-
3
-
-
52449116403
-
A Correlated Topic Model of Science
-
D.M.Blei,, and J.D.Lafferty, (2007), “A Correlated Topic Model of Science,” The Annals of Applied Statistics, 1, 17–35.
-
(2007)
The Annals of Applied Statistics
, vol.1
, pp. 17-35
-
-
Blei, D.M.1
Lafferty, J.D.2
-
4
-
-
84865575512
-
Autocovariance Structures for Radial Averages in Small-Angle X-Ray Scattering Experiments
-
F.J.Breidt,, A.Erciulescu,, and M.van der Woerd, (2012), “Autocovariance Structures for Radial Averages in Small-Angle X-Ray Scattering Experiments,” Journal of Time Series Analysis, 33, 704–717.
-
(2012)
Journal of Time Series Analysis
, vol.33
, pp. 704-717
-
-
Breidt, F.J.1
Erciulescu, A.2
van der Woerd, M.3
-
5
-
-
84988112810
-
Inference for Nonconjugate Bayesian Models Using the Gibbs Sampler
-
B.P.Carlin,, and N.G.Polson, (1991), “Inference for Nonconjugate Bayesian Models Using the Gibbs Sampler,” Canadian Journal of Statistics, 19, 399–405.
-
(1991)
Canadian Journal of Statistics
, vol.19
, pp. 399-405
-
-
Carlin, B.P.1
Polson, N.G.2
-
6
-
-
84937730674
-
Explaining the Gibbs Sampler
-
G.Casella,, and E.I.George, (1992), “Explaining the Gibbs Sampler,” The American Statistician, 46, 167–174.
-
(1992)
The American Statistician
, vol.46
, pp. 167-174
-
-
Casella, G.1
George, E.I.2
-
7
-
-
33845327820
-
Locally Adaptive Semiparametric Estimation of the Mean and Variance Functions in Regression Models
-
D.Chan,, R.Kohn,, D.Nott,, and C.Kirby, (2006), “Locally Adaptive Semiparametric Estimation of the Mean and Variance Functions in Regression Models,” Journal of Computational and Graphical Statistics, 15, 915–936.
-
(2006)
Journal of Computational and Graphical Statistics
, vol.15
, pp. 915-936
-
-
Chan, D.1
Kohn, R.2
Nott, D.3
Kirby, C.4
-
8
-
-
34250715942
-
Spatially Adaptive Bayesian Penalized Splines with Heteroscedastic Errors
-
C.M.Crainiceanu,, D.Ruppert,, R.J.Carroll,, A.Joshi,, and B.Goodner, (2007), “Spatially Adaptive Bayesian Penalized Splines with Heteroscedastic Errors,” Journal of Computational and Graphical Statistics, 16, 265–288.
-
(2007)
Journal of Computational and Graphical Statistics
, vol.16
, pp. 265-288
-
-
Crainiceanu, C.M.1
Ruppert, D.2
Carroll, R.J.3
Joshi, A.4
Goodner, B.5
-
9
-
-
78650827945
-
Splines, Knots, and Penalties
-
P.H.Eilers,, and B.D.Marx, (2010), “Splines, Knots, and Penalties,” Wiley Interdisciplinary Reviews: Computational Statistics, 2, 637–653.
-
(2010)
Wiley Interdisciplinary Reviews: Computational Statistics
, vol.2
, pp. 637-653
-
-
Eilers, P.H.1
Marx, B.D.2
-
10
-
-
25444532788
-
Flexible Smoothing With B-Splines and Penalties
-
P.H.Eilers, (1996), “Flexible Smoothing With B-Splines and Penalties,” Statistical Science, 11, 89–102.
-
(1996)
Statistical Science
, vol.11
, pp. 89-102
-
-
Eilers, P.H.1
-
11
-
-
80054689997
-
Variational Bayesian Inference for Parametric and Nonparametric Regression With Missing Data
-
C.Faes,, J.Ormerod,, and M.Wand, (2011), “Variational Bayesian Inference for Parametric and Nonparametric Regression With Missing Data,” Journal of the American Statistical Association, 106, 959–971.
-
(2011)
Journal of the American Statistical Association
, vol.106
, pp. 959-971
-
-
Faes, C.1
Ormerod, J.2
Wand, M.3
-
12
-
-
75649147383
-
Determination of the Molecular Weight of Proteins in Solution From a Single Small-Angle X-Ray Scattering Measurement on a Relative Scale
-
H.Fischer,, M.Neto,, H.Napolitano,, I.Polikarpov,, and A.Craievich, (2009), “Determination of the Molecular Weight of Proteins in Solution From a Single Small-Angle X-Ray Scattering Measurement on a Relative Scale,” Journal of Applied Crystallography, 43, 101–109.
-
(2009)
Journal of Applied Crystallography
, vol.43
, pp. 101-109
-
-
Fischer, H.1
Neto, M.2
Napolitano, H.3
Polikarpov, I.4
Craievich, A.5
-
13
-
-
0001498978
-
La Diffraction des Rayons X aux Très Petits Angles: Application a l’Étude de Phénoménes Ultramicrosopiques
-
A.Guinier, (1939), “La Diffraction des Rayons X aux Très Petits Angles: Application a l’Étude de Phénoménes Ultramicrosopiques,” Annales de Physique, 12, 161–237.
-
(1939)
Annales de Physique
, vol.12
, pp. 161-237
-
-
Guinier, A.1
-
14
-
-
33750082644
-
DRAM: Efficient Adaptive MCMC
-
H.Haario,, M.Laine,, A.Mira,, and E.Saksman, (2006), “DRAM: Efficient Adaptive MCMC,” Statistics and Computing, 16, 339–354.
-
(2006)
Statistics and Computing
, vol.16
, pp. 339-354
-
-
Haario, H.1
Laine, M.2
Mira, A.3
Saksman, E.4
-
17
-
-
85162453650
-
Nonconjugate Variational Message Passing for Multinomial and Binary Regression
-
D.A.Knowles,, and T.Minka, (2011), “Nonconjugate Variational Message Passing for Multinomial and Binary Regression,” in Advances in Neural Information Processing Systems, pp. 1701–1709.
-
(2011)
Advances in Neural Information Processing Systems
, pp. 1701-1709
-
-
Knowles, D.A.1
Minka, T.2
-
18
-
-
0001927585
-
On Information and Sufficiency
-
S.Kullback,, and R.A.Leibler, (1951), “On Information and Sufficiency,” The Annals of Mathematical Statistics, 22, 79–86.
-
(1951)
The Annals of Mathematical Statistics
, vol.22
, pp. 79-86
-
-
Kullback, S.1
Leibler, R.A.2
-
19
-
-
84961263199
-
Variational Inference for Heteroscedastic Semiparametric Regression
-
available at http://works.bepress.com/matt_wand/12
-
M.Menictas,, and M.Wand, (2014), “Variational Inference for Heteroscedastic Semiparametric Regression,” The Selected Works of Matt Wand, available at http://works.bepress.com/matt_wand/12.
-
(2014)
The Selected Works of Matt Wand
-
-
Menictas, M.1
Wand, M.2
-
20
-
-
79959874165
-
-
available at http://research.microsoft.com/infernet
-
T.Minka,, J.Winn,, J.Guiver,, and D.Knowles, (2010), “Infer.NET 2.4. Microsoft Research Cambridge,” available at http://research.microsoft.com/infernet.
-
(2010)
Infer.NET 2.4. Microsoft Research Cambridge
-
-
Minka, T.1
Winn, J.2
Guiver, J.3
Knowles, D.4
-
21
-
-
84905016738
-
-
arXiv preprint arXiv:1307.7963
-
D.J.Nott,, M.-N.Tran,, A.Y.Kuk,, and R.Kohn, (2013), “Efficient Variational Inference for Generalized Linear Mixed Models With Large Datasets,” arXiv preprint arXiv:1307.7963.
-
(2013)
Efficient Variational Inference for Generalized Linear Mixed Models With Large Datasets
-
-
Nott, D.J.1
Tran, M.-N.2
Kuk, A.Y.3
Kohn, R.4
-
22
-
-
81955160896
-
Variational Approximation for Heteroscedastic Linear Models and Matching Pursuit Algorithms
-
D.J.Nott,, M.-N.Tran,, and C.Leng, (2012), “Variational Approximation for Heteroscedastic Linear Models and Matching Pursuit Algorithms,” Statistics and Computing, 22, 497–512.
-
(2012)
Statistics and Computing
, vol.22
, pp. 497-512
-
-
Nott, D.J.1
Tran, M.-N.2
Leng, C.3
-
23
-
-
77952563168
-
Explaining Variational Approximations
-
J.Ormerod,, and M.Wand, (2010), “Explaining Variational Approximations,” The American Statistician, 64, 140–153.
-
(2010)
The American Statistician
, vol.64
, pp. 140-153
-
-
Ormerod, J.1
Wand, M.2
-
24
-
-
84882325509
-
Mean Field Variational Bayesian Inference for Nonparametric Regression With Measurement Error
-
T.H.Pham,, J.T.Ormerod,, and M.Wand, (2013), “Mean Field Variational Bayesian Inference for Nonparametric Regression With Measurement Error,” Computational Statistics & Data Analysis, 68, 375–387.
-
(2013)
Computational Statistics & Data Analysis
, vol.68
, pp. 375-387
-
-
Pham, T.H.1
Ormerod, J.T.2
Wand, M.3
-
25
-
-
37149049312
-
X-Ray Solution Scattering (SAXS) Combined With Crystallography and Computation: Defining Accurate Macromolecular Structures, Conformations and Assemblies in Solution
-
C.Putnam,, M.Hammel,, G.Hura,, and J.Tainer, (2007), “X-Ray Solution Scattering (SAXS) Combined With Crystallography and Computation: Defining Accurate Macromolecular Structures, Conformations and Assemblies in Solution,” Quarterly Reviews of Biophysics, 40, 191–285.
-
(2007)
Quarterly Reviews of Biophysics
, vol.40
, pp. 191-285
-
-
Putnam, C.1
Hammel, M.2
Hura, G.3
Tainer, J.4
-
26
-
-
62849120031
-
Approximate Bayesian Inference for Latent Gaussian Models by Using Integrated Nested Laplace Approximations
-
H.Rue,, S.Martino,, and N.Chopin, (2009), “Approximate Bayesian Inference for Latent Gaussian Models by Using Integrated Nested Laplace Approximations,” Journal of the Royal Statistical Society, Series B, 71, 319–392.
-
(2009)
Journal of the Royal Statistical Society, Series B
, vol.71
, pp. 319-392
-
-
Rue, H.1
Martino, S.2
Chopin, N.3
-
27
-
-
0012891890
-
-
Cambridge, UK: Cambridge University Press
-
D.Ruppert,, M.P.Wand,, and R.J.Carroll, (2003), Semiparametric Regression (vol. 12), Cambridge, UK: Cambridge University Press.
-
(2003)
Semiparametric Regression (vol. 12)
-
-
Ruppert, D.1
Wand, M.P.2
Carroll, R.J.3
-
28
-
-
84891700107
-
Fixed-Form Variational Posterior Approximation Through Stochastic Linear Regression
-
T.Salimans,, and D.A.Knowles, (2013), “Fixed-Form Variational Posterior Approximation Through Stochastic Linear Regression,” Bayesian Analysis, 8, 837–882.
-
(2013)
Bayesian Analysis
, vol.8
, pp. 837-882
-
-
Salimans, T.1
Knowles, D.A.2
-
29
-
-
84878988007
-
Variational Inference for Generalized Linear Mixed Models Using Partially Noncentered Parametrizations
-
L.S.Tan,, and D.J.Nott, (2013), “Variational Inference for Generalized Linear Mixed Models Using Partially Noncentered Parametrizations,” Statistical Science, 28, 168–188.
-
(2013)
Statistical Science
, vol.28
, pp. 168-188
-
-
Tan, L.S.1
Nott, D.J.2
-
30
-
-
4043069967
-
Bayesian Methods for Neural Networks and Related Models
-
D.Titterington, (2004), “Bayesian Methods for Neural Networks and Related Models,” Statistical Science, 19, 128–139.
-
(2004)
Statistical Science
, vol.19
, pp. 128-139
-
-
Titterington, D.1
-
31
-
-
65749118363
-
Graphical Models, Exponential Families, and Variational Inference
-
M.J.Wainwright,, and M.I.Jordan, (2008), “Graphical Models, Exponential Families, and Variational Inference,” Foundations and Trends in Machine Learning, 1, 1–305.
-
(2008)
Foundations and Trends in Machine Learning
, vol.1
, pp. 1-305
-
-
Wainwright, M.J.1
Jordan, M.I.2
-
32
-
-
47249158963
-
On Semiparametric Regression With O’Sullivan Penalized Splines
-
M.Wand,, and J.Ormerod, (2008), “On Semiparametric Regression With O’Sullivan Penalized Splines,” Australian & New Zealand Journal of Statistics, 50, 179–198.
-
(2008)
Australian & New Zealand Journal of Statistics
, vol.50
, pp. 179-198
-
-
Wand, M.1
Ormerod, J.2
-
33
-
-
84856958759
-
Mean Field Variational Bayes for Elaborate Distributions
-
M.P.Wand,, J.T.Ormerod,, S.A.Padoan,, and R.Frührwirth, (2011), “Mean Field Variational Bayes for Elaborate Distributions,” Bayesian Analysis, 6, 1–48.
-
(2011)
Bayesian Analysis
, vol.6
, pp. 1-48
-
-
Wand, M.P.1
Ormerod, J.T.2
Padoan, S.A.3
Frührwirth, R.4
-
34
-
-
84877630966
-
Variational Inference in Nonconjugate Models
-
C.Wang,, and D.M.Blei, (2013), “Variational Inference in Nonconjugate Models,” The Journal of Machine Learning Research, 14, 1005–1031.
-
(2013)
The Journal of Machine Learning Research
, vol.14
, pp. 1005-1031
-
-
Wang, C.1
Blei, D.M.2
-
35
-
-
79960967276
-
Using Infer.NET for Statistical Analyses
-
S.Wang,, and M.Wand, (2011), “Using Infer.NET for Statistical Analyses,” The American Statistician, 65, 115.
-
(2011)
The American Statistician
, vol.65
, pp. 115
-
-
Wang, S.1
Wand, M.2
|