메뉴 건너뛰기




Volumn 29, Issue 2-3, 1997, Pages 245-273

Factorial Hidden Markov Models

Author keywords

Bayesian networks; EM algorithm; Graphical models; Hidden Markov models; Mean field theory; Time series

Indexed keywords

LEARNING ALGORITHMS; MATHEMATICAL MODELS; PROBABILITY; TIME SERIES ANALYSIS;

EID: 0031268341     PISSN: 08856125     EISSN: None     Source Type: Journal    
DOI: 10.1023/a:1007425814087     Document Type: Article
Times cited : (807)

References (39)
  • 1
    • 0000353178 scopus 로고
    • A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains
    • Baum, L., Petrie, T., Soules, G., & Weiss, N. (1970). A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains. The Annals of Mathematical Statistics, 41, 164-171.
    • (1970) The Annals of Mathematical Statistics , vol.41 , pp. 164-171
    • Baum, L.1    Petrie, T.2    Soules, G.3    Weiss, N.4
  • 2
    • 85153946439 scopus 로고
    • An input-output HMM architecture
    • G. Tesauro, D. S. Touretzky, & T. K. Leen (Eds.), Cambridge, MA: MIT Press
    • Bengio, Y., & Frasconi, P. (1995). An input-output HMM architecture. In G. Tesauro, D. S. Touretzky, & T. K. Leen (Eds.), Advances in neural information processing systems 7, pp. 427-434. Cambridge, MA: MIT Press.
    • (1995) Advances in Neural Information Processing Systems , vol.7 , pp. 427-434
    • Bengio, Y.1    Frasconi, P.2
  • 3
    • 0001119510 scopus 로고
    • Mixtures of controllers for jump linear and non-linear plants
    • J. D. Cowan, G. Tesauro, & J. Alspector (Eds.), San Francisco, CA: Morgan Kaufmann
    • Cacciatore, T. W., & Nowlan, S. J. (1994). Mixtures of controllers for jump linear and non-linear plants. In J. D. Cowan, G. Tesauro, & J. Alspector (Eds.), Advances in neural information processing systems 6, pp. 719-726. San Francisco, CA: Morgan Kaufmann.
    • (1994) Advances in Neural Information Processing Systems , vol.6 , pp. 719-726
    • Cacciatore, T.W.1    Nowlan, S.J.2
  • 4
    • 0142036051 scopus 로고
    • Multiple viewpoint systems for music prediction
    • Conklin, D., & Witten, I. H. (1995). Multiple viewpoint systems for music prediction. Journal of New Music Research, 24, 51-73.
    • (1995) Journal of New Music Research , vol.24 , pp. 51-73
    • Conklin, D.1    Witten, I.H.2
  • 6
    • 0003064380 scopus 로고
    • Applications of a general propagation algorithm for probabilistic expert systems
    • Dawid, A. P. (1992). Applications of a general propagation algorithm for probabilistic expert systems. Statistics and Computing, 2, 25-36.
    • (1992) Statistics and Computing , vol.2 , pp. 25-36
    • Dawid, A.P.1
  • 7
    • 84990553353 scopus 로고
    • A model for reasoning about persistence and causation
    • Dean, T., & Kanazawa, K. (1989). A model for reasoning about persistence and causation. Computational Intelligence, 5, 142-150.
    • (1989) Computational Intelligence , vol.5 , pp. 142-150
    • Dean, T.1    Kanazawa, K.2
  • 11
    • 85153949914 scopus 로고
    • Factorial learning and the EM algorithm
    • G. Tesauro, D. S. Touretzky, & T. K. Leen (Eds.), Cambridge, MA: MIT Press
    • Ghahramani, Z. (1995). Factorial learning and the EM algorithm. In G. Tesauro, D. S. Touretzky, & T. K. Leen (Eds.), Advances in neural information processing systems 7, pp. 617-624. Cambridge, MA: MIT Press.
    • (1995) Advances in Neural Information Processing Systems , vol.7 , pp. 617-624
    • Ghahramani, Z.1
  • 14
    • 0002834189 scopus 로고
    • Autoencoders, minimum description length, and Helmholtz free energy
    • J. D. Cowan, G. Tesauro, & J. Alspector (Eds.), San Francisco, CA: Morgan Kaufmann
    • Hinton, G. E., & Zemel, R. S. (1994). Autoencoders, minimum description length, and Helmholtz free energy. In J. D. Cowan, G. Tesauro, & J. Alspector (Eds.), Advances in neural information processing systems 6, pp. 3-10. San Francisco, CA: Morgan Kaufmann.
    • (1994) Advances in Neural Information Processing Systems , vol.6 , pp. 3-10
    • Hinton, G.E.1    Zemel, R.S.2
  • 17
    • 0000262562 scopus 로고
    • Hierarchical mixtures of experts and the EM algorithm
    • Jordan, M. I., & Jacobs, R. (1994). Hierarchical mixtures of experts and the EM algorithm. Neural Computation, 6, 181-214.
    • (1994) Neural Computation , vol.6 , pp. 181-214
    • Jordan, M.I.1    Jacobs, R.2
  • 18
    • 0003072903 scopus 로고
    • Stochastic simulation algorithms for dynamic probabilistic networks
    • P. Besnard, , & S. Hanks (Eds.), San Francisco, CA: Morgan Kaufmann
    • Kanazawa, K., Koller, D., & Russell, S. J. (1995). Stochastic simulation algorithms for dynamic probabilistic networks. In P. Besnard, , & S. Hanks (Eds.), Uncertainty in Artificial Intelligence: Proceedings of the Eleventh Conference. (pp. 346-351). San Francisco, CA: Morgan Kaufmann.
    • (1995) Uncertainty in Artificial Intelligence: Proceedings of the Eleventh Conference , pp. 346-351
    • Kanazawa, K.1    Koller, D.2    Russell, S.J.3
  • 19
    • 0028181441 scopus 로고
    • Hidden Markov models in computational biology: Applications to protein modeling
    • Krogh, A., Brown, M., Mian, I. S., Sjölander, K., & Haussler, D. (1994). Hidden Markov models in computational biology: Applications to protein modeling . Journal of Molecular Biology, 235, 1501-1531.
    • (1994) Journal of Molecular Biology , vol.235 , pp. 1501-1531
    • Krogh, A.1    Brown, M.2    Mian, I.S.3    Sjölander, K.4    Haussler, D.5
  • 20
    • 0001006209 scopus 로고
    • Local computations with probabilities on graphical structures and their application to expert systems
    • Lauritzen, S. L., & Spiegelhalter, D. J. (1988). Local computations with probabilities on graphical structures and their application to expert systems. Journal of the Royal Statistical Society B, 157-224.
    • (1988) Journal of the Royal Statistical Society B , pp. 157-224
    • Lauritzen, S.L.1    Spiegelhalter, D.J.2
  • 22
    • 85156193355 scopus 로고    scopus 로고
    • Learning fine motion by Markov mixtures of experts
    • D. S. Touretzky, M. C. Mozer, & M. E. Hasselmo (Eds.), Cambridge, MA: MIT Press
    • Meila, M., & Jordan, M. I. (1996). Learning fine motion by Markov mixtures of experts. In D. S. Touretzky, M. C. Mozer, & M. E. Hasselmo (Eds.), Advances in neural information processing systems 8, pp. 1003-1009. Cambridge, MA: MIT Press.
    • (1996) Advances in Neural Information Processing Systems , vol.8 , pp. 1003-1009
    • Meila, M.1    Jordan, M.I.2
  • 23
    • 0003408496 scopus 로고    scopus 로고
    • Irvine, CA: University of California, Department of Information and Computer Science
    • Merz, C. J., & Murphy, P. M. (1996). UCI Repository of machine learning databases [http://www.ics.uci.edu/mlearn/MLRepository.html]. Irvine, CA: University of California, Department of Information and Computer Science.
    • (1996) UCI Repository of Machine Learning Databases
    • Merz, C.J.1    Murphy, P.M.2
  • 24
    • 44049116681 scopus 로고
    • Connectionist learning of belief networks
    • Neal, R. M. (1992). Connectionist learning of belief networks. Artificial Intelligence, 56, 71-113.
    • (1992) Artificial Intelligence , vol.56 , pp. 71-113
    • Neal, R.M.1
  • 25
    • 0004087397 scopus 로고
    • (Technical Report CRG-TR-93-1). Toronto, Ontario: University of Toronto, Department of Computer Science
    • Neal, R. M. (1993). Probabilistic inference using Markov chain Monte Carlo methods (Technical Report CRG-TR-93-1). Toronto, Ontario: University of Toronto, Department of Computer Science.
    • (1993) Probabilistic Inference Using Markov Chain Monte Carlo Methods
    • Neal, R.M.1
  • 32
    • 85153929881 scopus 로고
    • Boltzmann chains and hidden Markov models
    • G. Tesauro, D. S. Touretzky, & T. K. Leen (Eds.), Cambridge, MA: MIT Press
    • Saul, L., & Jordan, M. I. (1995). Boltzmann chains and hidden Markov models. In G. Tesauro, D. S. Touretzky, & T. K. Leen (Eds.), Advances in neural information processing systems 7, pp. 435-442. Cambridge, MA: MIT Press.
    • (1995) Advances in Neural Information Processing Systems , vol.7 , pp. 435-442
    • Saul, L.1    Jordan, M.I.2
  • 33
    • 85156241149 scopus 로고    scopus 로고
    • Exploiting tractable substructures in Intractable networks
    • D. S. Touretzky, M. C. Mozer, & M. E. Hasselmo (Eds.), Cambridge, MA: MIT Press
    • Saul, L., & Jordan, M. I. (1996). Exploiting tractable substructures in Intractable networks. In D. S. Touretzky, M. C. Mozer, & M. E. Hasselmo (Eds.), Advances in neural information processing systems 8, pp. 486-492. Cambridge, MA: MIT Press.
    • (1996) Advances in Neural Information Processing Systems , vol.8 , pp. 486-492
    • Saul, L.1    Jordan, M.I.2
  • 34
    • 0031568356 scopus 로고    scopus 로고
    • Probabilistic independence networks for hidden Markov probability models
    • Smyth, P., Heckerman, D., & Jordan, M. I. (1997). Probabilistic independence networks for hidden Markov probability models. Neural Computation, 9, 227-269.
    • (1997) Neural Computation , vol.9 , pp. 227-269
    • Smyth, P.1    Heckerman, D.2    Jordan, M.I.3
  • 35
    • 0002297358 scopus 로고
    • Hidden Markov model induction by Bayesian model merging
    • S.J. Hanson, J. D. Cowan, & C. L. Giles (Eds.), San Francisco, CA: Morgan Kaufmann
    • Stolcke, A., & Omohundro, S. (1993). Hidden Markov model induction by Bayesian model merging. In S.J. Hanson, J. D. Cowan, & C. L. Giles (Eds.), Advances in neural information processing systems 5, pp. 11-18. San Francisco, CA: Morgan Kaufmann.
    • (1993) Advances in Neural Information Processing Systems , vol.5 , pp. 11-18
    • Stolcke, A.1    Omohundro, S.2
  • 36
    • 84950758368 scopus 로고
    • The calculation of posterior distributions by data augmentation (with discussion)
    • Tanner, M. A., & Wong, W. H. (1987). The calculation of posterior distributions by data augmentation (with discussion). Journal of the American Statistical Association, 82, 528-550.
    • (1987) Journal of the American Statistical Association , vol.82 , pp. 528-550
    • Tanner, M.A.1    Wong, W.H.2
  • 37
    • 84935113569 scopus 로고
    • Error bounds for convolutional codes and an asymptotically optimal decoding algorithm
    • Viterbi, A. J. (1967). Error bounds for convolutional codes and an asymptotically optimal decoding algorithm. IEEE Transactions Information Theory, IT-13, 260-269.
    • (1967) IEEE Transactions Information Theory , vol.IT-13 , pp. 260-269
    • Viterbi, A.J.1
  • 38
    • 0009413082 scopus 로고
    • Mean field networks that learn to discriminate temporally distorted strings
    • D. Touretzky, J. Elman, T. Sejnowski, & G. Hinton (Eds.), San Francisco, CA: Morgan Kaufmann
    • Williams, C. K. I., & Hinton, G. E. (1991). Mean field networks that learn to discriminate temporally distorted strings. In D. Touretzky, J. Elman, T. Sejnowski, & G. Hinton (Eds.), Connectionist models: Proceedings of the 1990 summer school (pp. 18-22). San Francisco, CA: Morgan Kaufmann.
    • (1991) Connectionist Models: Proceedings of the 1990 Summer School , pp. 18-22
    • Williams, C.K.I.1    Hinton, G.E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.