메뉴 건너뛰기




Volumn 28, Issue 2, 2013, Pages 168-188

Variational inference for generalized linear mixed models using partially noncentered parametrizations

Author keywords

Hierarchical centering; Longitudinal data analysis.; Nonconjugate models; Variational bayes; Variational message passing

Indexed keywords


EID: 84878988007     PISSN: 08834237     EISSN: None     Source Type: Journal    
DOI: 10.1214/13-STS418     Document Type: Article
Times cited : (44)

References (50)
  • 1
    • 0003278032 scopus 로고    scopus 로고
    • Inferring parameters and structure of latent variable models by variational Bayes
    • Morgan Kaufmann, San Francisco, CA
    • ATTIAS, H. (1999). Inferring parameters and structure of latent variable models by variational Bayes. In Proceedings of the 15th Conference on Uncertainty in Artificial Intelligence 21-30. Morgan Kaufmann, San Francisco, CA.
    • (1999) Proceedings of the 15th Conference on Uncertainty in Artificial Intelligence , pp. 21-30
    • Attias, H.1
  • 2
    • 84898964031 scopus 로고    scopus 로고
    • A variational Bayesian framework for graphical models
    • MIT Press, Cambridge, MA
    • ATTIAS, H. (2000). A variational Bayesian framework for graphical models. In Advances in Neural Information Processing Systems 12 209-215. MIT Press, Cambridge, MA.
    • (2000) Advances in Neural Information Processing Systems , vol.12 , pp. 209-215
    • Attias, H.1
  • 4
    • 84878971665 scopus 로고    scopus 로고
    • Fast Rcpp implementation of Gauss-Hermite quadrature
    • Available at
    • BLOCKER, A. W. (2011). Fast Rcpp implementation of Gauss-Hermite quadrature. R package "fastGHQuad" version 0.1-1. Available at http://cran.r-project.org/.
    • (2011) R package "fastGHQuad" version 0.1-1.
    • Blocker, A.W.1
  • 5
    • 77952563025 scopus 로고    scopus 로고
    • Variational inference for large-scale models of discrete choice
    • MR2757203
    • BRAUN, M. and MCAULIFFE, J. (2010). Variational inference for large-scale models of discrete choice. J. Amer. Statist. Assoc. 105 324-335. MR2757203
    • (2010) J. Amer. Statist. Assoc. , vol.105 , pp. 324-335
    • Braun, M.1    Mcauliffe, J.2
  • 6
    • 0011241944 scopus 로고
    • Approximate inference in generalized linear mixed models
    • BRESLOW, N. E., and CLAYTON, D. G. (1993). Approximate inference in generalized linear mixed models. J. Amer. Statist. Assoc. 88 9-25.
    • (1993) J. Amer. Statist. Assoc. , vol.88 , pp. 9-25
    • Breslow, N.E.1    Clayton, D.G.2
  • 7
    • 79952088938 scopus 로고    scopus 로고
    • MCMC for generalized linear mixed models with glmmBUGS
    • BROWN, P., and ZHOU, L. (2010). MCMC for generalized linear mixed models with glmmBUGS. The R Journal 2 13-16.
    • (2010) The R Journal , vol.2 , pp. 13-16
    • Brown, P.1    Zhou, L.2
  • 8
    • 33847083094 scopus 로고    scopus 로고
    • A comparison of Bayesian, and likelihood-based methods for fitting multilevel models
    • MR2221283,(electronic)
    • BROWNE, W. J., and DRAPER, D. (2006). A comparison of Bayesian, and likelihood-based methods for fitting multilevel models. Bayesian Anal. 1 473-513 (electronic). MR2221283
    • (2006) Bayesian Anal. , vol.1 , pp. 473-513
    • Browne, W.J.1    Draper, D.2
  • 10
    • 33645558077 scopus 로고    scopus 로고
    • Robust Markov chain Monte Carlo methods for spatial generalized linear mixed models
    • MR2269360
    • CHRISTENSEN, O. F., ROBERTS, G. O., and SKÖLD, M. (2006). Robust Markov chain Monte Carlo methods for spatial generalized linear mixed models. J. Comput. Graph. Statist. 15 1-17. MR2269360
    • (2006) J. Comput. Graph. Statist. , vol.15 , pp. 1-17
    • Christensen, O.F.1    Roberts, G.O.2    Sköld, M.3
  • 11
    • 4043061882 scopus 로고    scopus 로고
    • Variational Bayesian model selection for mixture distributions
    • Morgan Kaufmann, San Francisco, CA
    • CORDUNEANU, A., and BISHOP, C. M. (2001). Variational Bayesian model selection for mixture distributions. In Artificial Intelligence, and Statistics 27-34. Morgan Kaufmann, San Francisco, CA.
    • (2001) Artificial Intelligence, and Statistics , pp. 27-34
    • Corduneanu, A.1    Bishop, C.M.2
  • 12
    • 0031946068 scopus 로고    scopus 로고
    • Twelve weeks of continuous oral therapy for toenail onychomycosis caused by dermatophytes: A double-blind comparative trial of terbinafine 250 mg/day versus itraconazole 200 mg/day
    • DE BACKER, M., DE VROEY, C., LESAFFRE, E., SCHEYS, I., and DE KEYSER, P. (1998). Twelve weeks of continuous oral therapy for toenail onychomycosis caused by dermatophytes: A double-blind comparative trial of terbinafine 250 mg/day versus itraconazole 200 mg/day. Journal of the American Academy of Dermatology 38 57-63.
    • (1998) Journal of the American Academy of Dermatology , vol.38 , pp. 57-63
    • De Backer, M.1    De Vroey, C.2    Lesaffre, E.3    Scheys, I.4    De Keyser, P.5
  • 13
    • 0001708275 scopus 로고
    • A likelihood-based method for analysing longitudinal binary responses
    • FITZMAURICE, G., and LAIRD, N. (1993). A likelihood-based method for analysing longitudinal binary responses. Biometrika 80 141-151.
    • (1993) Biometrika , vol.80 , pp. 141-151
    • Fitzmaurice, G.1    Laird, N.2
  • 14
    • 77956640383 scopus 로고    scopus 로고
    • Bayesian inference for generalised linear mixed models
    • FONG, Y., RUE, H., and WAKEFIELD, J. (2010). Bayesian inference for generalised linear mixed models. Biostatistics 11 397-412.
    • (2010) Biostatistics , vol.11 , pp. 397-412
    • Fong, Y.1    Rue, H.2    Wakefield, J.3
  • 15
    • 0001574731 scopus 로고
    • Efficient parameterisations for normal linear mixed models
    • MR1366275
    • GELFAND, A. E., SAHU, S. K., and CARLIN, B. P. (1995). Efficient parameterisations for normal linear mixed models. Biometrika 82 479-488. MR1366275
    • (1995) Biometrika , vol.82 , pp. 479-488
    • Gelfand, A.E.1    Sahu, S.K.2    Carlin, B.P.3
  • 16
    • 0001516939 scopus 로고    scopus 로고
    • Efficient parametrizations for generalized linear mixed models
    • Oxford Univ. Press, New York. MR1425405,(Alicante, 1994)
    • GELFAND, A. E., SAHU, S. K., and CARLIN, B. P. (1996). Efficient parametrizations for generalized linear mixed models. In Bayesian Statistics 5 (Alicante, 1994) 165-180. Oxford Univ. Press, New York. MR1425405
    • (1996) In Bayesian Statistics , vol.5 , pp. 165-180
    • Gelfand, A.E.1    Sahu, S.K.2    Carlin, B.P.3
  • 18
    • 84899003086 scopus 로고    scopus 로고
    • Propagation algorithms for variational Bayesian learning
    • MIT Press, Cambridge, MA
    • GHAHRAMANI, Z., and BEAL, M. J. (2001). Propagation algorithms for variational Bayesian learning. In Advances in Neural Information Processing Systems 13 507-513. MIT Press, Cambridge, MA.
    • (2001) Advances in Neural Information Processing Systems , vol.13 , pp. 507-513
    • Ghahramani, Z.1    Beal, M.J.2
  • 20
    • 0042685161 scopus 로고    scopus 로고
    • Bayesian parameter estimation via variational methods
    • JAAKKOLA, T. S., and JORDAN, M. I. (2000). Bayesian parameter estimation via variational methods. Statist. Comput. 10 25-37.
    • (2000) Statist. Comput. , vol.10 , pp. 25-37
    • Jaakkola, T.S.1    Jordan, M.I.2
  • 21
    • 39849096207 scopus 로고    scopus 로고
    • A default conjugate prior for variance components in generalized linear mixed models (comment on article by Browne, and Draper)
    • MR2221285,(electronic)
    • KASS, R. E., and NATARAJAN, R. (2006). A default conjugate prior for variance components in generalized linear mixed models (comment on article by Browne, and Draper). Bayesian Anal. 1 535-542 (electronic). MR2221285
    • (2006) Bayesian Anal. , vol.1 , pp. 535-542
    • Kass, R.E.1    Natarajan, R.2
  • 22
    • 85162453650 scopus 로고    scopus 로고
    • Non-conjugate variational message passing for multinomial, and binary regression
    • Available at
    • KNOWLES, D. A., and MINKA, T. P. (2011). Non-conjugate variational message passing for multinomial, and binary regression. In Advances in Neural Information Processing Systems 24 1701-1709. Available at http://books.nips.cc/papers/files/nips24/NIPS2011_0962.pdf.
    • (2011) Advances in Neural Information Processing Systems , vol.24 , pp. 1701-1709
    • Knowles, D.A.1    Minka, T.P.2
  • 23
    • 0001303107 scopus 로고
    • A note on Gauss-Hermite quadrature
    • MR1311107
    • LIU, Q., and PIERCE, D. A. (1994). A note on Gauss-Hermite quadrature. Biometrika 81 624-629. MR1311107
    • (1994) Biometrika , vol.81 , pp. 624-629
    • Liu, Q.1    Pierce, D.A.2
  • 24
    • 0442309501 scopus 로고    scopus 로고
    • Parameter expansion for data augmentation
    • MR1731488
    • LIU, J. S., and WU, Y. N. (1999). Parameter expansion for data augmentation. J. Amer. Statist. Assoc. 94 1264-1274. MR1731488
    • (1999) J. Amer. Statist. Assoc. , vol.94 , pp. 1264-1274
    • Liu, J.S.1    Wu, Y.N.2
  • 25
    • 0006407254 scopus 로고    scopus 로고
    • WinBUGS-A Bayesian modelling framework: Concepts, structure,, and extensibility
    • LUNN, D. J., THOMAS, A., BEST, N., and SPIEGELHALTER, D. (2000). WinBUGS-A Bayesian modelling framework: Concepts, structure,, and extensibility. Statist. Comput. 10 325-337.
    • (2000) Statist. Comput. , vol.10 , pp. 325-337
    • Lunn, D.J.1    Thomas, A.2    Best, N.3    Spiegelhalter, D.4
  • 27
    • 18244387717 scopus 로고    scopus 로고
    • The EM algorithm-An old folk-song sung to a fast new tune (with discussion)
    • MR1452025
    • MENG, X.-L., and VAN DYK, D. (1997). The EM algorithm-An old folk-song sung to a fast new tune (with discussion). J. R. Stat. Soc. Ser. B Stat. Methodol. 59 511-567. MR1452025
    • (1997) J. R. Stat. Soc. Ser. B Stat. Methodol. , vol.59 , pp. 511-567
    • Meng, X.-L.1    Van Dyk, D.2
  • 28
    • 0000761884 scopus 로고    scopus 로고
    • Seeking efficient data augmentation schemes via conditional, and marginal augmentation
    • MR1705351
    • MENG, X.-L., and VAN DYK, D. A. (1999). Seeking efficient data augmentation schemes via conditional, and marginal augmentation. Biometrika 86 301-320. MR1705351
    • (1999) Biometrika , vol.86 , pp. 301-320
    • Meng, X.-L.1    Van Dyk, D.A.2
  • 29
    • 0003772931 scopus 로고    scopus 로고
    • Kendall's Advanced Theory of Statistics V
    • Arnold, London 2nd ed.
    • O'HAGAN, A., and FORSTER, J. (2004). Kendall's Advanced Theory of Statistics V. 2B: Bayesian Inference, 2nd ed. Arnold, London.
    • (2004) 2B: Bayesian Inference
    • O'Hagan, A.1    Forster, J.2
  • 30
    • 77952563168 scopus 로고    scopus 로고
    • Explaining variational approximations
    • MR2757005
    • ORMEROD, J. T. and WAND, M. P. (2010). Explaining variational approximations. Amer. Statist. 64 140-153. MR2757005
    • (2010) Amer. Statist. , vol.64 , pp. 140-153
    • Ormerod, J.T.1    Wand, M.P.2
  • 31
    • 84859847512 scopus 로고    scopus 로고
    • Gaussian variational approximate inference for generalized linear mixed models
    • MR2913353
    • ORMEROD, J. T., and WAND, M. P. (2012). Gaussian variational approximate inference for generalized linear mixed models. J. Comput. Graph. Statist. 21 2-17. MR2913353
    • (2012) J. Comput. Graph. Statist. , vol.21 , pp. 2-17
    • Ormerod, J.T.1    Wand, M.P.2
  • 32
    • 77955397404 scopus 로고    scopus 로고
    • Default Bayesian model determination methods for generalised linear mixed models
    • MR2727751
    • OVERSTALL, A. M., and FORSTER, J. J. (2010). Default Bayesian model determination methods for generalised linear mixed models. Comput. Statist. Data Anal. 54 3269-3288. MR2727751
    • (2010) Comput. Statist. Data Anal. , vol.54 , pp. 3269-3288
    • Overstall, A.M.1    Forster, J.J.2
  • 33
    • 2442627902 scopus 로고    scopus 로고
    • Non-centered parameterizations for hierarchical models, and data augmentation
    • Oxford Univ. Press, New York. MR2003180
    • PAPASPILIOPOULOS, O., ROBERTS, G. O., and SKöLD, M. (2003). Non-centered parameterizations for hierarchical models, and data augmentation. In Bayesian Statistics 7 (Tenerife, 2002) 307-326. Oxford Univ. Press, New York. MR2003180
    • (2003) Bayesian Statistics 7 (Tenerife, 2002) , pp. 307-326
    • Papaspiliopoulos, O.1    Roberts, G.O.2    Sköld, M.3
  • 34
    • 34249101736 scopus 로고    scopus 로고
    • A general framework for the parametrization of hierarchical models
    • MR2408661
    • PAPASPILIOPOULOS, O., ROBERTS, G. O., and SKöLD, M. (2007). A general framework for the parametrization of hierarchical models. Statist. Sci. 22 59-73. MR2408661
    • (2007) Statist. Sci. , vol.22 , pp. 59-73
    • Papaspiliopoulos, O.1    Roberts, G.O.2    Sköld, M.3
  • 35
    • 84864056575 scopus 로고    scopus 로고
    • Parameter expanded variational Bayesian methods
    • MIT Press, Cambridge, MA
    • QI, Y., and JAAKKOLA, T. S. (2006). Parameter expanded variational Bayesian methods. In Advances in Neural Information Processing Systems 19 1097-1104. MIT Press, Cambridge, MA.
    • (2006) Advances in Neural Information Processing Systems , vol.19 , pp. 1097-1104
    • Qi, Y.1    Jaakkola, T.S.2
  • 36
    • 77950035264 scopus 로고    scopus 로고
    • Maximum likelihood for generalized linear models with nested random effects via high-order, multivariate Laplace approximation
    • MR1826278
    • RAUDENBUSH, S. W., YANG, M.-L., and YOSEF, M. (2000). Maximum likelihood for generalized linear models with nested random effects via high-order, multivariate Laplace approximation. J. Comput. Graph. Statist. 9 141-157. MR1826278
    • (2000) J. Comput. Graph. Statist. , vol.9 , pp. 141-157
    • Raudenbush, S.W.1    Yang, M.-L.2    Yosef, M.3
  • 37
    • 49749118319 scopus 로고    scopus 로고
    • Assessing the performance of variational methods for mixed logistic regression models
    • MR2528235
    • RIJMEN, F., and VOMLEL, J. (2008). Assessing the performance of variational methods for mixed logistic regression models. J. Stat. Comput. Simul. 78 765-779. MR2528235
    • (2008) J. Stat. Comput. Simul. , vol.78 , pp. 765-779
    • Rijmen, F.1    Vomlel, J.2
  • 38
    • 79958717589 scopus 로고    scopus 로고
    • Sensitivity analysis in Bayesian generalized linear mixed models for binary data
    • MR2806244
    • ROOS, M., and HELD, L. (2011). Sensitivity analysis in Bayesian generalized linear mixed models for binary data. Bayesian Anal. 6 259-278. MR2806244
    • (2011) Bayesian Anal. , vol.6 , pp. 259-278
    • Roos, M.1    Held, L.2
  • 39
    • 35148885089 scopus 로고    scopus 로고
    • Nestling barn owls beg more intensely in the presence of their mother than in the presence of their father
    • ROULIN, A., and BERSIER, L. F. (2007). Nestling barn owls beg more intensely in the presence of their mother than in the presence of their father. Animal Behaviour 74 1099-1106.
    • (2007) Animal Behaviour , vol.74 , pp. 1099-1106
    • Roulin, A.1    Bersier, L.F.2
  • 40
    • 0003383444 scopus 로고    scopus 로고
    • A mean field learning algorithm for unsupervised neural networks
    • Kluwer Academic, Dordrecht
    • SAUL, L. K., and JORDAN (1998). A mean field learning algorithm for unsupervised neural networks. In Learning in Graphical Models 541-554. Kluwer Academic, Dordrecht.
    • (1998) Learning in Graphical Models , pp. 541-554
    • Saul, L.K.1    Jordan2
  • 42
    • 84878983726 scopus 로고    scopus 로고
    • Variational approximation for mixtures of linear mixed models
    • To appear. DOI:10.1080/10618600.2012.761138
    • TAN, S. L., and NOTT, D. J. (2013). Variational approximation for mixtures of linear mixed models. J. Comput. Graph. Statist. To appear. DOI:10.1080/10618600.2012.761138.
    • (2013) J. Comput. Graph. Statist.
    • Tan, S.L.1    Nott, D.J.2
  • 43
    • 0025172155 scopus 로고
    • Some covariance models for longitudinal count data with overdispersion
    • MR1085814
    • THALL, P. F., and VAIL, S. C. (1990). Some covariance models for longitudinal count data with overdispersion. Biometrics 46 657-671. MR1085814
    • (1990) Biometrics , vol.46 , pp. 657-671
    • Thall, P.F.1    Vail, S.C.2
  • 46
    • 21844450606 scopus 로고    scopus 로고
    • Variational message passing
    • MR2249835
    • WINN, J., and BISHOP, C. M. (2005). Variational message passing. J. Mach. Learn. Res. 6 661-694. MR2249835
    • (2005) J. Mach. Learn. Res. , vol.6 , pp. 661-694
    • Winn, J.1    Bishop, C.M.2
  • 47
    • 80053346023 scopus 로고    scopus 로고
    • To center or not to center: That is not the question-An ancillarity-sufficiency interweaving strategy (ASIS) for boosting MCMC efficiency
    • MR2878987
    • YU, Y. and MENG, X.-L. (2011). To center or not to center: That is not the question-An ancillarity-sufficiency interweaving strategy (ASIS) for boosting MCMC efficiency. J. Comput. Graph. Statist. 20 531-570. MR2878987
    • (2011) J. Comput. Graph. Statist. , vol.20 , pp. 531-570
    • Yu, Y.1    Meng, X.-L.2
  • 48
    • 80455176896 scopus 로고    scopus 로고
    • Conditional Akaike information criterion for generalized linear mixed models
    • MR2853760
    • YU, D., and YAU, K. K. W. (2012). Conditional Akaike information criterion for generalized linear mixed models. Comput. Statist. Data Anal. 56 629-644. MR2853760
    • (2012) Comput. Statist. Data Anal. , vol.56 , pp. 629-644
    • Yu, D.1    Yau, K.K.W.2
  • 49
    • 33745929657 scopus 로고    scopus 로고
    • General design Bayesian generalized linear mixed models
    • MR2275966
    • ZHAO, Y., STAUDENMAYER, J., COULL, B. A. and WAND, M. P. (2006). General design Bayesian generalized linear mixed models. Statist. Sci. 21 35-51. MR2275966
    • (2006) Statist. Sci. , vol.21 , pp. 35-51
    • Zhao, Y.1    Staudenmayer, J.2    Coull, B.A.3    Wand, M.P.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.