메뉴 건너뛰기




Volumn 39, Issue 5, 2011, Pages 2502-2532

Asymptotic normality and valid inference for Gaussian variational approximation

Author keywords

Generalized linear mixed models; Longitudinal data analysis; Maximum likelihood estimation; Poisson mixed models

Indexed keywords


EID: 82655189993     PISSN: 00905364     EISSN: None     Source Type: Journal    
DOI: 10.1214/11-AOS908     Document Type: Article
Times cited : (48)

References (17)
  • 1
    • 70350187439 scopus 로고    scopus 로고
    • Lme4: Linear mixed-effects models using S4 classes
    • Available at
    • BATES, D. andMAECHLER, M. (2010). lme4: Linear mixed-effects models using S4 classes. R package. Available at http://www.R-project.org.
    • (2010) R Package
    • Bates, D.1    Maechler, M.2
  • 2
    • 0036964474 scopus 로고    scopus 로고
    • Approximate Bayesian computation in population genetics
    • BEAUMONT, M. A., ZHANG, W. and BALDING, D. J. (2002). Approximate Bayesian computation in population genetics. Genetics 162 2025-2035. (Pubitemid 36114682)
    • (2002) Genetics , vol.162 , Issue.4 , pp. 2025-2035
    • Beaumont, M.A.1    Zhang, W.2    Balding, D.J.3
  • 6
    • 82655160991 scopus 로고    scopus 로고
    • Bayesian fMRI data analysis with sparse spatial basis function priors
    • FLANDIN, G. and PENNY, W. D. (2007). Bayesian fMRI data analysis with sparse spatial basis function priors. NeuroImage 45 S173-S186.
    • (2007) NeuroImage , vol.45
    • Flandin, G.1    Penny, W.D.2
  • 7
    • 78650402025 scopus 로고    scopus 로고
    • Theory of Gaussian variational approximation for a Poisson mixed model
    • MR2796867
    • HALL, P., ORMEROD, J. T. andWAND, M. P. (2011). Theory of Gaussian variational approximation for a Poisson mixed model. Statist. Sinica 21 369-389. MR2796867
    • (2011) Statist. Sinica , vol.21 , pp. 369-389
    • Hall, P.1    Ormerod, J.T.2    Wand, M.P.3
  • 8
    • 77349109776 scopus 로고    scopus 로고
    • A variational Bayes algorithm for fast and accurate multiple locus genome-wide association analysis
    • LOGSDON, B. A., HOFFMAN, G. E. andMEZEY, J. G. (2010). A variational Bayes algorithm for fast and accurate multiple locus genome-wide association analysis. BMC Bioinformatics 11 1-13.
    • (2010) BMC Bioinformatics , vol.11 , pp. 1-13
    • Logsdon, B.A.1    Hoffman, G.E.2    Mezey, J.G.3
  • 10
    • 67650698284 scopus 로고    scopus 로고
    • Variational Bayes for estimating the parameters of a hidden Potts model
    • MR2516223
    • MCGRORY, C. A., TITTERINGTON, D. M., REEVES, R. and PETTITT, A. N. (2009). Variational Bayes for estimating the parameters of a hidden Potts model. Stat. Comput. 19 329-340. MR2516223
    • (2009) Stat. Comput. , vol.19 , pp. 329-340
    • McGrory, C.A.1    Titterington, D.M.2    Reeves, R.3    Pettitt, A.N.4
  • 13
    • 77952563168 scopus 로고    scopus 로고
    • Explaining variational approximations
    • MR2757005
    • ORMEROD, J. T. and WAND, M. P. (2010). Explaining variational approximations. Amer. Statist. 64 140-153. MR2757005
    • (2010) Amer. Statist. , vol.64 , pp. 140-153
    • Ormerod, J.T.1    Wand, M.P.2
  • 14
    • 84859847512 scopus 로고    scopus 로고
    • Gaussian variational approximate inference for generalized linear mixed models
    • To appear. DOI:10.1198/jcgs.2011.09118
    • ORMEROD, J. T. and WAND, M. P. (2011). Gaussian variational approximate inference for generalized linear mixed models. J. Comput. Graph. Statist. 20. To appear. DOI:10.1198/jcgs.2011.09118.
    • (2011) J. Comput. Graph. Statist. , vol.20
    • Ormerod, J.T.1    Wand, M.P.2
  • 15
    • 84863304598 scopus 로고    scopus 로고
    • R: A language and environment for statistical computing
    • R DEVELOPMENT CORE TEAM, Vienna, Austria. Available at
    • R DEVELOPMENT CORE TEAM. (2010). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at http://www. R-project.org.
    • (2010) R Foundation for Statistical Computing
  • 16
    • 62849120031 scopus 로고    scopus 로고
    • Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations (with discussion)
    • MR2649602
    • RUE, H., MARTINO, S. and CHOPIN, N. (2009). Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations (with discussion). J. R. Stat. Soc. Ser. B Stat. Methodol. 71 319-392. MR2649602
    • (2009) J. R. Stat. Soc. Ser. B Stat. Methodol. , vol.71 , pp. 319-392
    • Rue, H.1    Martino, S.2    Chopin, N.3
  • 17
    • 21444450507 scopus 로고    scopus 로고
    • A variational Bayesian mixture modelling framework for cluster analysis of gene-expression data
    • DOI 10.1093/bioinformatics/bti466
    • TESCHENDORFF, A. E.,WANG, Y., BARBOSA-MORAIS, N. L., BRENTON, J. D. and CALDAS, C. (2005). A variational Bayesian mixture modelling framework for cluster analysis of gene-expression data. Bioinformatics 21 3025-3033. (Pubitemid 40916428)
    • (2005) Bioinformatics , vol.21 , Issue.13 , pp. 3025-3033
    • Teschendorff, A.E.1    Wang, Y.2    Barbosa-Morais, N.L.3    Brenton, J.D.4    Caldas, C.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.