-
1
-
-
0000353178
-
A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains
-
Baum, L., Petrie, T., Soules, G., & Weiss, N. (1970). A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains. The Annals of Mathematical Statistics, 41, 164-171.
-
(1970)
The Annals of Mathematical Statistics
, vol.41
, pp. 164-171
-
-
Baum, L.1
Petrie, T.2
Soules, G.3
Weiss, N.4
-
2
-
-
85153946439
-
An input-output HMM architecture
-
G. Tesauro, D. S. Touretzky, & T. K. Leen (Eds.), Cambridge, MA: MIT Press
-
Bengio, Y., & Frasconi, P. (1995). An input-output HMM architecture. In G. Tesauro, D. S. Touretzky, & T. K. Leen (Eds.), Advances in neural information processing systems 7, pp. 427-434. Cambridge, MA: MIT Press.
-
(1995)
Advances in Neural Information Processing Systems
, vol.7
, pp. 427-434
-
-
Bengio, Y.1
Frasconi, P.2
-
3
-
-
0001119510
-
Mixtures of controllers for jump linear and non-linear plants
-
J. D. Cowan, G. Tesauro, & J. Alspector (Eds.), San Francisco, CA: Morgan Kaufmann
-
Cacciatore, T. W., & Nowlan, S. J. (1994). Mixtures of controllers for jump linear and non-linear plants. In J. D. Cowan, G. Tesauro, & J. Alspector (Eds.), Advances in neural information processing systems 6, pp. 719-726. San Francisco, CA: Morgan Kaufmann.
-
(1994)
Advances in Neural Information Processing Systems
, vol.6
, pp. 719-726
-
-
Cacciatore, T.W.1
Nowlan, S.J.2
-
4
-
-
0142036051
-
Multiple viewpoint systems for music prediction
-
Conklin, D., & Witten, I. H. (1995). Multiple viewpoint systems for music prediction. Journal of New Music Research, 24, 51-73.
-
(1995)
Journal of New Music Research
, vol.24
, pp. 51-73
-
-
Conklin, D.1
Witten, I.H.2
-
6
-
-
0003064380
-
Applications of a general propagation algorithm for probabilistic expert systems
-
Dawid, A. P. (1992). Applications of a general propagation algorithm for probabilistic expert systems. Statistics and Computing, 2, 25-36.
-
(1992)
Statistics and Computing
, vol.2
, pp. 25-36
-
-
Dawid, A.P.1
-
7
-
-
84990553353
-
A model for reasoning about persistence and causation
-
Dean, T., & Kanazawa, K. (1989). A model for reasoning about persistence and causation. Computational Intelligence, 5, 142-150.
-
(1989)
Computational Intelligence
, vol.5
, pp. 142-150
-
-
Dean, T.1
Kanazawa, K.2
-
8
-
-
0002629270
-
Maximum likelihood from incomplete data via the EM algorithm
-
Dempster, A., Laird, N., & Rubin, D. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society Series B, 39, 1-38.
-
(1977)
Journal of the Royal Statistical Society Series B
, vol.39
, pp. 1-38
-
-
Dempster, A.1
Laird, N.2
Rubin, D.3
-
9
-
-
0001942829
-
Neural networks and the bias/variance dilemma
-
Geman, S., Bienenstock, E., & Doursat, R. (1992). Neural networks and the bias/variance dilemma. Neural Computation, 4, 1-58.
-
(1992)
Neural Computation
, vol.4
, pp. 1-58
-
-
Geman, S.1
Bienenstock, E.2
Doursat, R.3
-
10
-
-
0021518209
-
Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images
-
Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 721-741.
-
(1984)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.6
, pp. 721-741
-
-
Geman, S.1
Geman, D.2
-
11
-
-
85153949914
-
Factorial learning and the EM algorithm
-
G. Tesauro, D. S. Touretzky, & T. K. Leen (Eds.), Cambridge, MA: MIT Press
-
Ghahramani, Z. (1995). Factorial learning and the EM algorithm. In G. Tesauro, D. S. Touretzky, & T. K. Leen (Eds.), Advances in neural information processing systems 7, pp. 617-624. Cambridge, MA: MIT Press.
-
(1995)
Advances in Neural Information Processing Systems
, vol.7
, pp. 617-624
-
-
Ghahramani, Z.1
-
13
-
-
0000999440
-
Learning and relearning in Boltzmann machines
-
D. E. Rumelhart & J. L. McClelland (Eds.), Cambridge, MA: MIT Press
-
Hinton, G. E., & Sejnowski, T. J. (1986). Learning and relearning in Boltzmann machines. In D. E. Rumelhart & J. L. McClelland (Eds.), Parallel distributed processing: Explorations in the microstructure of cognition. Volume 1: Foundations. Cambridge, MA: MIT Press.
-
(1986)
Parallel Distributed Processing: Explorations in the Microstructure of Cognition. Volume 1: Foundations
, vol.1
-
-
Hinton, G.E.1
Sejnowski, T.J.2
-
14
-
-
0002834189
-
Autoencoders, minimum description length, and Helmholtz free energy
-
J. D. Cowan, G. Tesauro, & J. Alspector (Eds.), San Francisco, CA: Morgan Kaufmann
-
Hinton, G. E., & Zemel, R. S. (1994). Autoencoders, minimum description length, and Helmholtz free energy. In J. D. Cowan, G. Tesauro, & J. Alspector (Eds.), Advances in neural information processing systems 6, pp. 3-10. San Francisco, CA: Morgan Kaufmann.
-
(1994)
Advances in Neural Information Processing Systems
, vol.6
, pp. 3-10
-
-
Hinton, G.E.1
Zemel, R.S.2
-
15
-
-
0001698979
-
Bayesian updating in recursive graphical models by local computations
-
Jensen, F. V., Lauritzen, S. L., & Olesen, K. G. (1990). Bayesian updating in recursive graphical models by local computations. Computational Statistical Quarterly, 4, 269-282.
-
(1990)
Computational Statistical Quarterly
, vol.4
, pp. 269-282
-
-
Jensen, F.V.1
Lauritzen, S.L.2
Olesen, K.G.3
-
16
-
-
84899026353
-
Hidden Markov decision trees
-
M. Mozer, M. Jordan, & T. Petsche (Eds.), Cambridge, MA: MIT Press
-
Jordan, M. I., Ghahramani, Z., & Saul, L. K. (1997). Hidden Markov decision trees. In M. Mozer, M. Jordan, & T. Petsche (Eds.), Advances in neural information processing systems 9. Cambridge, MA: MIT Press.
-
(1997)
Advances in Neural Information Processing Systems
, vol.9
-
-
Jordan, M.I.1
Ghahramani, Z.2
Saul, L.K.3
-
17
-
-
0000262562
-
Hierarchical mixtures of experts and the EM algorithm
-
Jordan, M. I., & Jacobs, R. (1994). Hierarchical mixtures of experts and the EM algorithm. Neural Computation, 6, 181-214.
-
(1994)
Neural Computation
, vol.6
, pp. 181-214
-
-
Jordan, M.I.1
Jacobs, R.2
-
18
-
-
0003072903
-
Stochastic simulation algorithms for dynamic probabilistic networks
-
P. Besnard, , & S. Hanks (Eds.), San Francisco, CA: Morgan Kaufmann
-
Kanazawa, K., Koller, D., & Russell, S. J. (1995). Stochastic simulation algorithms for dynamic probabilistic networks. In P. Besnard, , & S. Hanks (Eds.), Uncertainty in Artificial Intelligence: Proceedings of the Eleventh Conference. (pp. 346-351). San Francisco, CA: Morgan Kaufmann.
-
(1995)
Uncertainty in Artificial Intelligence: Proceedings of the Eleventh Conference
, pp. 346-351
-
-
Kanazawa, K.1
Koller, D.2
Russell, S.J.3
-
19
-
-
0028181441
-
Hidden Markov models in computational biology: Applications to protein modeling
-
Krogh, A., Brown, M., Mian, I. S., Sjölander, K., & Haussler, D. (1994). Hidden Markov models in computational biology: Applications to protein modeling . Journal of Molecular Biology, 235, 1501-1531.
-
(1994)
Journal of Molecular Biology
, vol.235
, pp. 1501-1531
-
-
Krogh, A.1
Brown, M.2
Mian, I.S.3
Sjölander, K.4
Haussler, D.5
-
20
-
-
0001006209
-
Local computations with probabilities on graphical structures and their application to expert systems
-
Lauritzen, S. L., & Spiegelhalter, D. J. (1988). Local computations with probabilities on graphical structures and their application to expert systems. Journal of the Royal Statistical Society B, 157-224.
-
(1988)
Journal of the Royal Statistical Society B
, pp. 157-224
-
-
Lauritzen, S.L.1
Spiegelhalter, D.J.2
-
22
-
-
85156193355
-
Learning fine motion by Markov mixtures of experts
-
D. S. Touretzky, M. C. Mozer, & M. E. Hasselmo (Eds.), Cambridge, MA: MIT Press
-
Meila, M., & Jordan, M. I. (1996). Learning fine motion by Markov mixtures of experts. In D. S. Touretzky, M. C. Mozer, & M. E. Hasselmo (Eds.), Advances in neural information processing systems 8, pp. 1003-1009. Cambridge, MA: MIT Press.
-
(1996)
Advances in Neural Information Processing Systems
, vol.8
, pp. 1003-1009
-
-
Meila, M.1
Jordan, M.I.2
-
23
-
-
0003408496
-
-
Irvine, CA: University of California, Department of Information and Computer Science
-
Merz, C. J., & Murphy, P. M. (1996). UCI Repository of machine learning databases [http://www.ics.uci.edu/mlearn/MLRepository.html]. Irvine, CA: University of California, Department of Information and Computer Science.
-
(1996)
UCI Repository of Machine Learning Databases
-
-
Merz, C.J.1
Murphy, P.M.2
-
24
-
-
44049116681
-
Connectionist learning of belief networks
-
Neal, R. M. (1992). Connectionist learning of belief networks. Artificial Intelligence, 56, 71-113.
-
(1992)
Artificial Intelligence
, vol.56
, pp. 71-113
-
-
Neal, R.M.1
-
25
-
-
0004087397
-
-
(Technical Report CRG-TR-93-1). Toronto, Ontario: University of Toronto, Department of Computer Science
-
Neal, R. M. (1993). Probabilistic inference using Markov chain Monte Carlo methods (Technical Report CRG-TR-93-1). Toronto, Ontario: University of Toronto, Department of Computer Science.
-
(1993)
Probabilistic Inference Using Markov Chain Monte Carlo Methods
-
-
Neal, R.M.1
-
26
-
-
0003539785
-
-
Unpublished manuscript, Department of Computer Science, University of Toronto, Ontario
-
Neal, R. M., & Hinton, G. E. (1993). A new view of the EM algorithm that justifies incremental and other variants. Unpublished manuscript, Department of Computer Science, University of Toronto, Ontario.
-
(1993)
A New View of the EM Algorithm That Justifies Incremental and Other Variants
-
-
Neal, R.M.1
Hinton, G.E.2
-
29
-
-
0022594196
-
An Introduction to hidden Markov models
-
Rabiner, L. R., & Juang, B. H. (1986). An Introduction to hidden Markov models. IEEE Acoustics, Speech & Signal Processing Magazine, 3, 4-16.
-
(1986)
IEEE Acoustics, Speech & Signal Processing Magazine
, vol.3
, pp. 4-16
-
-
Rabiner, L.R.1
Juang, B.H.2
-
30
-
-
0005380513
-
Mixed memory Markov models
-
D. Madigan , & P. Smyth (Eds.), Ft. Lauderdale, FL
-
Saul, L. K., & Jordan, M. I. (1997). Mixed memory Markov models. In D. Madigan , & P. Smyth (Eds.), Proceedings of the 1997 Conference on Artificial Intelligence and Statistics. Ft. Lauderdale, FL.
-
(1997)
Proceedings of the 1997 Conference on Artificial Intelligence and Statistics
-
-
Saul, L.K.1
Jordan, M.I.2
-
31
-
-
0029679189
-
Mean Field Theory for Sigmoid Belief Networks
-
Saul, L., Jaakkola, T., & Jordan, M. I. (1996). Mean Field Theory for Sigmoid Belief Networks. Journal of Artificial Intelligence Research, 4, 61-76.
-
(1996)
Journal of Artificial Intelligence Research
, vol.4
, pp. 61-76
-
-
Saul, L.1
Jaakkola, T.2
Jordan, M.I.3
-
32
-
-
85153929881
-
Boltzmann chains and hidden Markov models
-
G. Tesauro, D. S. Touretzky, & T. K. Leen (Eds.), Cambridge, MA: MIT Press
-
Saul, L., & Jordan, M. I. (1995). Boltzmann chains and hidden Markov models. In G. Tesauro, D. S. Touretzky, & T. K. Leen (Eds.), Advances in neural information processing systems 7, pp. 435-442. Cambridge, MA: MIT Press.
-
(1995)
Advances in Neural Information Processing Systems
, vol.7
, pp. 435-442
-
-
Saul, L.1
Jordan, M.I.2
-
33
-
-
85156241149
-
Exploiting tractable substructures in Intractable networks
-
D. S. Touretzky, M. C. Mozer, & M. E. Hasselmo (Eds.), Cambridge, MA: MIT Press
-
Saul, L., & Jordan, M. I. (1996). Exploiting tractable substructures in Intractable networks. In D. S. Touretzky, M. C. Mozer, & M. E. Hasselmo (Eds.), Advances in neural information processing systems 8, pp. 486-492. Cambridge, MA: MIT Press.
-
(1996)
Advances in Neural Information Processing Systems
, vol.8
, pp. 486-492
-
-
Saul, L.1
Jordan, M.I.2
-
34
-
-
0031568356
-
Probabilistic independence networks for hidden Markov probability models
-
Smyth, P., Heckerman, D., & Jordan, M. I. (1997). Probabilistic independence networks for hidden Markov probability models. Neural Computation, 9, 227-269.
-
(1997)
Neural Computation
, vol.9
, pp. 227-269
-
-
Smyth, P.1
Heckerman, D.2
Jordan, M.I.3
-
35
-
-
0002297358
-
Hidden Markov model induction by Bayesian model merging
-
S.J. Hanson, J. D. Cowan, & C. L. Giles (Eds.), San Francisco, CA: Morgan Kaufmann
-
Stolcke, A., & Omohundro, S. (1993). Hidden Markov model induction by Bayesian model merging. In S.J. Hanson, J. D. Cowan, & C. L. Giles (Eds.), Advances in neural information processing systems 5, pp. 11-18. San Francisco, CA: Morgan Kaufmann.
-
(1993)
Advances in Neural Information Processing Systems
, vol.5
, pp. 11-18
-
-
Stolcke, A.1
Omohundro, S.2
-
36
-
-
84950758368
-
The calculation of posterior distributions by data augmentation (with discussion)
-
Tanner, M. A., & Wong, W. H. (1987). The calculation of posterior distributions by data augmentation (with discussion). Journal of the American Statistical Association, 82, 528-550.
-
(1987)
Journal of the American Statistical Association
, vol.82
, pp. 528-550
-
-
Tanner, M.A.1
Wong, W.H.2
-
37
-
-
84935113569
-
Error bounds for convolutional codes and an asymptotically optimal decoding algorithm
-
Viterbi, A. J. (1967). Error bounds for convolutional codes and an asymptotically optimal decoding algorithm. IEEE Transactions Information Theory, IT-13, 260-269.
-
(1967)
IEEE Transactions Information Theory
, vol.IT-13
, pp. 260-269
-
-
Viterbi, A.J.1
-
38
-
-
0009413082
-
Mean field networks that learn to discriminate temporally distorted strings
-
D. Touretzky, J. Elman, T. Sejnowski, & G. Hinton (Eds.), San Francisco, CA: Morgan Kaufmann
-
Williams, C. K. I., & Hinton, G. E. (1991). Mean field networks that learn to discriminate temporally distorted strings. In D. Touretzky, J. Elman, T. Sejnowski, & G. Hinton (Eds.), Connectionist models: Proceedings of the 1990 summer school (pp. 18-22). San Francisco, CA: Morgan Kaufmann.
-
(1991)
Connectionist Models: Proceedings of the 1990 Summer School
, pp. 18-22
-
-
Williams, C.K.I.1
Hinton, G.E.2
-
39
-
-
0003762315
-
-
Ph.D. Thesis, Department of Computer Science, University of Toronto, Toronto, Canada
-
Zemel, R. S. (1993). A minimum description length framework for unsupervised learning. Ph.D. Thesis, Department of Computer Science, University of Toronto, Toronto, Canada.
-
(1993)
A Minimum Description Length Framework for Unsupervised Learning
-
-
Zemel, R.S.1
|