-
2
-
-
84867186048
-
Variational inference for Dirichlet process mixtures
-
D. M. Blei and M. I. Jordan. Variational inference for Dirichlet process mixtures. Bayesian Analysis, 1(1):121-143, 2006.
-
(2006)
Bayesian Analysis
, vol.1
, Issue.1
, pp. 121-143
-
-
Blei, D.M.1
Jordan, M.I.2
-
3
-
-
84878919168
-
Stochastic variational inference
-
M. D. Hoffman, D. M. Blei, C. Wang, and J. Paisley. Stochastic variational inference. Journal of Machine Learning Research, 14(1):1303-1347, 2013.
-
(2013)
Journal of Machine Learning Research
, vol.14
, Issue.1
, pp. 1303-1347
-
-
Hoffman, M.D.1
Blei, D.M.2
Wang, C.3
Paisley, J.4
-
6
-
-
84923421297
-
Two problems with variational expectation maximisation for time-series models
-
D. Barber, A. T. Cemgil, and S. Chiappa, editors
-
R. E. Turner and M. Sahani. Two problems with variational expectation maximisation for time-series models. In D. Barber, A. T. Cemgil, and S. Chiappa, editors, Bayesian Time Series Models. 2011.
-
(2011)
Bayesian Time Series Models
-
-
Turner, R.E.1
Sahani, M.2
-
7
-
-
62149086004
-
Inadequacy of interval estimates corresponding to variational Bayesian approximations
-
B. Wang and M. Titterington. Inadequacy of interval estimates corresponding to variational Bayesian approximations. In Workshop on Artificial Intelligence and Statistics, pages 373-380, 2004.
-
(2004)
Workshop on Artificial Intelligence and Statistics
, pp. 373-380
-
-
Wang, B.1
Titterington, M.2
-
8
-
-
62849120031
-
Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations
-
H. Rue, S. Martino, and N. Chopin. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. Journal of the Royal Statistical Society: Series B (statistical methodology), 71(2):319-392, 2009.
-
(2009)
Journal of the Royal Statistical Society: Series B (statistical methodology)
, vol.71
, Issue.2
, pp. 319-392
-
-
Rue, H.1
Martino, S.2
Chopin, N.3
-
12
-
-
0034241901
-
Information geometry of mean-field approximation
-
T. Tanaka. Information geometry of mean-field approximation. Neural Computation, 12(8):1951-1968, 2000.
-
(2000)
Neural Computation
, vol.12
, Issue.8
, pp. 1951-1968
-
-
Tanaka, T.1
-
13
-
-
0001000562
-
Efficient learning in Boltzmann machines using linear response theory
-
H. J. Kappen and F. B. Rodriguez. Efficient learning in Boltzmann machines using linear response theory. Neural Computation, 10(5):1137-1156, 1998.
-
(1998)
Neural Computation
, vol.10
, Issue.5
, pp. 1137-1156
-
-
Kappen, H.J.1
Rodriguez, F.B.2
-
14
-
-
0347526306
-
Linear response algorithms for approximate inference in graphical models
-
M. Welling and Y. W. Teh. Linear response algorithms for approximate inference in graphical models. Neural Computation, 16(1):197-221, 2004.
-
(2004)
Neural Computation
, vol.16
, Issue.1
, pp. 197-221
-
-
Welling, M.1
Teh, Y.W.2
-
15
-
-
0001387715
-
Mean-field approaches to independent component analysis
-
P. A. d. F. R. Højen-Sørensen, O. Winther, and L. K. Hansen. Mean-field approaches to independent component analysis. Neural Computation, 14(4):889-918, 2002.
-
(2002)
Neural Computation
, vol.14
, Issue.4
, pp. 889-918
-
-
Højen-Sørensen, P.A.D.F.R.1
Winther, O.2
Hansen, L.K.3
-
16
-
-
0001143296
-
Mean-field theory of Boltzmann machine learning
-
T. Tanaka. Mean-field theory of Boltzmann machine learning. Physical Review E, 58(2):2302, 1998.
-
(1998)
Physical Review E
, vol.58
, Issue.2
, pp. 2302
-
-
Tanaka, T.1
-
17
-
-
65749118363
-
Graphical models, exponential families, and variational inference
-
M. J. Wainwright and M. I. Jordan. Graphical models, exponential families, and variational inference. Foundations and Trends® in Machine Learning, 1(1-2):1-305, 2008.
-
(2008)
Foundations and Trends® in Machine Learning
, vol.1
, Issue.1-2
, pp. 1-305
-
-
Wainwright, M.J.1
Jordan, M.I.2
-
18
-
-
77749249761
-
MCMC methods for multi-response generalized linear mixed models: The MCMCglmm R package
-
J. D. Hadfield. MCMC methods for multi-response generalized linear mixed models: The MCMCglmm R package. Journal of Statistical Software, 33(2):1-22, 2010.
-
(2010)
Journal of Statistical Software
, vol.33
, Issue.2
, pp. 1-22
-
-
Hadfield, J.D.1
-
19
-
-
84928627626
-
Computing in operations research using Julia
-
M. Lubin and I. Dunning. Computing in operations research using Julia. INFORMS Journal on Computing, 27(2):238-248, 2015.
-
(2015)
INFORMS Journal on Computing
, vol.27
, Issue.2
, pp. 238-248
-
-
Lubin, M.1
Dunning, I.2
-
20
-
-
84873898905
-
Fast and elegant numerical linear algebra using the RcppEigen package
-
D. Bates and D. Eddelbuettel. Fast and elegant numerical linear algebra using the RcppEigen package. Journal of Statistical Software, 52(5):1-24, 2013.
-
(2013)
Journal of Statistical Software
, vol.52
, Issue.5
, pp. 1-24
-
-
Bates, D.1
Eddelbuettel, D.2
-
21
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.
-
(1998)
Proceedings of the IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
22
-
-
41149087694
-
CODA: Convergence diagnosis and output analysis for MCMC
-
M. Plummer, N. Best, K. Cowles, and K. Vines. CODA: Convergence diagnosis and output analysis for MCMC. R News, 6(1):7-11, 2006.
-
(2006)
R News
, vol.6
, Issue.1
, pp. 7-11
-
-
Plummer, M.1
Best, N.2
Cowles, K.3
Vines, K.4
-
23
-
-
84864615423
-
Using EM to obtain asymptotic variance-covariance matrices: The SEM algorithm
-
X. L. Meng and D. B. Rubin. Using EM to obtain asymptotic variance-covariance matrices: The SEM algorithm. Journal of the American Statistical Association, 86(416):899-909, 1991.
-
(1991)
Journal of the American Statistical Association
, vol.86
, Issue.416
, pp. 899-909
-
-
Meng, X.L.1
Rubin, D.B.2
-
24
-
-
29144523061
-
On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming
-
A. Wächter and L. T. Biegler. On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming, 106(1):25-57, 2006.
-
(2006)
Mathematical Programming
, vol.106
, Issue.1
, pp. 25-57
-
-
Wächter, A.1
Biegler, L.T.2
|