메뉴 건너뛰기




Volumn 18, Issue , 2017, Pages 1-45

Automatic Differentiation Variational Inference

Author keywords

Approximate inference; Bayesian inference; Probabilistic programming

Indexed keywords

BAYESIAN NETWORKS; ITERATIVE METHODS;

EID: 85016397096     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (425)

References (78)
  • 2
    • 0000396062 scopus 로고    scopus 로고
    • Natural gradient works efficiently in learning
    • Shun-Ichi Amari. Natural gradient works efficiently in learning. Neural Computation, 10(2):251-276, 1998.
    • (1998) Neural Computation , vol.10 , Issue.2 , pp. 251-276
    • Amari, S.1
  • 3
    • 0000708831 scopus 로고
    • Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems
    • Charles E Antoniak. Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems. The Annals of Statistics, 2(6):1152-1174, 1974.
    • (1974) The Annals of Statistics , vol.2 , Issue.6 , pp. 1152-1174
    • Antoniak, C.E.1
  • 9
    • 84906879757 scopus 로고    scopus 로고
    • Build, compute, critique, repeat: Data analysis with latent variable models
    • David M Blei. Build, compute, critique, repeat: data analysis with latent variable models. Annual Review of Statistics and Its Application, 1:203-232, 2014.
    • (2014) Annual Review of Statistics and Its Application , vol.1 , pp. 203-232
    • Blei, D.M.1
  • 12
    • 84872521733 scopus 로고    scopus 로고
    • Stochastic gradient descent tricks
    • Springer
    • Leon Bottou. Stochastic gradient descent tricks. In Neural Networks: Tricks of the Trade, pages 421-436. Springer, 2012.
    • (2012) Neural Networks: Tricks of the Trade , pp. 421-436
    • Bottou, L.1
  • 17
    • 84885597827 scopus 로고    scopus 로고
    • Gaussian Kullback-Leibler approximate inference
    • Edward Challis and David Barber. Gaussian Kullback-Leibler approximate inference. The Journal of Machine Learning Research, 14(1):2239-2286, 2013.
    • (2013) The Journal of Machine Learning Research , vol.14 , Issue.1 , pp. 2239-2286
    • Challis, E.1    Barber, D.2
  • 20
    • 0000811835 scopus 로고
    • Conjugate priors for exponential families
    • Persi Diaconis and Donald Ylvisaker. Conjugate priors for exponential families. The Annals of Statistics, 7(2):269-281, 1979.
    • (1979) The Annals of Statistics , vol.7 , Issue.2 , pp. 269-281
    • Diaconis, P.1    Ylvisaker, D.2
  • 23
    • 80052250414 scopus 로고    scopus 로고
    • Adaptive subgradient methods for online learning and stochastic optimization
    • John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and stochastic optimization. The Journal of Machine Learning Research, 12:2121-2159, 2011.
    • (2011) The Journal of Machine Learning Research , vol.12 , pp. 2121-2159
    • Duchi, J.1    Hazan, E.2    Singer, Y.3
  • 32
    • 0033225865 scopus 로고    scopus 로고
    • An introduction to variational methods for graphical models
    • Michael I Jordan, Zoubin Ghahramani, Tommi S Jaakkola, and Lawrence K Saul. An introduction to variational methods for graphical models. Machine Learning, 37(2):183-233, 1999.
    • (1999) Machine Learning , vol.37 , Issue.2 , pp. 183-233
    • Jordan, M.I.1    Ghahramani, Z.2    Jaakkola, T.S.3    Saul, L.K.4
  • 34
    • 0001251517 scopus 로고    scopus 로고
    • Stochastic volatility: Likelihood inference and comparison with ARCH models
    • Sangjoon Kim, Neil Shephard, and Siddhartha Chib. Stochastic volatility: likelihood inference and comparison with ARCH models. The Review of Economic Studies, 65(3):361-393, 1998.
    • (1998) The Review of Economic Studies , vol.65 , Issue.3 , pp. 361-393
    • Kim, S.1    Shephard, N.2    Chib, S.3
  • 39
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • D. Lee and H. Seung. Learning the parts of objects by non-negative matrix factorization. Nature, 401 (6755):788-791, 1999.
    • (1999) Nature , vol.401 , Issue.6755 , pp. 788-791
    • Lee, D.1    Seung, H.2
  • 43
    • 24044445638 scopus 로고    scopus 로고
    • Stochastic volatility: Bayesian computation using automatic differentiation and the extended Kalman filter
    • Renate Meyer, David A Fournier, and Andreas Berg. Stochastic volatility: Bayesian computation using automatic differentiation and the extended Kalman filter. The Econometrics Journal, 6(2): 408-420, 2003.
    • (2003) The Econometrics Journal , vol.6 , Issue.2 , pp. 408-420
    • Meyer, R.1    Fournier, D.A.2    Berg, A.3
  • 48
    • 63249135864 scopus 로고    scopus 로고
    • The variational Gaussian approximation revisited
    • Manfred Opper and Cedric Archambeau. The variational Gaussian approximation revisited. Neural Computation, 21(3):786-792, 2009.
    • (2009) Neural Computation , vol.21 , Issue.3 , pp. 786-792
    • Opper, M.1    Archambeau, C.2
  • 49
    • 79959547284 scopus 로고    scopus 로고
    • Figaro: An object-oriented probabilistic programming language
    • AviPfeffer
    • AviPfeffer. Figaro: an object-oriented probabilistic programming language. Charles River Analytics Technical Report, 137, 2009.
    • (2009) Charles River Analytics Technical Report , vol.137
  • 50
    • 21444460810 scopus 로고    scopus 로고
    • Unconstrained parametrizations for variance-covariance matrices
    • Jose C Pinheiro and Douglas M Bates. Unconstrained parametrizations for variance-covariance matrices. Statistics and Computing, 6(3):289-296, 1996.
    • (1996) Statistics and Computing , vol.6 , Issue.3 , pp. 289-296
    • Pinheiro, J.C.1    Bates, D.M.2
  • 52
  • 68
    • 84893343292 scopus 로고    scopus 로고
    • Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude
    • Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: divide the gradient by a running average of its recent magnitude. COURSERA: Neural Networks for Machine Learning, 4, 2012.
    • (2012) COURSERA: Neural Networks for Machine Learning , vol.4
    • Tieleman, T.1    Hinton, G.2
  • 73
    • 84922041910 scopus 로고    scopus 로고
    • Overview of the image CLEF 2013 scalable concept image annotation subtask
    • Mauricio Villegas, Roberto Paredes, and Bart Thomee. Overview of the ImageCLEF 2013 Scalable Concept Image Annotation Subtask. In CLEF Evaluation Labs and Workshop, 2013.
    • CLEF Evaluation Labs and Workshop , vol.2013
    • Villegas, M.1    Paredes, R.2    Thomee, B.3
  • 74
    • 65749118363 scopus 로고    scopus 로고
    • Graphical models, exponential families, and variational inference
    • Martin J Wainwright and Michael I Jordan. Graphical models, exponential families, and variational inference. Foundations and Trends in Machine Learning, 1(1-2):1-305, 2008.
    • (2008) Foundations and Trends in Machine Learning , vol.1 , Issue.1-2 , pp. 1-305
    • Wainwright, M.J.1    Jordan, M.I.2
  • 75
    • 0025488663 scopus 로고
    • 30 years of adaptive neural networks: Perceptron, madaline, and backpropagation
    • Bernard Widrow and Michael A Lehr. 30 years of adaptive neural networks: perceptron, madaline, and backpropagation. Proceedings of the IEEE, 78(9):1415-1442, 1990.
    • (1990) Proceedings of the IEEE , vol.78 , Issue.9 , pp. 1415-1442
    • Widrow, B.1    Lehr, M.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.