메뉴 건너뛰기




Volumn 6, Issue , 2005, Pages

Variational message passing

Author keywords

Bayesian networks; Message passing; Variational inference

Indexed keywords

ALGORITHMS; APPROXIMATION THEORY; GRAPH THEORY; MATHEMATICAL MODELS; MONTE CARLO METHODS; PARAMETER ESTIMATION; PROBABILITY;

EID: 21844450606     PISSN: 15337928     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (633)

References (19)
  • 1
    • 84898964031 scopus 로고    scopus 로고
    • A variational Bayesian framework for graphical models
    • S. Solla, T. K. Leen, and K-L Muller, editors, Cambridge MA. MIT Press
    • H. Attias. A variational Bayesian framework for graphical models. In S. Solla, T. K. Leen, and K-L Muller, editors, Advances in Neural Information Processing Systems, volume 12, pages 209-215, Cambridge MA, 2000. MIT Press.
    • (2000) Advances in Neural Information Processing Systems , vol.12 , pp. 209-215
    • Attias, H.1
  • 5
    • 21844446254 scopus 로고    scopus 로고
    • Structured variational distributions in VIBES
    • Key West, Florida. Society for Artificial Intelligence and Statistics
    • C. M. Bishop and J. M. Winn. Structured variational distributions in VIBES. In Proceedings Artificial Intelligence and Statistics, Key West, Florida, 2003. Society for Artificial Intelligence and Statistics.
    • (2003) Proceedings Artificial Intelligence and Statistics
    • Bishop, C.M.1    Winn, J.M.2
  • 8
    • 84899003086 scopus 로고    scopus 로고
    • Propagation algorithms for variational Bayesian learning
    • T. K. Leen, T. Dietterich, and V. Tresp, editors, Cambridge MA. MIT Press
    • Z. Ghahramani and M. J. Beal. Propagation algorithms for variational Bayesian learning. In T. K. Leen, T. Dietterich, and V. Tresp, editors, Advances in Neural Information Processing Systems, volume 13, Cambridge MA, 2001. MIT Press.
    • (2001) Advances in Neural Information Processing Systems , vol.13
    • Ghahramani, Z.1    Beal, M.J.2
  • 9
    • 0000324169 scopus 로고
    • Adaptive rejection sampling for Gibbs sampling
    • W. R. Gilks and P. Wild. Adaptive rejection sampling for Gibbs sampling. Applied Statistics, 41(2): 337-348, 1992.
    • (1992) Applied Statistics , vol.41 , Issue.2 , pp. 337-348
    • Gilks, W.R.1    Wild, P.2
  • 11
    • 0000935895 scopus 로고    scopus 로고
    • An introduction to variational methods for graphical models
    • M. I. Jordan, editor. Kluwer
    • M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul. An introduction to variational methods for graphical models. In M. I. Jordan, editor, Learning in Graphical Models, pages 105-162. Kluwer, 1998.
    • (1998) Learning in Graphical Models , pp. 105-162
    • Jordan, M.I.1    Ghahramani, Z.2    Jaakkola, T.S.3    Saul, L.K.4
  • 12
    • 84950442428 scopus 로고
    • Propagation of probabilities, means, and variances in mixed graphical association models
    • S. L. Lauritzen. Propagation of probabilities, means, and variances in mixed graphical association models. Journal of the American Statistical Association, 87(420): 1098-1108, 1992.
    • (1992) Journal of the American Statistical Association , vol.87 , Issue.420 , pp. 1098-1108
    • Lauritzen, S.L.1
  • 13
    • 0006407254 scopus 로고    scopus 로고
    • WinBUGS - A Bayesian modelling framework: Concepts, structure and extensibility
    • D. J. Lunn, A. Thomas, N. G. Best, and D. J. Spiegelhalter. WinBUGS - a Bayesian modelling framework: concepts, structure and extensibility. Statistics and Computing, 10:321-333, 2000. http://www.mrc-bsu.cam.ac.uk/bugs/.
    • (2000) Statistics and Computing , vol.10 , pp. 321-333
    • Lunn, D.J.1    Thomas, A.2    Best, N.G.3    Spiegelhalter, D.J.4
  • 15
    • 0002788893 scopus 로고    scopus 로고
    • A new view of the EM algorithm that justifies incremental and other variants
    • M. I. Jordan, editor. Kluwer
    • R. M. Neal and G. E. Hinton. A new view of the EM algorithm that justifies incremental and other variants. In M. I. Jordan, editor, Learning in Graphical Models, pages 355-368. Kluwer, 1998.
    • (1998) Learning in Graphical Models , pp. 355-368
    • Neal, R.M.1    Hinton, G.E.2
  • 16
    • 46149134436 scopus 로고
    • Fusion, propagation and structuring in belief networks
    • J. Pearl. Fusion, propagation and structuring in belief networks. Artificial Intelligence, 29:241-288, 1986.
    • (1986) Artificial Intelligence , vol.29 , pp. 241-288
    • Pearl, J.1
  • 17
    • 0001279441 scopus 로고
    • BUGS: A program to perform Bayesian inference using Gibbs sampling
    • J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith, editors, Oxford: Clarendon Press
    • A. Thomas, D. J. Spiegelhalter, and W. R. Gilks. BUGS: A program to perform Bayesian inference using Gibbs sampling. In J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith, editors, Bayesian Statistics, Oxford: Clarendon Press, 1992.
    • (1992) Bayesian Statistics
    • Thomas, A.1    Spiegelhalter, D.J.2    Gilks, W.R.3
  • 18
    • 0012131861 scopus 로고    scopus 로고
    • Variational approximations between mean field theory and the junction tree algorithm
    • Morgan Kauffmann
    • W. Wiegerinck. Variational approximations between mean field theory and the junction tree algorithm. In Uncertainty in Artificial Intelligence. Morgan Kauffmann, 2000.
    • (2000) Uncertainty in Artificial Intelligence
    • Wiegerinck, W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.