics, 7(2):269-281, 1979.
-
(1979)
The Annals of Statistics
, vol.7
, Issue.2
, pp. 269-281
-
-
Diaconis, P.1
Ylvisaker, D.2
-
23
-
-
80052250414
-
Adaptive subgradient methods for online learning and stochastic optimization
-
John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and stochastic optimization. The Journal of Machine Learning Research, 12:2121-2159, 2011.
-
(2011)
The Journal of Machine Learning Research
, vol.12
, pp. 2121-2159
-
-
Duchi, J.1
Hazan, E.2
Singer, Y.3
-
24
-
-
84965120997
-
Fast second order stochastic backpropagation for variational inference
-
Kai Fan, Ziteng Wang, Jeff Beck, James Kwok, and Katherine A Heller. Fast second order stochastic backpropagation for variational inference. In Neural Information Processing Systems, 2015.
-
(2015)
Neural Information Processing Systems
-
-
Fan, K.1
Wang, Z.2
Beck, J.3
Kwok, J.4
Heller, K.A.5
-
26
-
-
85053970271
-
-
CRC Press
-
Andrew Gelman, John B Carlin, Hal S Stern, David B Dunson, Aki Vehtari, and Donald B Rubin. Bayesian Data Analysis. CRC Press, 2013.
-
(2013)
Bayesian Data Analysis
-
-
Gelman, A.1
Carlin, J.B.2
Stern, H.S.3
Dunson, D.B.4
Vehtari, A.5
Rubin, D.B.6
-
28
-
-
70049098573
-
Church: A language for generative models
-
Noah D Goodman, Vikash K Mansinghka, Daniel Roy, Keith Bonawitz, and Joshua B Tenenbaum. Church: a language for generative models. In Uncertainty in Artificial Intelligence, 2008.
-
(2008)
Uncertainty in Artificial Intelligence
-
-
Goodman, N.D.1
Mansinghka, V.K.2
Roy, D.3
Bonawitz, K.4
Tenenbaum, J.B.5
-
31
-
-
84878919168
-
Stochastic variational inference
-
Matthew D Hoffman, David M Blei, Chong Wang, and John Paisley. Stochastic variational inference. The Journal of Machine Learning Research, 14(1):1303-1347, 2013.
-
(2013)
The Journal of Machine Learning Research
, vol.14
, Issue.1
, pp. 1303-1347
-
-
Hoffman, M.D.1
Blei, D.M.2
Wang, C.3
Paisley, J.4
-
32
-
-
0033225865
-
An introduction to variational methods for graphical models
-
Michael I Jordan, Zoubin Ghahramani, Tommi S Jaakkola, and Lawrence K Saul. An introduction to variational methods for graphical models. Machine Learning, 37(2):183-233, 1999.
-
(1999)
Machine Learning
, vol.37
, Issue.2
, pp. 183-233
-
-
Jordan, M.I.1
Ghahramani, Z.2
Jaakkola, T.S.3
Saul, L.K.4
-
34
-
-
0001251517
-
Stochastic volatility: Likelihood inference and comparison with ARCH models
-
Sangjoon Kim, Neil Shephard, and Siddhartha Chib. Stochastic volatility: likelihood inference and comparison with ARCH models. The Review of Economic Studies, 65(3):361-393, 1998.
-
(1998)
The Review of Economic Studies
, vol.65
, Issue.3
, pp. 361-393
-
-
Kim, S.1
Shephard, N.2
Chib, S.3
-
39
-
-
0033592606
-
Learning the parts of objects by non-negative matrix factorization
-
D. Lee and H. Seung. Learning the parts of objects by non-negative matrix factorization. Nature, 401 (6755):788-791, 1999.
-
(1999)
Nature
, vol.401
, Issue.6755
, pp. 788-791
-
-
Lee, D.1
Seung, H.2
-
43
-
-
24044445638
-
Stochastic volatility: Bayesian computation using automatic differentiation and the extended Kalman filter
-
Renate Meyer, David A Fournier, and Andreas Berg. Stochastic volatility: Bayesian computation using automatic differentiation and the extended Kalman filter. The Econometrics Journal, 6(2): 408-420, 2003.
-
(2003)
The Econometrics Journal
, vol.6
, Issue.2
, pp. 408-420
-
-
Meyer, R.1
Fournier, D.A.2
Berg, A.3
-
44
-
-
85016392466
-
-
Microsoft Research Cambridge
-
T. Minka, J. M. Winn, J. P. Guiver, S. Webster, Y. Zaykov, B. Yangel, A. Spengler, and J. Bronskill. Infer.NET 2.6, 2014. Microsoft Research Cambridge. http://research.microsoft.com/infernet.
-
(2014)
Infer.NET
, vol.2
, Issue.6
-
-
Minka, T.1
Winn, J.M.2
Guiver, J.P.3
Webster, S.4
Zaykov, Y.5
Yangel, B.6
Spengler, A.7
Bronskill, J.8
-
48
-
-
63249135864
-
The variational Gaussian approximation revisited
-
Manfred Opper and Cedric Archambeau. The variational Gaussian approximation revisited. Neural Computation, 21(3):786-792, 2009.
-
(2009)
Neural Computation
, vol.21
, Issue.3
, pp. 786-792
-
-
Opper, M.1
Archambeau, C.2
-
49
-
-
79959547284
-
Figaro: An object-oriented probabilistic programming language
-
AviPfeffer
-
AviPfeffer. Figaro: an object-oriented probabilistic programming language. Charles River Analytics Technical Report, 137, 2009.
-
(2009)
Charles River Analytics Technical Report
, vol.137
-
-
-
50
-
-
21444460810
-
Unconstrained parametrizations for variance-covariance matrices
-
Jose C Pinheiro and Douglas M Bates. Unconstrained parametrizations for variance-covariance matrices. Statistics and Computing, 6(3):289-296, 1996.
-
(1996)
Statistics and Computing
, vol.6
, Issue.3
, pp. 289-296
-
-
Pinheiro, J.C.1
Bates, D.M.2
-
52
-
-
34249658583
-
Algorithmic differentiation: Application to variational problems in computer vision
-
Thomas Pock, Michael Pock, and Horst Bischof. Algorithmic differentiation: application to variational problems in computer vision. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(7):1180-1193, 2007.
-
(2007)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.29
, Issue.7
, pp. 1180-1193
-
-
Pock, T.1
Pock, M.2
Bischof, H.3
-
65
-
-
0003470083
-
-
MRC Biostatistics Unit, Cambridge
-
David J Spiegelhalter, Andrew Thomas, Nicky G Best, and Wally R Gilks. BUGS: Bayesian inference using Gibbs sampling, version 0.50. MRC Biostatistics Unit, Cambridge, 1995.
-
(1995)
BUGS: Bayesian Inference Using Gibbs Sampling, Version 0.50
-
-
Spiegelhalter, D.J.1
Thomas, A.2
Best, N.G.3
Gilks, W.R.4
-
68
-
-
84893343292
-
Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude
-
Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: divide the gradient by a running average of its recent magnitude. COURSERA: Neural Networks for Machine Learning, 4, 2012.
-
(2012)
COURSERA: Neural Networks for Machine Learning
, vol.4
-
-
Tieleman, T.1
Hinton, G.2
-
70
-
-
84997848955
-
-
arXiv:1610.09787
-
Dustin Iran, Alp Kucukelbir, Adji B Dieng, Maja Rudolph, Dawen Liang, and David M Blei. Edward: a library for probabilistic modeling, inference, and criticism. arXiv:1610.09787, 2016a.
-
(2016)
Edward: A Library for Probabilistic Modeling, Inference, and Criticism
-
-
Iran, D.1
Kucukelbir, A.2
Dieng, A.B.3
Rudolph, M.4
Liang, D.5
Blei, D.M.6
-
74
-
-
65749118363
-
Graphical models, exponential families, and variational inference
-
Martin J Wainwright and Michael I Jordan. Graphical models, exponential families, and variational inference. Foundations and Trends in Machine Learning, 1(1-2):1-305, 2008.
-
(2008)
Foundations and Trends in Machine Learning
, vol.1
, Issue.1-2
, pp. 1-305
-
-
Wainwright, M.J.1
Jordan, M.I.2
-
75
-
-
0025488663
-
30 years of adaptive neural networks: Perceptron, madaline, and backpropagation
-
Bernard Widrow and Michael A Lehr. 30 years of adaptive neural networks: perceptron, madaline, and backpropagation. Proceedings of the IEEE, 78(9):1415-1442, 1990.
-
(1990)
Proceedings of the IEEE
, vol.78
, Issue.9
, pp. 1415-1442
-
-
Widrow, B.1
Lehr, M.A.2
|