메뉴 건너뛰기




Volumn 56, Issue 1, 2014, Pages 73-87

On Variational Bayes Estimation and Variational Information Criteria for Linear Regression Models

Author keywords

Akaike information criterion; Bayesian information criterion; Consistency; Deviance information criterion; Markov Chain Monte Carlo

Indexed keywords


EID: 84899129730     PISSN: 13691473     EISSN: 1467842X     Source Type: Journal    
DOI: 10.1111/anzs.12063     Document Type: Article
Times cited : (40)

References (34)
  • 2
    • 0000501656 scopus 로고
    • Information theory and an extension of the maximum likelihood principle
    • In, eds. B.N. Petrov & F. Csaki Budapest: Akadémiai Kiadó.
    • Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In Proceedings of the 2nd International Symposium on Information Theory, eds. B.N. Petrov & F. Csaki, pp. 267-281. Budapest: Akadémiai Kiadó.
    • (1973) Proceedings of the 2nd International Symposium on Information Theory , pp. 267-281
    • Akaike, H.1
  • 4
    • 84899103512 scopus 로고    scopus 로고
    • Variational algorithms for approximate bayesian inference. Unpublished doctoral thesis, University College London, Gatsby Computational Neuroscience Unit.
    • Beal, M.J. (2003). Variational algorithms for approximate bayesian inference. Unpublished doctoral thesis, University College London, Gatsby Computational Neuroscience Unit.
    • (2003)
    • Beal, M.J.1
  • 7
    • 84899055395 scopus 로고    scopus 로고
    • Bayesian linear regression. Technical report, University of Rochester, Rochester, NY.
    • Drugowitsch, J. (2008). Bayesian linear regression. Technical report, University of Rochester, Rochester, NY.
    • (2008)
    • Drugowitsch, J.1
  • 8
    • 0003864328 scopus 로고
    • Melbourne, FL: Robert E. Krieger Publishing Co. Inc. Based on notes left by Harry Bateman, Reprint of the 1955 original.
    • Erdélyi, A., Magnus, W., Oberhettinger, F. & Tricomi, F.G. (1981). Higher Transcendental Functions, Vol. III. Melbourne, FL: Robert E. Krieger Publishing Co. Inc. Based on notes left by Harry Bateman, Reprint of the 1955 original.
    • (1981) Higher Transcendental Functions , vol.3
    • Erdélyi, A.1    Magnus, W.2    Oberhettinger, F.3    Tricomi, F.G.4
  • 9
    • 84899104498 scopus 로고    scopus 로고
    • Understanding predictive information criteria for Bayesian models. Statist. Comput. Arxiv.
    • Gelman, A., Hwang, J. & Vehtari, A. (2013). Understanding predictive information criteria for Bayesian models. Statist. Comput. Arxiv.
    • (2013)
    • Gelman, A.1    Hwang, J.2    Vehtari, A.3
  • 10
    • 78650402025 scopus 로고    scopus 로고
    • Theory of Gaussian variational approximation for a Poisson mixed model
    • Hall, P., Ormerod, J.T. & Wand, M.P. (2011). Theory of Gaussian variational approximation for a Poisson mixed model. Statist. Sinica 21, 369-389.
    • (2011) Statist. Sinica , vol.21 , pp. 369-389
    • Hall, P.1    Ormerod, J.T.2    Wand, M.P.3
  • 11
    • 82655189993 scopus 로고    scopus 로고
    • Asymptotic normality and valid inference for Gaussian variational approximation
    • Hall, P., Pham, T., Wand, M.P.& Wang, S.S.J. (2011). Asymptotic normality and valid inference for Gaussian variational approximation. Ann. Statist. 39, 2502-2532.
    • (2011) Ann. Statist. , vol.39 , pp. 2502-2532
    • Hall, P.1    Pham, T.2    Wand, MP.3    Wang, S.S.J.4
  • 12
    • 84899116019 scopus 로고    scopus 로고
    • Approximate bayesian inference for simple mixtures
    • In, eds. J.G. Bethlehem & P.G.M. van der Heijden Heidelberg: Physica.
    • Humphreys, K. & Titterington, D.M. (2000). Approximate bayesian inference for simple mixtures. In Proceedings of Computational Statistics, eds. J.G. Bethlehem & P.G.M. van der Heijden, pp. 2502-2532. Heidelberg: Physica.
    • (2000) Proceedings of Computational Statistics , pp. 2502-2532
    • Humphreys, K.1    Titterington, D.M.2
  • 13
    • 84899110769 scopus 로고
    • Ensemble learning and evidence maximization. Technical report. Cavendish Laboratory University of Cambridge, Cambridge.
    • MacKay, D.J.C. (1995). Ensemble learning and evidence maximization. Technical report. Cavendish Laboratory University of Cambridge, Cambridge.
    • (1995)
    • MacKay, D.J.C.1
  • 15
    • 34247869715 scopus 로고    scopus 로고
    • Variational approximations in Bayesian model selection for finite mixture distributions
    • McGrory, C.A. & Titterington, D.M. (2007). Variational approximations in Bayesian model selection for finite mixture distributions. Comput. Statist. Data Anal. 51, 5352-5367.
    • (2007) Comput. Statist. Data Anal. , vol.51 , pp. 5352-5367
    • McGrory, C.A.1    Titterington, D.M.2
  • 16
    • 0000130839 scopus 로고
    • Bayesian variable selection in linear regression
    • Mitchell, T.J. & Beauchamp, J.J. (1988). Bayesian variable selection in linear regression. J. Amer. Statist. Assoc. 83, 1023-1036.
    • (1988) J. Amer. Statist. Assoc. , vol.83 , pp. 1023-1036
    • Mitchell, T.J.1    Beauchamp, J.J.2
  • 18
    • 84899052177 scopus 로고    scopus 로고
    • Mean field variational bayes for continuous sparse signal shrinkage: pitfalls and remedies. Preprint.
    • Neville, S.E., Ormerod, J.T. & Wand, M.P. (2013). Mean field variational bayes for continuous sparse signal shrinkage: pitfalls and remedies. Preprint.
    • (2013)
    • Neville, S.E.1    Ormerod, J.T.2    Wand, M.P.3
  • 19
    • 77952563168 scopus 로고    scopus 로고
    • Explaining variational approximations
    • Ormerod, J.T. & Wand, M.P. (2010). Explaining variational approximations. Amer. Statist. 64, 140-153.
    • (2010) Amer. Statist. , vol.64 , pp. 140-153
    • Ormerod, J.T.1    Wand, M.P.2
  • 20
    • 84859847512 scopus 로고    scopus 로고
    • Gaussian variational approximate inference for generalized linear mixed models
    • Ormerod, J.T. & Wand, M.P. (2012). Gaussian variational approximate inference for generalized linear mixed models. J. Comput. Graph. Statist. 21, 2-17.
    • (2012) J. Comput. Graph. Statist. , vol.21 , pp. 2-17
    • Ormerod, J.T.1    Wand, M.P.2
  • 21
    • 0002648792 scopus 로고    scopus 로고
    • The schwarz criterion and related methods for normal linear models
    • Pauler, D.K. (1998). The schwarz criterion and related methods for normal linear models. Biometrika 85, 13-27.
    • (1998) Biometrika , vol.85 , pp. 13-27
    • Pauler, D.K.1
  • 24
    • 62849120031 scopus 로고    scopus 로고
    • Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations
    • Rue, H., Martino, S. & Chopin, N. (2009). Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J. R. Stat. Soc. Ser. B Stat. Methodol. 71, 319-392.
    • (2009) J. R. Stat. Soc. Ser. B Stat. Methodol. , vol.71 , pp. 319-392
    • Rue, H.1    Martino, S.2    Chopin, N.3
  • 25
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz, G. (1978). Estimating the dimension of a model. Ann. Statist. 6, 461-464.
    • (1978) Ann. Statist. , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 28
    • 84864061876 scopus 로고    scopus 로고
    • A collapsed variational bayesian inference algorithm for latent dirichlocation
    • Teh, Y.W., Newman, D. & Welling, M. (2006). A collapsed variational bayesian inference algorithm for latent dirichlet allocation. Adv. Neural Inf. Process. Syst. 19, 1353-1360.
    • (2006) Adv. Neural Inf. Process. Syst. , vol.19 , pp. 1353-1360
    • Teh, Y.W.1    Newman, D.2    Welling, M.3
  • 29
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B Stat. Methodol. 58, 267-288.
    • (1996) J. R. Stat. Soc. Ser. B Stat. Methodol. , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 30
    • 84859104152 scopus 로고    scopus 로고
    • Variational Bayes approach for model aggregation in unsupervised classification withMarkovian dependency
    • Volant, S., Magniette, M.L. & Robin, S. (2012). Variational Bayes approach for model aggregation in unsupervised classification withMarkovian dependency. Comput. Statist. Data Anal. 56, 2375-2387.
    • (2012) Comput. Statist. Data Anal. , vol.56 , pp. 2375-2387
    • Volant, S.1    Magniette, M.L.2    Robin, S.3
  • 31
    • 33745841556 scopus 로고    scopus 로고
    • Convergence properties of a general algorithm for calculating variational Bayesian estimates for a normal mixture model
    • Wang, B. & Titterington, D.M. (2006). Convergence properties of a general algorithm for calculating variational Bayesian estimates for a normal mixture model. Bayesian Anal. 1, 625-650.
    • (2006) Bayesian Anal. , vol.1 , pp. 625-650
    • Wang, B.1    Titterington, D.M.2
  • 33
    • 27944460480 scopus 로고    scopus 로고
    • Can the strengths of AIC and BIC be shared? A conflict between model indentification and regression estimation
    • Yang, Y. (2005). Can the strengths of AIC and BIC be shared? A conflict between model indentification and regression estimation. Biometrika 92, 937-950.
    • (2005) Biometrika , vol.92 , pp. 937-950
    • Yang, Y.1
  • 34
    • 84899049208 scopus 로고    scopus 로고
    • A variational Bayes approach to variable selection. Preprint.
    • You, C., Ormerod, J.T. & Müller, S. (2013). A variational Bayes approach to variable selection. Preprint.
    • (2013)
    • You, C.1    Ormerod, J.T.2    Müller, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.