-
1
-
-
0033225865
-
An introduction to variational methods for graphical models
-
Michael I Jordan, Zoubin Ghahramani, Tommi S Jaakkola, and Lawrence K Saul. An introduction to variational methods for graphical models. Machine Learning, 37(2):183-233, 1999.
-
(1999)
Machine Learning
, vol.37
, Issue.2
, pp. 183-233
-
-
Jordan, M.I.1
Ghahramani, Z.2
Jaakkola, T.S.3
Saul, L.K.4
-
2
-
-
65749118363
-
Graphical models, exponential families, and variational inference
-
Martin J Wainwright and Michael I Jordan. Graphical models, exponential families, and variational inference. Foundations and Trends in Machine Learning, 1(1-2):1-305, 2008.
-
(2008)
Foundations and Trends in Machine Learning
, vol.1
, Issue.1-2
, pp. 1-305
-
-
Wainwright, M.J.1
Jordan, M.I.2
-
3
-
-
84878919168
-
Stochastic variational inference
-
Matthew D Hoffman, David M Blei, Chong Wang, and John Paisley. Stochastic variational inference. The Journal of Machine Learning Research, 14(1):1303-1347, 2013.
-
(2013)
The Journal of Machine Learning Research
, vol.14
, Issue.1
, pp. 1303-1347
-
-
Hoffman, M.D.1
Blei, D.M.2
Wang, C.3
Paisley, J.4
-
7
-
-
84919796093
-
Stochastic backpropagation and approximate inference in deep generative models
-
Danilo J Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and approximate inference in deep generative models. In ICML, pages 1278-1286, 2014.
-
(2014)
ICML
, pp. 1278-1286
-
-
Rezende, D.J.1
Mohamed, S.2
Wierstra, D.3
-
8
-
-
84955506831
-
Black box variational inference
-
Rajesh Ranganath, Sean Gerrish, and David Blei. Black box variational inference. In AISTATS, pages 814-822, 2014.
-
(2014)
AISTATS
, pp. 814-822
-
-
Ranganath, R.1
Gerrish, S.2
Blei, D.3
-
10
-
-
84919786928
-
Doubly stochastic variational Bayes for nonconjugate inference
-
Michalis Titsias and Miguel Lázaro-Gredilla. Doubly stochastic variational Bayes for nonconjugate inference. In ICML, pages 1971-1979, 2014.
-
(2014)
ICML
, pp. 1971-1979
-
-
Titsias, M.1
Lázaro-Gredilla, M.2
-
12
-
-
70049098573
-
Church: A language for generative models
-
Noah D Goodman, Vikash K Mansinghka, Daniel Roy, Keith Bonawitz, and Joshua B Tenenbaum. Church: A language for generative models. In UAI, pages 220-229, 2008.
-
(2008)
UAI
, pp. 220-229
-
-
Goodman, N.D.1
Mansinghka, V.K.2
Roy, D.3
Bonawitz, K.4
Tenenbaum, J.B.5
-
14
-
-
84959183806
-
A new approach to probabilistic programming inference
-
Frank Wood, Jan Willem van de Meent, and Vikash Mansinghka. A new approach to probabilistic programming inference. In AISTATS, pages 2-46, 2014.
-
(2014)
AISTATS
, pp. 2-46
-
-
Wood, F.1
Willem Van De Meent, J.2
Mansinghka, V.3
-
18
-
-
63249135864
-
The variational Gaussian approximation revisited
-
Manfred Opper and Cédric Archambeau. The variational Gaussian approximation revisited. Neural computation, 21(3):786-792, 2009.
-
(2009)
Neural Computation
, vol.21
, Issue.3
, pp. 786-792
-
-
Opper, M.1
Archambeau, C.2
-
21
-
-
80052250414
-
Adaptive subgradient methods for online learning and stochastic optimization
-
John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and stochastic optimization. The Journal of Machine Learning Research, 12:2121-2159, 2011.
-
(2011)
The Journal of Machine Learning Research
, vol.12
, pp. 2121-2159
-
-
Duchi, J.1
Hazan, E.2
Singer, Y.3
-
24
-
-
8644267631
-
GaP: A factor model for discrete data
-
ACM
-
John Canny. GaP: a factor model for discrete data. In ACM SIGIR, pages 122-129. ACM, 2004.
-
(2004)
ACM SIGIR
, pp. 122-129
-
-
Canny, J.1
|