메뉴 건너뛰기




Volumn , Issue , 2011, Pages 681-688

Bayesian learning via stochastic gradient langevin dynamics

Author keywords

[No Author keywords available]

Indexed keywords

BAYESIAN LEARNING; ITERATIVE LEARNING; LANGEVIN DYNAMICS; LARGE-SCALE DATASETS; LOGISTIC REGRESSIONS; MIXTURE OF GAUSSIANS; MONTE CARLO ESTIMATES; NATURAL GRADIENT; OVERFITTING; POSTERIOR DISTRIBUTIONS; PRACTICAL METHOD; SEAMLESS TRANSITION; STEPSIZE; STOCHASTIC GRADIENT; THREE MODELS;

EID: 80053452150     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (2962)

References (10)
  • 5
    • 0032629347 scopus 로고    scopus 로고
    • Fast and robust fixed-point algorithms for independent component analysis
    • Hyvarinen, A. Fast and robust fixed-point algorithms for independent component analysis. IEEE Transactions on Neural Networks, 10(3):626-634, 1999.
    • (1999) IEEE Transactions on Neural Networks , vol.10 , Issue.3 , pp. 626-634
    • Hyvarinen, A.1
  • 7
    • 79251576558 scopus 로고    scopus 로고
    • MCMC using Hamiltonian dynamics
    • Brooks, S., Gelman, A., Jones, G., and Meng, X.-L. (eds.), Chapman & Hall / CRC Press
    • Neal, R. M. MCMC using Hamiltonian dynamics. In Brooks, S., Gelman, A., Jones, G., and Meng, X.-L. (eds.), Handbook of Markov Chain Monte Carlo. Chapman & Hall / CRC Press, 2010.
    • (2010) Handbook of Markov Chain Monte Carlo
    • Neal, R.M.1
  • 10
    • 15244341043 scopus 로고    scopus 로고
    • Langevin Diffusions and Metropolis-Hastings Algorithms
    • DOI 10.1023/A:1023562417138
    • Roberts, G. O. and Stramer, O. Langevin diffusions and metropolis-hastings algorithms. Methodology and Computing in Applied Probability, 4:337-357, 2002. (Pubitemid 36551128)
    • (2002) METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY , vol.4 , Issue.4 , pp. 337-357
    • Roberts, G.O.1    Stramer, O.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.