-
1
-
-
70350187439
-
Lme4: Linear mixed-effects models using S4 classes
-
Available at
-
BATES, D. andMAECHLER, M. (2010). lme4: Linear mixed-effects models using S4 classes. R package. Available at http://www.R-project.org.
-
(2010)
R Package
-
-
Bates, D.1
Maechler, M.2
-
2
-
-
0036964474
-
Approximate Bayesian computation in population genetics
-
BEAUMONT, M. A., ZHANG, W. and BALDING, D. J. (2002). Approximate Bayesian computation in population genetics. Genetics 162 2025-2035. (Pubitemid 36114682)
-
(2002)
Genetics
, vol.162
, Issue.4
, pp. 2025-2035
-
-
Beaumont, M.A.1
Zhang, W.2
Balding, D.J.3
-
5
-
-
33646684004
-
Sequential Monte Carlo samplers
-
DOI 10.1111/j.1467-9868.2006.00553.x
-
DEL MORAL, P., DOUCET, A. and JASRA, A. (2006). Sequential Monte Carlo samplers. J. R. Stat. Soc. Ser. B Stat. Methodol. 68 411-436. MR2278333 (Pubitemid 43742903)
-
(2006)
Journal of the Royal Statistical Society. Series B: Statistical Methodology
, vol.68
, Issue.3
, pp. 411-436
-
-
Del Moral, P.1
Doucet, A.2
Jasra, A.3
-
6
-
-
82655160991
-
Bayesian fMRI data analysis with sparse spatial basis function priors
-
FLANDIN, G. and PENNY, W. D. (2007). Bayesian fMRI data analysis with sparse spatial basis function priors. NeuroImage 45 S173-S186.
-
(2007)
NeuroImage
, vol.45
-
-
Flandin, G.1
Penny, W.D.2
-
7
-
-
78650402025
-
Theory of Gaussian variational approximation for a Poisson mixed model
-
MR2796867
-
HALL, P., ORMEROD, J. T. andWAND, M. P. (2011). Theory of Gaussian variational approximation for a Poisson mixed model. Statist. Sinica 21 369-389. MR2796867
-
(2011)
Statist. Sinica
, vol.21
, pp. 369-389
-
-
Hall, P.1
Ormerod, J.T.2
Wand, M.P.3
-
8
-
-
77349109776
-
A variational Bayes algorithm for fast and accurate multiple locus genome-wide association analysis
-
LOGSDON, B. A., HOFFMAN, G. E. andMEZEY, J. G. (2010). A variational Bayes algorithm for fast and accurate multiple locus genome-wide association analysis. BMC Bioinformatics 11 1-13.
-
(2010)
BMC Bioinformatics
, vol.11
, pp. 1-13
-
-
Logsdon, B.A.1
Hoffman, G.E.2
Mezey, J.G.3
-
9
-
-
0003646026
-
-
2nd ed. Wiley, Hoboken, NJ. MR2431553
-
MCCULLOCH, C. E., SEARLE, S. R. and NEUHAUS, J. M. (2008). Generalized, Linear, and Mixed Models, 2nd ed. Wiley, Hoboken, NJ. MR2431553
-
(2008)
Generalized, Linear, and Mixed Models
-
-
McCulloch, C.E.1
Searle, S.R.2
Neuhaus, J.M.3
-
10
-
-
67650698284
-
Variational Bayes for estimating the parameters of a hidden Potts model
-
MR2516223
-
MCGRORY, C. A., TITTERINGTON, D. M., REEVES, R. and PETTITT, A. N. (2009). Variational Bayes for estimating the parameters of a hidden Potts model. Stat. Comput. 19 329-340. MR2516223
-
(2009)
Stat. Comput.
, vol.19
, pp. 329-340
-
-
McGrory, C.A.1
Titterington, D.M.2
Reeves, R.3
Pettitt, A.N.4
-
12
-
-
79959874165
-
-
Microsoft Research Cambridge, Cambridge, UK
-
MINKA, T.,WINN, J.,GUIVER, J. andKANNAN, A. (2010). Infer.Net 2.4, Microsoft Research Cambridge, Cambridge, UK.
-
(2010)
Infer.Net 2.4
-
-
Minka, T.1
Winn, J.2
Guiver, J.3
Kannan, A.4
-
13
-
-
77952563168
-
Explaining variational approximations
-
MR2757005
-
ORMEROD, J. T. and WAND, M. P. (2010). Explaining variational approximations. Amer. Statist. 64 140-153. MR2757005
-
(2010)
Amer. Statist.
, vol.64
, pp. 140-153
-
-
Ormerod, J.T.1
Wand, M.P.2
-
14
-
-
84859847512
-
Gaussian variational approximate inference for generalized linear mixed models
-
To appear. DOI:10.1198/jcgs.2011.09118
-
ORMEROD, J. T. and WAND, M. P. (2011). Gaussian variational approximate inference for generalized linear mixed models. J. Comput. Graph. Statist. 20. To appear. DOI:10.1198/jcgs.2011.09118.
-
(2011)
J. Comput. Graph. Statist.
, vol.20
-
-
Ormerod, J.T.1
Wand, M.P.2
-
15
-
-
84863304598
-
R: A language and environment for statistical computing
-
R DEVELOPMENT CORE TEAM, Vienna, Austria. Available at
-
R DEVELOPMENT CORE TEAM. (2010). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at http://www. R-project.org.
-
(2010)
R Foundation for Statistical Computing
-
-
-
16
-
-
62849120031
-
Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations (with discussion)
-
MR2649602
-
RUE, H., MARTINO, S. and CHOPIN, N. (2009). Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations (with discussion). J. R. Stat. Soc. Ser. B Stat. Methodol. 71 319-392. MR2649602
-
(2009)
J. R. Stat. Soc. Ser. B Stat. Methodol.
, vol.71
, pp. 319-392
-
-
Rue, H.1
Martino, S.2
Chopin, N.3
-
17
-
-
21444450507
-
A variational Bayesian mixture modelling framework for cluster analysis of gene-expression data
-
DOI 10.1093/bioinformatics/bti466
-
TESCHENDORFF, A. E.,WANG, Y., BARBOSA-MORAIS, N. L., BRENTON, J. D. and CALDAS, C. (2005). A variational Bayesian mixture modelling framework for cluster analysis of gene-expression data. Bioinformatics 21 3025-3033. (Pubitemid 40916428)
-
(2005)
Bioinformatics
, vol.21
, Issue.13
, pp. 3025-3033
-
-
Teschendorff, A.E.1
Wang, Y.2
Barbosa-Morais, N.L.3
Brenton, J.D.4
Caldas, C.5
|