-
1
-
-
0037469122
-
Choosing Starting Values for theEMAlgorithm for Getting the Highest Likelihood in Multivariate Gaussian Mixture Models
-
[804]
-
Biernacki, C., Celeux, G., and Govaert, G. (2003), "Choosing Starting Values for theEMAlgorithm for Getting the Highest Likelihood in Multivariate Gaussian Mixture Models," Computational Statistics and Data Analysis, 41, 561-575.[804]
-
(2003)
Computational Statistics and Data Analysis
, vol.41
, pp. 561-575
-
-
Biernacki, C.1
Celeux, G.2
Govaert, G.3
-
3
-
-
21844444706
-
Bayesian Hierarchical Mixtures of Experts
-
eds. U. Kjaerulffand C. Meek, Waltham, MA: Morgan Kaufmann, [800,801,805]
-
Bishop, C. M., and Svenśen, M. (2003), "Bayesian Hierarchical Mixtures of Experts," in Proceedings of the 19th Conference on Uncertainty in Artificial Intelligence, eds. U. Kjaerulffand C. Meek, Waltham, MA: Morgan Kaufmann, p. 57-64.[800,801,805]
-
(2003)
In Proceedings of the 19th Conference On Uncertainty In Artificial Intelligence
, pp. 57-64
-
-
Bishop, C.M.1
Svenśen, M.2
-
4
-
-
84867186048
-
Variational Inference for Dirichlet Process Mixtures
-
[800,802]
-
Blei, D. M., and Jordan, M. I. (2006), Variational Inference for Dirichlet Process Mixtures," Bayesian Analysis, 1, 121-144.[800,802]
-
(2006)
Bayesian Analysis
, vol.1
, pp. 121-144
-
-
Blei, D.M.1
Jordan, M.I.2
-
5
-
-
77952563025
-
Variational Inference for Large-Scale Models of Discrete Choice
-
[803]
-
Braun, M., and McAuliffe, J. (2010), "Variational Inference for Large-Scale Models of Discrete Choice," Journal of the American Statistical Association, 105, 324-335. [803]
-
(2010)
Journal of the American Statistical Association
, vol.105
, pp. 324-335
-
-
Braun, M.1
McAuliffe, J.2
-
6
-
-
3342902805
-
The Australian Water Balance Model
-
[810]
-
Boughton, W. (2004), "The Australian Water Balance Model," Environmental Modelling and Software, 19, 943-956.[810]
-
(2004)
Environmental Modelling and Software
, vol.19
, pp. 943-956
-
-
Boughton, W.1
-
7
-
-
34248648503
-
Unsupervised Learning of Gaussian Mixtures Based on Variational Component Splitting
-
[800]
-
Constantinopoulos, C., and Likas, A. (2007), "Unsupervised Learning of Gaussian Mixtures Based on Variational Component Splitting," IEEE Transactions on Neural Networks, 18, 745-755.[800]
-
(2007)
IEEE Transactions on Neural Networks
, vol.18
, pp. 745-755
-
-
Constantinopoulos, C.1
Likas, A.2
-
8
-
-
4043061882
-
Variational Bayesian Model Selection for Mixture Distributions
-
MA: Morgan Kaufmann, Eds. T. Jaakkolaand T. Richardson, Waltham [800]
-
Corduneanu, A., and Bishop, C. M. (2001), "Variational Bayesian Model Selection for Mixture Distributions," in Artificial Intelligence and Statistics, eds. T. Jaakkolaand T. Richardson, Waltham, MA: Morgan Kaufmann, pp. 27-34.[800]
-
(2001)
Artificial Intelligence and Statistics
, pp. 27-34
-
-
Corduneanu, A.1
Bishop, C.M.2
-
9
-
-
0013058634
-
Variational MCMC
-
CA: Morgan Kaufmann Eds. J. Breeseand D. Koller, San Francisco, [818]
-
de Freitas, N., Højen-Sørensen, P., Jordan, M. I., and Russell, S. (2001), "Variational MCMC," in Uncertainty in Artificial Intelligence (UAI): Proceedings of the 17th Conference, eds. J. Breeseand D. Koller, San Francisco, CA: Morgan Kaufmann, pp. 120-127.[818]
-
(2001)
Uncertainty In Artificial Intelligence (UAI): Proceedings of the 17th Conference
, pp. 120-127
-
-
de Freitas, N.1
Højen-Sørensen, P.2
Jordan, M.I.3
Russell, S.4
-
10
-
-
2142671856
-
An ANOVA Model for Dependent Random Measures
-
[799]
-
De Iorio, M., M̈uller, P., Rosner, G. L., and MacEAchern, S. N. (2004), "An ANOVA Model for Dependent Random Measures," Journal of the American Statistical Association, 99, 205-215.[799]
-
(2004)
Journal of the American Statistical Association
, vol.99
, pp. 205-215
-
-
de Iorio, M.1
M̈uller, P.2
Rosner, G.L.3
MacEAchern, S.N.4
-
11
-
-
33847417083
-
Bayesian Density Regression
-
Series B, [800]
-
Dunson, D. B., Pillai, N., and Park, J.-H. (2007), "Bayesian Density Regression," Journal of the Royal Statistical Society, Series B, 69, 163-183.[800]
-
(2007)
Journal of the Royal Statistical Society
, vol.69
, pp. 163-183
-
-
Dunson, D.B.1
Pillai, N.2
Park, J.-H.3
-
12
-
-
33750369868
-
Estimating Marginal Likelihoods for Mixture and Markov Switching Models Using Bridge Sampling Techniques
-
[806]
-
Fr̈uhwirth-Schnatter, S. (2004), "Estimating Marginal Likelihoods for Mixture and Markov Switching Models Using Bridge Sampling Techniques," The Econometrics Journal, 7, 143-167.[806]
-
(2004)
The Econometrics Journal
, vol.7
, pp. 143-167
-
-
Fr̈uhwirth-Schnatter, S.1
-
13
-
-
77649275547
-
Comparing and Evaluating Bayesian Predictive Distributions of Asset Returns
-
[798]
-
Geweke, J., and Amisano, G. (2010), "Comparing and Evaluating Bayesian Predictive Distributions of Asset Returns," International Journal of Forecasting, 26, 216-230.[798]
-
(2010)
International Journal of Forecasting
, vol.26
, pp. 216-230
-
-
Geweke, J.1
Amisano, G.2
-
14
-
-
33947366371
-
Smoothly Mixing Regressions
-
[799,807,815]
-
Geweke, J., and Keane, M. (2007), "Smoothly Mixing Regressions," Journal of Econometrics, 138, 252-291.[799,807,815]
-
(2007)
Journal of Econometrics
, vol.138
, pp. 252-291
-
-
Geweke, J.1
Keane, M.2
-
15
-
-
84898934543
-
Variational Inference for Bayesian Mixtures of Factor Analysers
-
Eds. S. A. Solla, T. K. Leen, and K-R M̈uller Cambridge: MIT Press, [800]
-
Ghahramani, Z., and Beal, M. J. (2000), "Variational Inference for Bayesian Mixtures of Factor Analysers," in Advances in Neural Information Processing Systems (Vol. 12), eds. S. A. Solla, T. K. Leen, and K-R M̈uller, Cambridge: MIT Press, pp. 831-864.[800]
-
(2000)
Advances in Neural Information Processing Systems
, vol.12
, pp. 831-864
-
-
Ghahramani, Z.1
Beal, M.J.2
-
16
-
-
33645509944
-
Order-Based Dependent Dirichlet Processes
-
[799]
-
Griffin, J. E., and Steel, M. F. J. (2006), "Order-Based Dependent Dirichlet Processes," Journal of the American Statistical Association, 101, 179-194.[799]
-
(2006)
Journal of the American Statistical Association
, vol.101
, pp. 179-194
-
-
Griffin, J.E.1
Steel, M.F.J.2
-
17
-
-
34249804582
-
On-Line Variational Bayesian Learning
-
ICA 2003), Berlin: Springer, [806]
-
Honkela, A., and Valpola, H. (2003), "On-Line Variational Bayesian Learning," in Proceedings of the 4th International Symposium on Independent Component Analysis and Blind Signal Separation (ICA 2003), Berlin: Springer, pp. 803-808.[806]
-
(2003)
Proceedings of the 4th International Symposium On Independent Component Analysis and Blind Signal Separation
, pp. 803-808
-
-
Honkela, A.1
Valpola, H.2
-
18
-
-
0001940458
-
Adaptive Mixtures of Local Experts
-
[798,801]
-
Jacobs, R., Jordan, M., Nowlan, S., and Hinton, G. (1991), "Adaptive Mixtures of Local Experts," Neural Computation, 3, 79-87.[798,801]
-
(1991)
Neural Computation
, vol.3
, pp. 79-87
-
-
Jacobs, R.1
Jordan, M.2
Nowlan, S.3
Hinton, G.4
-
19
-
-
84865370735
-
-
Technical Report, ISDS, Duke University. Available at, [800,808,809]
-
Ji, C., Shen, H., and West, M. (2010), "Bounded Approximations for Marginal Likelihoods," Technical Report, ISDS, Duke University. Available at http://ftp.stat.duke.edu/WorkingPapers/10-05.html[800,808,809]
-
(2010)
Bounded Approximations For Marginal Likelihoods
-
-
Ji, C.1
Shen, H.2
West, M.3
-
20
-
-
0033248628
-
Hierarchical Mixtures-of-Experts for Exponential Family Regression Models: Approximation and Maximum Likelihood Estimation
-
[799]
-
Jiang, W., and Tanner, M. (1999), "Hierarchical Mixtures-of-Experts for Exponential Family Regression Models: Approximation and Maximum Likelihood Estimation," The Annals of Statistics, 27, 987-1011.[799]
-
(1999)
The Annals of Statistics
, vol.27
, pp. 987-1011
-
-
Jiang, W.1
Tanner, M.2
-
21
-
-
0000935895
-
An Introduction to Variational Methods for Graphical Models
-
Jordan, Cambridge, MA: MIT Press, [801]
-
Jordan, M. I., Ghahramani, Z., Jaakkola, T. S., and Saul, L. K. (1999), "An Introduction to Variational Methods for Graphical Models," in Learning in Graphical Models, ed. M. I. Jordan, Cambridge, MA: MIT Press, pp. 105-158.[801]
-
(1999)
Learning in Graphical Models
, vol.1
, pp. 105-158
-
-
Jordan, M.I.1
Ghahramani, Z.2
Jaakkola, T.S.3
Saul, L.K.4
-
22
-
-
0000262562
-
Hierarchical Mixtures of Experts and the EM Algorithm," Neural
-
[798,800,801]
-
Jordan, M. I., and Jacobs, R. A. (1994), "Hierarchical Mixtures of Experts and the EM Algorithm," Neural Computation, 6, 181-214.[798,800,801]
-
(1994)
Computation
, vol.6
, pp. 181-214
-
-
Jordan, M.I.1
Jacobs, R.A.2
-
23
-
-
84865370737
-
Modeling Conditional Densities Using Finite Smooth Mixtures
-
eds.K. L.Mengersen, C. P. Robert, and D. M. Titterington, Chichester, UK: John Wiley & Sons, Ltd, [798]
-
Li, F., Villani, M., and Kohn, R. (2010a), "Modeling Conditional Densities Using Finite Smooth Mixtures," in Mixtures: Estimation and Applications, eds.K. L.Mengersen, C. P. Robert, and D. M. Titterington, Chichester, UK: John Wiley & Sons, Ltd.
-
(2010)
Mixtures: Estimation and Applications
-
-
Li, F.1
Villani, M.2
Kohn, R.3
-
24
-
-
77955580236
-
Flexible Modeling of Conditional Distributions Using SmoothMixtures of Asymmetric Student t Densities
-
[807,815]
-
Li, F., Villani, M., and Kohn, R. (2010b), "Flexible Modeling of Conditional Distributions Using SmoothMixtures of Asymmetric Student t Densities," Journal of Statistical Planning and Inference, 140, 3638-3654.[807,815]
-
(2010)
Journal of Statistical Planning and Inference
, vol.140
, pp. 3638-3654
-
-
Li, F.1
Villani, M.2
Kohn, R.3
-
25
-
-
3543023776
-
Dependent Nonparametric Processes
-
VA: American Statistical Association, [799]
-
MacEachern, S. N. (1999), "Dependent Nonparametric Processes," in ASA Proceedings of the Section on Bayesian Statistical Science, Alexandria, VA: American Statistical Association, pp. 50-55.[799]
-
(1999)
ASA Proceedings of the Section On Bayesian Statistical Science, Alexandria
, pp. 50-55
-
-
Maceachern, S.N.1
-
27
-
-
34247869715
-
Variational Approximations in Bayesian Model Selection for Finite Mixture Distributions
-
[800,804]
-
McGrory, C. A., and Titterington, D. M. (2007), "Variational Approximations in Bayesian Model Selection for Finite Mixture Distributions," Computational Statistics and Data Analysis, 51, 5352-5367.[800,804]
-
(2007)
Computational Statistics and Data Analysis
, vol.51
, pp. 5352-5367
-
-
McGrory, C.A.1
Titterington, D.M.2
-
28
-
-
77951494583
-
Approximation of Conditional Densities by Smooth Mixtures of Regressions
-
[799]
-
Norets, A. (2010), "Approximation of Conditional Densities by Smooth Mixtures of Regressions," The Annals of Statistics, 38, 1733-1766.[799]
-
(2010)
The Annals of Statistics
, vol.38
, pp. 1733-1766
-
-
Norets, A.1
-
29
-
-
33745699573
-
Bayesian Analysis of Computer Code Outputs: A Tutorial
-
[811]
-
O'Hagan, A. (2006), "Bayesian Analysis of Computer Code Outputs: A Tutorial," Reliability Engineering and System Safety, 91, 1290-1300.[811]
-
(2006)
Reliability Engineering and System Safety
, vol.91
, pp. 1290-1300
-
-
O'Hagan, A.1
-
30
-
-
77952563168
-
Explaining Variational Approximations
-
[801,805]
-
Ormerod, J. T., andWand, M. P. (2010), "Explaining Variational Approximations," The American Statistician, 64 (2), 140-153.[801,805]
-
(2010)
The American Statistician
, vol.64
, Issue.2
, pp. 140-153
-
-
Ormerod, J.T.1
Andwand, M.P.2
-
31
-
-
0030327271
-
Bayesian Inference in Mixtures-of-Experts and Hierarchical Mixtures-of-ExpertsModels with an Application to Speech Recognition
-
[799]
-
Peng, F., Jacobs, R. A., and Tanner, M. A. (1996), "Bayesian Inference in Mixtures-of-Experts and Hierarchical Mixtures-of-ExpertsModels with an Application to Speech Recognition," Journal of the American Statistician Association, 91, 953-960.[799]
-
(1996)
Journal of the American Statistician Association
, vol.91
, pp. 953-960
-
-
Peng, F.1
Jacobs, R.A.2
Tanner, M.A.3
-
33
-
-
0036888093
-
Market Timing and Return Prediction under Model Instability
-
[798]
-
Pesaran, M. H., and Timmermann, A. (2002), "Market Timing and Return Prediction Under Model Instability," Journal of Empirical Finance, 9, 495-510.[798]
-
(2002)
Journal of Empirical Finance
, vol.9
, pp. 495-510
-
-
Pesaran, M.H.1
Timmermann, A.2
-
34
-
-
0000016172
-
A Stochastic Approximation Method
-
[808]
-
Robbins, H., and Monro, S. (1951), "A Stochastic Approximation Method," Annals of Mathematical Statistics, 22, 400-407.[808]
-
(1951)
Annals of Mathematical Statistics
, vol.22
, pp. 400-407
-
-
Robbins, H.1
Monro, S.2
-
35
-
-
0013025914
-
-
NJ: Wiley, [798,810]
-
Spall, J. C. (2003), Introduction to Stochastic Search and Optimization: Estimation, Simulation and Control, Hoboken, NJ: Wiley.[798,810]
-
(2003)
Introduction to Stochastic Search and Optimization: Estimation, Simulation and Control, Hoboken
-
-
Spall, J.C.1
-
36
-
-
0036435040
-
Bayesian Measures of Model Complexity and Fi
-
(with discussion, Series B, [800]
-
Spiegelhalter, D. J., Best, N. G., Carlin, B. P., and Van der Linde, A. (2002), "Bayesian Measures of Model Complexity and Fit" (with discussion), Journal of the Royal Statistical Society, Series B, 64, 583-616.[800]
-
(2002)
Journal of the Royal Statistical Society
, vol.64
, pp. 583-616
-
-
Spiegelhalter, D.J.1
Best, N.G.2
Carlin, B.P.3
Van der Linde, A.4
-
37
-
-
0036887504
-
Bayesian Model Search for Mixture Models Based on Optimizing Variational Bounds
-
[800,801]
-
Ueda, N., and Ghahramani, Z. (2002), "Bayesian Model Search for Mixture Models Based on Optimizing Variational Bounds," Neural Networks, 15, 1223-11241.[800,801]
-
(2002)
Neural Networks
, vol.15
, pp. 1223-11241
-
-
Ueda, N.1
Ghahramani, Z.2
-
38
-
-
0036781790
-
Bayesian Model Assessment and Comparison Using Cross-Validation Predictive Densities
-
[807]
-
Vehtari, A., and Lampinen, J. (2002), "Bayesian Model Assessment and Comparison Using Cross-Validation Predictive Densities," Neural Computation, 14, 2439-2468.[807]
-
(2002)
Neural Computation
, vol.14
, pp. 2439-2468
-
-
Vehtari, A.1
Lampinen, J.2
-
39
-
-
70349427041
-
Regression Density Estimation Using Smooth Adaptive Gaussian Mixtures
-
[798,799]
-
Villani, M., Kohn, R., and Giordani, P. (2009), "Regression Density Estimation Using Smooth Adaptive Gaussian Mixtures," Journal of Econometrics, 153, 155-173.[798,799]
-
(2009)
Journal of Econometrics
, vol.153
, pp. 155-173
-
-
Villani, M.1
Kohn, R.2
Giordani, P.3
-
40
-
-
85156191859
-
Bayesian Methods for Mixtures of Experts
-
, (Vol. 8), eds. D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, Cambridge, MA: MIT Press, [800,801,805]
-
Waterhouse, S., MacKay, D., and Robinson, T. (1996), "Bayesian Methods for Mixtures of Experts," in Advances in Neural Information Processing Systems, (Vol. 8), eds. D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, Cambridge, MA: MIT Press, pp. 351-357.[800,801,805]
-
(1996)
Advances In Neural Information Processing Systems
, pp. 351-357
-
-
Waterhouse, S.1
Mackay, D.2
Robinson, T.3
-
41
-
-
0036003722
-
Vector Differential Calculus in Statistics
-
[803]
-
Wand, M. P. (2002), "Vector Differential Calculus in Statistics," The American Statistician, 56, 55-62.[803]
-
(2002)
The American Statistician
, vol.56
, pp. 55-62
-
-
Wand, M.P.1
-
42
-
-
62149086004
-
Inadequacy of Interval Estimates Corresponding toVariationalBayesian Approximations
-
eds. R. G. Cowell and Z. Ghahramani, Society for Artificial Intelligence and Statistics, [808]
-
Wang, B., and Titterington, D. M. (2005), "Inadequacy of Interval Estimates Corresponding toVariationalBayesian Approximations," in Proceedings of the 10th International Workshop on Artificial Intelligence and Statistics, eds. R. G. Cowell and Z. Ghahramani, Society for Artificial Intelligence and Statistics, pp. 373-380.[808]
-
(2005)
Proceedings of the 10th International Workshop On Artificial Intelligence and Statistics
, pp. 373-380
-
-
Wang, B.1
Titterington, D.M.2
-
43
-
-
0035982949
-
Concomitant Variables in Finite MixtureModels
-
[798]
-
Wedel, M. (2002), "Concomitant Variables in Finite MixtureModels," Statistica Neerlandica, 56, 362-375.[798]
-
(2002)
Statistica Neerlandica
, vol.56
, pp. 362-375
-
-
Wedel, M.1
-
44
-
-
0001423726
-
Generalized Linear Models: Outlier Accommodation, Scale Parameters and PriorDistributions
-
West,M, in, 2, eds. J.M. Bernardo, M. H. DeGroot,D.V. Lindley, and A. F. M. Smith,North Holland: Amsterdam, [804]
-
West,M. (1985), "Generalized Linear Models:Outlier Accommodation, Scale Parameters and PriorDistributions," in Bayesian Statistics 2, eds. J.M. Bernardo, M. H. DeGroot,D.V. Lindley, and A. F. M. Smith,North Holland: Amsterdam, pp. 531-538.[804]
-
(1985)
Bayesian Statistics
, pp. 531-538
-
-
-
45
-
-
13844262338
-
Bayesian Mixture of Splines for Spatially Adaptive Nonparametric Regression
-
[799]
-
Wood, S. A., Jiang, W., and Tanner, M. A. (2002), "Bayesian Mixture of Splines for Spatially Adaptive Nonparametric Regression," Biometrika, 89, 513-528.[799]
-
(2002)
Biometrika
, vol.89
, pp. 513-528
-
-
Wood, S.A.1
Jiang, W.2
Tanner, M.A.3
-
46
-
-
46849091373
-
Locally Adaptive Nonparametric Binary Regression
-
[799]
-
Wood, S. A., Kohn, R., Cottet, R., Jiang, W., and Tanner, M. (2008), "Locally Adaptive Nonparametric Binary Regression," Journal of Computational and Graphical Statistics, 17, 352-372.[799]
-
(2008)
Journal of Computational and Graphical Statistics
, vol.17
, pp. 352-372
-
-
Wood, S.A.1
Kohn, R.2
Cottet, R.3
Jiang, W.4
Tanner, M.5
-
47
-
-
81955165467
-
A New Variational Bayesian Algorithm With Application to Human Mobility Pattern Modeling
-
[800]
-
Wu, B., McGrory, C. A., and Pettitt, A. N. (2012), "A New Variational Bayesian Algorithm With Application to Human Mobility Pattern Modeling," Statistics and Computing, 22 (1), 185-203.[800]
-
(2012)
Statistics and Computing
, vol.22
, Issue.1
, pp. 185-203
-
-
Wu, B.1
McGrory, C.A.2
Pettitt, A.N.3
|