-
2
-
-
0000501656
-
Information theory and an extension of the maximum likelihood principle
-
In, eds. B.N. Petrov & F. Csaki Budapest: Akadémiai Kiadó.
-
Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In Proceedings of the 2nd International Symposium on Information Theory, eds. B.N. Petrov & F. Csaki, pp. 267-281. Budapest: Akadémiai Kiadó.
-
(1973)
Proceedings of the 2nd International Symposium on Information Theory
, pp. 267-281
-
-
Akaike, H.1
-
3
-
-
85162499205
-
Generalized beta mixtures of gaussians
-
Armagan, A., Dunson, D. & Clyde, M. (2011). Generalized beta mixtures of gaussians. Adv. Neural Inf. Process. Syst. 24, 523-531.
-
(2011)
Adv. Neural Inf. Process. Syst.
, vol.24
, pp. 523-531
-
-
Armagan, A.1
Dunson, D.2
Clyde, M.3
-
4
-
-
84899103512
-
-
Variational algorithms for approximate bayesian inference. Unpublished doctoral thesis, University College London, Gatsby Computational Neuroscience Unit.
-
Beal, M.J. (2003). Variational algorithms for approximate bayesian inference. Unpublished doctoral thesis, University College London, Gatsby Computational Neuroscience Unit.
-
(2003)
-
-
Beal, M.J.1
-
7
-
-
84899055395
-
-
Bayesian linear regression. Technical report, University of Rochester, Rochester, NY.
-
Drugowitsch, J. (2008). Bayesian linear regression. Technical report, University of Rochester, Rochester, NY.
-
(2008)
-
-
Drugowitsch, J.1
-
8
-
-
0003864328
-
-
Melbourne, FL: Robert E. Krieger Publishing Co. Inc. Based on notes left by Harry Bateman, Reprint of the 1955 original.
-
Erdélyi, A., Magnus, W., Oberhettinger, F. & Tricomi, F.G. (1981). Higher Transcendental Functions, Vol. III. Melbourne, FL: Robert E. Krieger Publishing Co. Inc. Based on notes left by Harry Bateman, Reprint of the 1955 original.
-
(1981)
Higher Transcendental Functions
, vol.3
-
-
Erdélyi, A.1
Magnus, W.2
Oberhettinger, F.3
Tricomi, F.G.4
-
9
-
-
84899104498
-
-
Understanding predictive information criteria for Bayesian models. Statist. Comput. Arxiv.
-
Gelman, A., Hwang, J. & Vehtari, A. (2013). Understanding predictive information criteria for Bayesian models. Statist. Comput. Arxiv.
-
(2013)
-
-
Gelman, A.1
Hwang, J.2
Vehtari, A.3
-
10
-
-
78650402025
-
Theory of Gaussian variational approximation for a Poisson mixed model
-
Hall, P., Ormerod, J.T. & Wand, M.P. (2011). Theory of Gaussian variational approximation for a Poisson mixed model. Statist. Sinica 21, 369-389.
-
(2011)
Statist. Sinica
, vol.21
, pp. 369-389
-
-
Hall, P.1
Ormerod, J.T.2
Wand, M.P.3
-
11
-
-
82655189993
-
Asymptotic normality and valid inference for Gaussian variational approximation
-
Hall, P., Pham, T., Wand, M.P.& Wang, S.S.J. (2011). Asymptotic normality and valid inference for Gaussian variational approximation. Ann. Statist. 39, 2502-2532.
-
(2011)
Ann. Statist.
, vol.39
, pp. 2502-2532
-
-
Hall, P.1
Pham, T.2
Wand, MP.3
Wang, S.S.J.4
-
12
-
-
84899116019
-
Approximate bayesian inference for simple mixtures
-
In, eds. J.G. Bethlehem & P.G.M. van der Heijden Heidelberg: Physica.
-
Humphreys, K. & Titterington, D.M. (2000). Approximate bayesian inference for simple mixtures. In Proceedings of Computational Statistics, eds. J.G. Bethlehem & P.G.M. van der Heijden, pp. 2502-2532. Heidelberg: Physica.
-
(2000)
Proceedings of Computational Statistics
, pp. 2502-2532
-
-
Humphreys, K.1
Titterington, D.M.2
-
13
-
-
84899110769
-
-
Ensemble learning and evidence maximization. Technical report. Cavendish Laboratory University of Cambridge, Cambridge.
-
MacKay, D.J.C. (1995). Ensemble learning and evidence maximization. Technical report. Cavendish Laboratory University of Cambridge, Cambridge.
-
(1995)
-
-
MacKay, D.J.C.1
-
15
-
-
34247869715
-
Variational approximations in Bayesian model selection for finite mixture distributions
-
McGrory, C.A. & Titterington, D.M. (2007). Variational approximations in Bayesian model selection for finite mixture distributions. Comput. Statist. Data Anal. 51, 5352-5367.
-
(2007)
Comput. Statist. Data Anal.
, vol.51
, pp. 5352-5367
-
-
McGrory, C.A.1
Titterington, D.M.2
-
16
-
-
0000130839
-
Bayesian variable selection in linear regression
-
Mitchell, T.J. & Beauchamp, J.J. (1988). Bayesian variable selection in linear regression. J. Amer. Statist. Assoc. 83, 1023-1036.
-
(1988)
J. Amer. Statist. Assoc.
, vol.83
, pp. 1023-1036
-
-
Mitchell, T.J.1
Beauchamp, J.J.2
-
18
-
-
84899052177
-
-
Mean field variational bayes for continuous sparse signal shrinkage: pitfalls and remedies. Preprint.
-
Neville, S.E., Ormerod, J.T. & Wand, M.P. (2013). Mean field variational bayes for continuous sparse signal shrinkage: pitfalls and remedies. Preprint.
-
(2013)
-
-
Neville, S.E.1
Ormerod, J.T.2
Wand, M.P.3
-
19
-
-
77952563168
-
Explaining variational approximations
-
Ormerod, J.T. & Wand, M.P. (2010). Explaining variational approximations. Amer. Statist. 64, 140-153.
-
(2010)
Amer. Statist.
, vol.64
, pp. 140-153
-
-
Ormerod, J.T.1
Wand, M.P.2
-
20
-
-
84859847512
-
Gaussian variational approximate inference for generalized linear mixed models
-
Ormerod, J.T. & Wand, M.P. (2012). Gaussian variational approximate inference for generalized linear mixed models. J. Comput. Graph. Statist. 21, 2-17.
-
(2012)
J. Comput. Graph. Statist.
, vol.21
, pp. 2-17
-
-
Ormerod, J.T.1
Wand, M.P.2
-
21
-
-
0002648792
-
The schwarz criterion and related methods for normal linear models
-
Pauler, D.K. (1998). The schwarz criterion and related methods for normal linear models. Biometrika 85, 13-27.
-
(1998)
Biometrika
, vol.85
, pp. 13-27
-
-
Pauler, D.K.1
-
22
-
-
79961166870
-
Variational Bayesian methods for spatial data analysis
-
Ren, Q., Banerjee, S., Finley, A.O. & Hodges, J.S. (2011). Variational Bayesian methods for spatial data analysis. Comput. Statist. Data Anal. 55, 3197-3217.
-
(2011)
Comput. Statist. Data Anal.
, vol.55
, pp. 3197-3217
-
-
Ren, Q.1
Banerjee, S.2
Finley, A.O.3
Hodges, J.S.4
-
24
-
-
62849120031
-
Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations
-
Rue, H., Martino, S. & Chopin, N. (2009). Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J. R. Stat. Soc. Ser. B Stat. Methodol. 71, 319-392.
-
(2009)
J. R. Stat. Soc. Ser. B Stat. Methodol.
, vol.71
, pp. 319-392
-
-
Rue, H.1
Martino, S.2
Chopin, N.3
-
25
-
-
0000120766
-
Estimating the dimension of a model
-
Schwarz, G. (1978). Estimating the dimension of a model. Ann. Statist. 6, 461-464.
-
(1978)
Ann. Statist.
, vol.6
, pp. 461-464
-
-
Schwarz, G.1
-
26
-
-
0036435040
-
Bayesian measures of model complexity and fit (with Discussion)
-
Spiegelhalter, D.J., Best, N.G., Carlin, B.P. & Van Der Linde, A. (2002). Bayesian measures of model complexity and fit (with Discussion). J. R. Stat. Soc. Ser. B Stat. Methodol. 64, 583-639.
-
(2002)
J. R. Stat. Soc. Ser. B Stat. Methodol.
, vol.64
, pp. 583-639
-
-
Spiegelhalter, D.J.1
Best, N.G.2
Carlin, B.P.3
Van Der Linde, A.4
-
28
-
-
84864061876
-
A collapsed variational bayesian inference algorithm for latent dirichlocation
-
Teh, Y.W., Newman, D. & Welling, M. (2006). A collapsed variational bayesian inference algorithm for latent dirichlet allocation. Adv. Neural Inf. Process. Syst. 19, 1353-1360.
-
(2006)
Adv. Neural Inf. Process. Syst.
, vol.19
, pp. 1353-1360
-
-
Teh, Y.W.1
Newman, D.2
Welling, M.3
-
29
-
-
85194972808
-
Regression shrinkage and selection via the lasso
-
Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B Stat. Methodol. 58, 267-288.
-
(1996)
J. R. Stat. Soc. Ser. B Stat. Methodol.
, vol.58
, pp. 267-288
-
-
Tibshirani, R.1
-
30
-
-
84859104152
-
Variational Bayes approach for model aggregation in unsupervised classification withMarkovian dependency
-
Volant, S., Magniette, M.L. & Robin, S. (2012). Variational Bayes approach for model aggregation in unsupervised classification withMarkovian dependency. Comput. Statist. Data Anal. 56, 2375-2387.
-
(2012)
Comput. Statist. Data Anal.
, vol.56
, pp. 2375-2387
-
-
Volant, S.1
Magniette, M.L.2
Robin, S.3
-
31
-
-
33745841556
-
Convergence properties of a general algorithm for calculating variational Bayesian estimates for a normal mixture model
-
Wang, B. & Titterington, D.M. (2006). Convergence properties of a general algorithm for calculating variational Bayesian estimates for a normal mixture model. Bayesian Anal. 1, 625-650.
-
(2006)
Bayesian Anal.
, vol.1
, pp. 625-650
-
-
Wang, B.1
Titterington, D.M.2
-
32
-
-
66849117589
-
Hybrid variational/gibbs collapsed inference in topic models
-
Welling, M., Teh, Y.W. & Kappen, H.J. (2008). Hybrid variational/gibbs collapsed inference in topic models. Proc. Int. Conf. Uncertainty Artif. Intell. 24, 587-591.
-
(2008)
Proc. Int. Conf. Uncertainty Artif. Intell.
, vol.24
, pp. 587-591
-
-
Welling, M.1
Teh, Y.W.2
Kappen, H.J.3
-
33
-
-
27944460480
-
Can the strengths of AIC and BIC be shared? A conflict between model indentification and regression estimation
-
Yang, Y. (2005). Can the strengths of AIC and BIC be shared? A conflict between model indentification and regression estimation. Biometrika 92, 937-950.
-
(2005)
Biometrika
, vol.92
, pp. 937-950
-
-
Yang, Y.1
-
34
-
-
84899049208
-
-
A variational Bayes approach to variable selection. Preprint.
-
You, C., Ormerod, J.T. & Müller, S. (2013). A variational Bayes approach to variable selection. Preprint.
-
(2013)
-
-
You, C.1
Ormerod, J.T.2
Müller, S.3
|