메뉴 건너뛰기




Volumn 2015-January, Issue , 2015, Pages 1441-1449

Linear response methods for accurate covariance estimates from mean field variational bayes

Author keywords

[No Author keywords available]

Indexed keywords

INFORMATION SCIENCE;

EID: 84965143892     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (81)

References (24)
  • 2
    • 84867186048 scopus 로고    scopus 로고
    • Variational inference for Dirichlet process mixtures
    • D. M. Blei and M. I. Jordan. Variational inference for Dirichlet process mixtures. Bayesian Analysis, 1(1):121-143, 2006.
    • (2006) Bayesian Analysis , vol.1 , Issue.1 , pp. 121-143
    • Blei, D.M.1    Jordan, M.I.2
  • 6
    • 84923421297 scopus 로고    scopus 로고
    • Two problems with variational expectation maximisation for time-series models
    • D. Barber, A. T. Cemgil, and S. Chiappa, editors
    • R. E. Turner and M. Sahani. Two problems with variational expectation maximisation for time-series models. In D. Barber, A. T. Cemgil, and S. Chiappa, editors, Bayesian Time Series Models. 2011.
    • (2011) Bayesian Time Series Models
    • Turner, R.E.1    Sahani, M.2
  • 7
    • 62149086004 scopus 로고    scopus 로고
    • Inadequacy of interval estimates corresponding to variational Bayesian approximations
    • B. Wang and M. Titterington. Inadequacy of interval estimates corresponding to variational Bayesian approximations. In Workshop on Artificial Intelligence and Statistics, pages 373-380, 2004.
    • (2004) Workshop on Artificial Intelligence and Statistics , pp. 373-380
    • Wang, B.1    Titterington, M.2
  • 12
    • 0034241901 scopus 로고    scopus 로고
    • Information geometry of mean-field approximation
    • T. Tanaka. Information geometry of mean-field approximation. Neural Computation, 12(8):1951-1968, 2000.
    • (2000) Neural Computation , vol.12 , Issue.8 , pp. 1951-1968
    • Tanaka, T.1
  • 13
    • 0001000562 scopus 로고    scopus 로고
    • Efficient learning in Boltzmann machines using linear response theory
    • H. J. Kappen and F. B. Rodriguez. Efficient learning in Boltzmann machines using linear response theory. Neural Computation, 10(5):1137-1156, 1998.
    • (1998) Neural Computation , vol.10 , Issue.5 , pp. 1137-1156
    • Kappen, H.J.1    Rodriguez, F.B.2
  • 14
    • 0347526306 scopus 로고    scopus 로고
    • Linear response algorithms for approximate inference in graphical models
    • M. Welling and Y. W. Teh. Linear response algorithms for approximate inference in graphical models. Neural Computation, 16(1):197-221, 2004.
    • (2004) Neural Computation , vol.16 , Issue.1 , pp. 197-221
    • Welling, M.1    Teh, Y.W.2
  • 16
    • 0001143296 scopus 로고    scopus 로고
    • Mean-field theory of Boltzmann machine learning
    • T. Tanaka. Mean-field theory of Boltzmann machine learning. Physical Review E, 58(2):2302, 1998.
    • (1998) Physical Review E , vol.58 , Issue.2 , pp. 2302
    • Tanaka, T.1
  • 18
    • 77749249761 scopus 로고    scopus 로고
    • MCMC methods for multi-response generalized linear mixed models: The MCMCglmm R package
    • J. D. Hadfield. MCMC methods for multi-response generalized linear mixed models: The MCMCglmm R package. Journal of Statistical Software, 33(2):1-22, 2010.
    • (2010) Journal of Statistical Software , vol.33 , Issue.2 , pp. 1-22
    • Hadfield, J.D.1
  • 19
    • 84928627626 scopus 로고    scopus 로고
    • Computing in operations research using Julia
    • M. Lubin and I. Dunning. Computing in operations research using Julia. INFORMS Journal on Computing, 27(2):238-248, 2015.
    • (2015) INFORMS Journal on Computing , vol.27 , Issue.2 , pp. 238-248
    • Lubin, M.1    Dunning, I.2
  • 20
    • 84873898905 scopus 로고    scopus 로고
    • Fast and elegant numerical linear algebra using the RcppEigen package
    • D. Bates and D. Eddelbuettel. Fast and elegant numerical linear algebra using the RcppEigen package. Journal of Statistical Software, 52(5):1-24, 2013.
    • (2013) Journal of Statistical Software , vol.52 , Issue.5 , pp. 1-24
    • Bates, D.1    Eddelbuettel, D.2
  • 21
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.
    • (1998) Proceedings of the IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 22
    • 41149087694 scopus 로고    scopus 로고
    • CODA: Convergence diagnosis and output analysis for MCMC
    • M. Plummer, N. Best, K. Cowles, and K. Vines. CODA: Convergence diagnosis and output analysis for MCMC. R News, 6(1):7-11, 2006.
    • (2006) R News , vol.6 , Issue.1 , pp. 7-11
    • Plummer, M.1    Best, N.2    Cowles, K.3    Vines, K.4
  • 23
    • 84864615423 scopus 로고
    • Using EM to obtain asymptotic variance-covariance matrices: The SEM algorithm
    • X. L. Meng and D. B. Rubin. Using EM to obtain asymptotic variance-covariance matrices: The SEM algorithm. Journal of the American Statistical Association, 86(416):899-909, 1991.
    • (1991) Journal of the American Statistical Association , vol.86 , Issue.416 , pp. 899-909
    • Meng, X.L.1    Rubin, D.B.2
  • 24
    • 29144523061 scopus 로고    scopus 로고
    • On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming
    • A. Wächter and L. T. Biegler. On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming, 106(1):25-57, 2006.
    • (2006) Mathematical Programming , vol.106 , Issue.1 , pp. 25-57
    • Wächter, A.1    Biegler, L.T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.