-
1
-
-
57849088168
-
A tutorial on adaptive MCMC
-
C. Andrieu and J. Thoms. A tutorial on adaptive MCMC. Statistics and Computing, 18 (4):343-373, 2008.
-
(2008)
Statistics and Computing
, vol.18
, Issue.4
, pp. 343-373
-
-
Andrieu, C.1
Thoms, J.2
-
2
-
-
79954472826
-
-
Arxiv preprint arXiv:1001.4460
-
A. Beskos, N. Pillai, G. Roberts, J. Sanz-Serna, and A. Stuart. Optimal tuning of the hybrid monte-carlo algorithm. Arxiv preprint arXiv:1001.4460, 2010.
-
(2010)
Optimal Tuning of the Hybrid Monte-carlo Algorithm
-
-
Beskos, A.1
Pillai, N.2
Roberts, G.3
Sanz-Serna, J.4
Stuart, A.5
-
4
-
-
0000093632
-
Global Monte Carlo algorithms for many-fermion systems
-
M. Creutz. Global Monte Carlo algorithms for many-fermion systems. Physical Review D, 38(4):1228-1238, 1988.
-
(1988)
Physical Review D
, vol.38
, Issue.4
, pp. 1228-1238
-
-
Creutz, M.1
-
6
-
-
4243137056
-
Hybrid monte carlo
-
A. Duane, A. Kennedy, B. Pendleton, and D. Roweth. Hybrid Monte Carlo. Physics Letters B, 195(2):216-222, 1987.
-
(1987)
Physics Letters B
, vol.195
, Issue.2
, pp. 216-222
-
-
Duane, A.1
Kennedy, A.2
Pendleton, B.3
Roweth, D.4
-
10
-
-
0021518209
-
Stochastic relaxation, gibbs distributions, and the bayesian restoration of images
-
S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6:721-741, 1984. (Pubitemid 15453722)
-
(1984)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.PAMI-6
, Issue.6
, pp. 721-741
-
-
Geman, S.1
Geman, D.2
-
11
-
-
0001178202
-
A language and program for complex Bayesian modelling
-
W. Gilks and D. Spiegelhalter. A language and program for complex Bayesian modelling. The Statistician, 3:169-177, 1992.
-
(1992)
The Statistician
, vol.3
, pp. 169-177
-
-
Gilks, W.1
Spiegelhalter, D.2
-
16
-
-
5744249209
-
Equations of state calculations by fast computing machines
-
N. Metropolis, A. Rosenbluth, M. Rosenbluth, M. Teller, and E. Teller. Equations of state calculations by fast computing machines. Journal of Chemical Physics, 21:1087-1092, 1953.
-
(1953)
Journal of Chemical Physics
, vol.21
, pp. 1087-1092
-
-
Metropolis, N.1
Rosenbluth, A.2
Rosenbluth, M.3
Teller, M.4
Teller, E.5
-
17
-
-
79959874165
-
-
Microsoft Research Cambridge
-
T. Minka, J. Winn, J. Guiver, and D. Knowles. Infer.NET 2.4, Microsoft Research Cambridge, 2010., utl=http://research.microsoft.com/infernet.
-
(2010)
Infer.NET 2.4
-
-
Minka, T.1
Winn, J.2
Guiver, J.3
Knowles, D.4
-
19
-
-
0000088731
-
An improved acceptance procedure for the hybrid monte carlo algorithm
-
DOI 10.1006/jcph.1994.1054
-
R. Neal. An improved acceptance procedure for the hybrid Monte Carlo algorithm. Journal of Computational Physics, 111:194-203, 1994. (Pubitemid 124013390)
-
(1994)
Journal of Computational Physics
, vol.111
, Issue.1
, pp. 194-203
-
-
Neal, R.M.1
-
20
-
-
1642370803
-
Slice sampling
-
DOI 10.1214/aos/1056562461
-
R. Neal. Slice sampling. Annals of Statistics, 31(3):705-741, 2003. (Pubitemid 38640403)
-
(2003)
Annals of Statistics
, vol.31
, Issue.3
, pp. 705-741
-
-
Neal, R.M.1
-
22
-
-
65249121279
-
Primal-dual subgradient methods for convex problems
-
Y. Nesterov. Primal-dual subgradient methods for convex problems. Mathematical Programming, 120(1):221-259, 2009.
-
(2009)
Mathematical Programming
, vol.120
, Issue.1
, pp. 221-259
-
-
Nesterov, Y.1
-
23
-
-
77954196403
-
PyMC: Bayesian stochastic modelling in python
-
A. Patil, D. Huard, and C. Fonnesbeck. PyMC: Bayesian stochastic modelling in python. Journal of Statistical Software, 35(4):1-81, 2010.
-
(2010)
Journal of Statistical Software
, vol.35
, Issue.4
, pp. 1-81
-
-
Patil, A.1
Huard, D.2
Fonnesbeck, C.3
-
25
-
-
41149087694
-
CODA: Convergence diagnosis and output analysis for MCMC
-
March
-
M. Plummer, N. Best, K. Cowles, and K. Vines. CODA: Convergence diagnosis and output analysis for MCMC. R News, 6(1):7-11, March 2006.
-
(2006)
R News
, vol.6
, Issue.1
, pp. 7-11
-
-
Plummer, M.1
Best, N.2
Cowles, K.3
Vines, K.4
-
28
-
-
0033619197
-
Some adaptive Monte Carlo methods for Bayesian inference
-
L. Tierney and A. Mira. Some adaptive Monte Carlo methods for Bayesian inference. Statistics in Medicine, 18:2507-2515, 1999. (Pubitemid 29423512)
-
(1999)
Statistics in Medicine
, vol.18
, Issue.17-18
, pp. 2507-2515
-
-
Tierney, L.1
Mira, A.2
-
29
-
-
65749118363
-
Graphical models, exponential families, and variational inference
-
M. Wainwright and M. Jordan. Graphical models, exponential families, and variational inference. Foundations and Trends in Machine Learning, 1(1-2):1-305, 2008.
-
(2008)
Foundations and Trends in Machine Learning
, vol.1
, Issue.1-2
, pp. 1-305
-
-
Wainwright, M.1
Jordan, M.2
|