메뉴 건너뛰기




Volumn 8, Issue 6, 2017, Pages 1279-1290

Initial Substrate Binding of γ-Secretase: The Role of Substrate Flexibility

Author keywords

amyloid precursor protein; amyloid peptide; intramembrane protease; notch signal; substrate recognition; Secretase

Indexed keywords

2 OLEOYL 1 PALMITOYLPHOSPHATIDYLCHOLINE; AMYLOID PRECURSOR PROTEIN; GAMMA SECRETASE; NOTCH RECEPTOR; PRESENILIN 1; AMYLOID BETA PROTEIN; PROTEIN BINDING; SECRETASE;

EID: 85021095942     PISSN: None     EISSN: 19487193     Source Type: Journal    
DOI: 10.1021/acschemneuro.6b00425     Document Type: Article
Times cited : (20)

References (59)
  • 1
    • 0027333557 scopus 로고
    • Cellular processing of beta-amyloid precursor protein and the genesis of amyloid beta-peptide
    • Haass, C. and Selkoe, D. J. (1993) Cellular processing of beta-amyloid precursor protein and the genesis of amyloid beta-peptide Cell 75, 1039-1042 10.1016/0092-8674(93)90312-E
    • (1993) Cell , vol.75 , pp. 1039-1042
    • Haass, C.1    Selkoe, D.J.2
  • 2
    • 0026597063 scopus 로고
    • Alzheimer's disease: The amyloid cascade hypothesis
    • Hardy, J. A. and Higgins, G. A. (1992) Alzheimer's disease: the amyloid cascade hypothesis Science 256, 184 10.1126/science.1566067
    • (1992) Science , vol.256 , pp. 184
    • Hardy, J.A.1    Higgins, G.A.2
  • 3
    • 84863939887 scopus 로고    scopus 로고
    • Presenilins and γ-secretase: Structure, function, and role in Alzheimer disease
    • De Strooper, B., Iwatsubo, T., and Wolfe, M. S. (2012) Presenilins and γ-secretase: structure, function, and role in Alzheimer disease Cold Spring Harbor Perspect. Med. 2, a006304 10.1101/cshperspect.a006304
    • (2012) Cold Spring Harbor Perspect. Med. , vol.2 , pp. a006304
    • De Strooper, B.1    Iwatsubo, T.2    Wolfe, M.S.3
  • 6
    • 14744267675 scopus 로고    scopus 로고
    • The initial substrate-binding site of γ-secretase is located on presenilin near the active site
    • Kornilova, A. Y., Bihel, F., Das, C., and Wolfe, M. S. (2005) The initial substrate-binding site of γ-secretase is located on presenilin near the active site Proc. Natl. Acad. Sci. U. S. A. 102, 3230-3235 10.1073/pnas.0407640102
    • (2005) Proc. Natl. Acad. Sci. U. S. A. , vol.102 , pp. 3230-3235
    • Kornilova, A.Y.1    Bihel, F.2    Das, C.3    Wolfe, M.S.4
  • 7
    • 84922572200 scopus 로고    scopus 로고
    • Cooperative roles of hydrophilic loop 1 and the C-terminus of presenilin 1 in the substrate-gating mechanism of γ-secretase
    • Takagi-Niidome, S., Sasaki, T., Osawa, S., Sato, T., Morishima, K., Cai, T., Iwatsubo, T., and Tomita, T. (2015) Cooperative roles of hydrophilic loop 1 and the C-terminus of presenilin 1 in the substrate-gating mechanism of γ-secretase J. Neurosci. 35, 2646-2656 10.1523/JNEUROSCI.3164-14.2015
    • (2015) J. Neurosci. , vol.35 , pp. 2646-2656
    • Takagi-Niidome, S.1    Sasaki, T.2    Osawa, S.3    Sato, T.4    Morishima, K.5    Cai, T.6    Iwatsubo, T.7    Tomita, T.8
  • 8
    • 84891889942 scopus 로고    scopus 로고
    • Structural interactions between inhibitor and substrate docking sites give insight into mechanisms of human PS1 complexes
    • Li, Y., Lu, S. H. J., Tsai, C. J., Bohm, C., Qamar, S., Dodd, R. B., Meadows, W., Jeon, A., McLeodm, A., and Chen, F. et al. 2014, Structural interactions between inhibitor and substrate docking sites give insight into mechanisms of human PS1 complexes Structure 22, 125-135 10.1016/j.str.2013.09.018
    • (2014) Structure , vol.22 , pp. 125-135
    • Li, Y.1    Lu, S.H.J.2    Tsai, C.J.3    Bohm, C.4    Qamar, S.5    Dodd, R.B.6    Meadows, W.7    Jeon, A.8    McLeodm, A.9    Chen, F.10
  • 10
    • 84985994501 scopus 로고    scopus 로고
    • The amyloid-beta forming tripeptide cleavage mechanism of γ-secretase
    • Bolduc, D. M., Montagna, D. R., Seghers, M. C., Wolf, M. S., and Selkoe, D. J. (2016) The amyloid-beta forming tripeptide cleavage mechanism of γ-secretase eLife 5, e17578 10.7554/eLife.17578
    • (2016) ELife , vol.5 , pp. e17578
    • Bolduc, D.M.1    Montagna, D.R.2    Seghers, M.C.3    Wolf, M.S.4    Selkoe, D.J.5
  • 11
    • 84929514064 scopus 로고    scopus 로고
    • Understanding intramembrane proteolysis: From protein dynamics to reaction kinetics
    • Langosch, D., Scharnagl, C., Steiner, H., and Lemberg, M. K. (2015) Understanding intramembrane proteolysis: from protein dynamics to reaction kinetics Trends Biochem. Sci. 40, 318-327 10.1016/j.tibs.2015.04.001
    • (2015) Trends Biochem. Sci. , vol.40 , pp. 318-327
    • Langosch, D.1    Scharnagl, C.2    Steiner, H.3    Lemberg, M.K.4
  • 13
    • 77953782609 scopus 로고    scopus 로고
    • Functional Analysis of the Transmembrane Domains of Presenilin 1 PARTICIPATION of TRANSMEMBRANE DOMAINS 2 and 6 in the FORMATION of INITIAL SUBSTRATE-BINDING SITE of γ-SECRETASE
    • Watanabe, N., Takagi, S., Tominaga, A., Tomita, T., and Iwatsubo, T. (2010) Functional Analysis of the Transmembrane Domains of Presenilin 1 PARTICIPATION OF TRANSMEMBRANE DOMAINS 2 AND 6 IN THE FORMATION OF INITIAL SUBSTRATE-BINDING SITE OF γ-SECRETASE J. Biol. Chem. 285, 19738-19746 10.1074/jbc.M110.101287
    • (2010) J. Biol. Chem. , vol.285 , pp. 19738-19746
    • Watanabe, N.1    Takagi, S.2    Tominaga, A.3    Tomita, T.4    Iwatsubo, T.5
  • 15
    • 46749127360 scopus 로고    scopus 로고
    • The C-terminal PAL motif and transmembrane domain 9 of presenilin 1 are involved in the formation of the catalytic pore of the γ-secretase
    • Sato, C., Takagi, S., Tomita, T., and Iwatsubo, T. (2008) The C-terminal PAL motif and transmembrane domain 9 of presenilin 1 are involved in the formation of the catalytic pore of the γ-secretase J. Neurosci. 28, 6264-6271 10.1523/JNEUROSCI.1163-08.2008
    • (2008) J. Neurosci. , vol.28 , pp. 6264-6271
    • Sato, C.1    Takagi, S.2    Tomita, T.3    Iwatsubo, T.4
  • 16
    • 84871725890 scopus 로고    scopus 로고
    • Structure of a presenilin family intramembrane aspartate protease
    • Li, X., Dang, S., Yan, C., Gong, X., Wang, J., and Shi, Y. (2013) Structure of a presenilin family intramembrane aspartate protease Nature 493, 56-61 10.1038/nature11801
    • (2013) Nature , vol.493 , pp. 56-61
    • Li, X.1    Dang, S.2    Yan, C.3    Gong, X.4    Wang, J.5    Shi, Y.6
  • 18
    • 84873819727 scopus 로고    scopus 로고
    • The backbone dynamics of the amyloid precursor protein transmembrane helix provides a rationale for the sequential cleavage mechanism of γ-secretase
    • Pester, O., Barrett, P. J., Hornburg, D., Hornburg, P., Pröbstle, R., Widmaier, S., Kutzner, C., Dürrbaum, M., Kapurniotu, A., and Sanders, C. R. et al. 2013, The backbone dynamics of the amyloid precursor protein transmembrane helix provides a rationale for the sequential cleavage mechanism of γ-secretase J. Am. Chem. Soc. 135, 1317-1329 10.1021/ja3112093
    • (2013) J. Am. Chem. Soc. , vol.135 , pp. 1317-1329
    • Pester, O.1    Barrett, P.J.2    Hornburg, D.3    Hornburg, P.4    Pröbstle, R.5    Widmaier, S.6    Kutzner, C.7    Dürrbaum, M.8    Kapurniotu, A.9    Sanders, C.R.10
  • 19
    • 84892958093 scopus 로고    scopus 로고
    • Transmembrane fragment structures of amyloid precursor protein depend on membrane surface curvature
    • Dominguez, L., Meredith, S. C., Straub, J. E., and Thirumalai, D. (2014) Transmembrane fragment structures of amyloid precursor protein depend on membrane surface curvature J. Am. Chem. Soc. 136, 854-857 10.1021/ja410958j
    • (2014) J. Am. Chem. Soc. , vol.136 , pp. 854-857
    • Dominguez, L.1    Meredith, S.C.2    Straub, J.E.3    Thirumalai, D.4
  • 20
    • 84896501848 scopus 로고    scopus 로고
    • Side-chain to main-chain hydrogen bonding controls the intrinsic backbone dynamics of the amyloid precursor protein transmembrane helix
    • Scharnagl, C., Pester, O., Hornburg, P., Hornburg, D., Götz, A., and Langosch, D. (2014) Side-chain to main-chain hydrogen bonding controls the intrinsic backbone dynamics of the amyloid precursor protein transmembrane helix Biophys. J. 106, 1318-1326 10.1016/j.bpj.2014.02.013
    • (2014) Biophys. J. , vol.106 , pp. 1318-1326
    • Scharnagl, C.1    Pester, O.2    Hornburg, P.3    Hornburg, D.4    Götz, A.5    Langosch, D.6
  • 21
    • 71749085062 scopus 로고    scopus 로고
    • Structures of β-Amyloid Peptide 1- 40, 1- 42, and 1- 55 the 672- 726 Fragment of APP in a Membrane Environment with Implications for Interactions with γ-Secretase
    • Miyashita, N., Straub, J. E., and Thirumalai, D. (2009) Structures of β-Amyloid Peptide 1- 40, 1- 42, and 1- 55 the 672- 726 Fragment of APP in a Membrane Environment with Implications for Interactions with γ-Secretase J. Am. Chem. Soc. 131, 17843-17852 10.1021/ja905457d
    • (2009) J. Am. Chem. Soc. , vol.131 , pp. 17843-17852
    • Miyashita, N.1    Straub, J.E.2    Thirumalai, D.3
  • 22
    • 84955307962 scopus 로고    scopus 로고
    • Sampling the conformational space of the catalytic subunit of human γ-secretase
    • Bai, X. C., Rajendra, E., Yang, G., Shi, Y., and Scheres, S. H. W. (2015) Sampling the conformational space of the catalytic subunit of human γ-secretase eLife 4, e11182 10.7554/eLife.11182
    • (2015) ELife , vol.4 , pp. e11182
    • Bai, X.C.1    Rajendra, E.2    Yang, G.3    Shi, Y.4    Scheres, S.H.W.5
  • 24
    • 34547474332 scopus 로고    scopus 로고
    • The MARTINI force field: Coarse grained model for biomolecular simulations
    • Marrink, S. J., Risselada, H. J., Yefimov, S., Tieleman, D. P., and de Vries, A. H. (2007) The MARTINI force field: coarse grained model for biomolecular simulations J. Phys. Chem. B 111, 7812-7824 10.1021/jp071097f
    • (2007) J. Phys. Chem. B , vol.111 , pp. 7812-7824
    • Marrink, S.J.1    Risselada, H.J.2    Yefimov, S.3    Tieleman, D.P.4    De Vries, A.H.5
  • 26
    • 84986268684 scopus 로고    scopus 로고
    • Impact of membrane lipid composition on the structure and stability of the transmembrane domain of amyloid precursor protein
    • Dominguez, L., Foster, L., Straub, J. E., and Thirumalai, D. (2016) Impact of membrane lipid composition on the structure and stability of the transmembrane domain of amyloid precursor protein Proc. Natl. Acad. Sci. U. S. A. 113, E5281-E5287 10.1073/pnas.1606482113
    • (2016) Proc. Natl. Acad. Sci. U. S. A. , vol.113 , pp. E5281-E5287
    • Dominguez, L.1    Foster, L.2    Straub, J.E.3    Thirumalai, D.4
  • 27
    • 84864751064 scopus 로고    scopus 로고
    • Multifaceted substrate capture scheme of a rhomboid protease
    • Reddy, T. and Rainey, J. K. (2012) Multifaceted substrate capture scheme of a rhomboid protease J. Phys. Chem. B 116, 8942-8954 10.1021/jp305077k
    • (2012) J. Phys. Chem. B , vol.116 , pp. 8942-8954
    • Reddy, T.1    Rainey, J.K.2
  • 28
    • 0034671686 scopus 로고    scopus 로고
    • Notch signaling: From the outside in
    • Mumm, J. S. and Kopan, R. (2000) Notch signaling: from the outside in Dev. Biol. 228, 151-165 10.1006/dbio.2000.9960
    • (2000) Dev. Biol. , vol.228 , pp. 151-165
    • Mumm, J.S.1    Kopan, R.2
  • 29
    • 64249172203 scopus 로고    scopus 로고
    • The canonical Notch signaling pathway: Unfolding the activation mechanism
    • Kopan, R. and Ilagan, M. X. G. (2009) The canonical Notch signaling pathway: unfolding the activation mechanism Cell 137, 216-233 10.1016/j.cell.2009.03.045
    • (2009) Cell , vol.137 , pp. 216-233
    • Kopan, R.1    Ilagan, M.X.G.2
  • 30
    • 77957842622 scopus 로고    scopus 로고
    • CHARMM additive all-atom force field for glycosidic linkages in carbohydrates involving furanoses
    • Raman, E. P., Guvench, O., and MacKerell, A. D. (2010) CHARMM additive all-atom force field for glycosidic linkages in carbohydrates involving furanoses J. Phys. Chem. B 114, 12981-12994 10.1021/jp105758h
    • (2010) J. Phys. Chem. B , vol.114 , pp. 12981-12994
    • Raman, E.P.1    Guvench, O.2    MacKerell, A.D.3
  • 31
    • 84882643757 scopus 로고    scopus 로고
    • CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data
    • Huang, J. and MacKerell, A. D. (2013) CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data J. Comput. Chem. 34, 2135-2145 10.1002/jcc.23354
    • (2013) J. Comput. Chem. , vol.34 , pp. 2135-2145
    • Huang, J.1    MacKerell, A.D.2
  • 32
    • 84980325882 scopus 로고    scopus 로고
    • Substrate recruitment of γ-secretase and mechanism of clinical presenilin mutations revealed by photoaffinity mapping
    • Fukumori, A. and Steiner, H. (2016) Substrate recruitment of γ-secretase and mechanism of clinical presenilin mutations revealed by photoaffinity mapping EMBO J. 35, 1628-1643 10.15252/embj.201694151
    • (2016) EMBO J. , vol.35 , pp. 1628-1643
    • Fukumori, A.1    Steiner, H.2
  • 33
    • 77951236521 scopus 로고    scopus 로고
    • Aph-1 associates directly with full-length and C-terminal fragments of γ-secretase substrates
    • Chen, A. C., Guo, L. Y., Ostaszewski, B. L., Selkoe, D. J., and LaVoie, M. J. (2010) Aph-1 associates directly with full-length and C-terminal fragments of γ-secretase substrates J. Biol. Chem. 285, 11378-11391 10.1074/jbc.M109.088815
    • (2010) J. Biol. Chem. , vol.285 , pp. 11378-11391
    • Chen, A.C.1    Guo, L.Y.2    Ostaszewski, B.L.3    Selkoe, D.J.4    LaVoie, M.J.5
  • 34
    • 0035980073 scopus 로고    scopus 로고
    • The first proline of PALP motif at the C terminus of presenilins is obligatory for stabilization, complex formation, and γ-secretase activities of presenilins
    • Tomita, T., Watabiki, T., Takikawa, R., Morohashi, Y., Takasugi, N., Kopan, R., De Strooper, B., and Iwatsubo, T. (2001) The first proline of PALP motif at the C terminus of presenilins is obligatory for stabilization, complex formation, and γ-secretase activities of presenilins J. Biol. Chem. 276, 33273-33281 10.1074/jbc.M011152200
    • (2001) J. Biol. Chem. , vol.276 , pp. 33273-33281
    • Tomita, T.1    Watabiki, T.2    Takikawa, R.3    Morohashi, Y.4    Takasugi, N.5    Kopan, R.6    De Strooper, B.7    Iwatsubo, T.8
  • 35
    • 33644839624 scopus 로고    scopus 로고
    • C-terminal PAL motif of presenilin and presenilin homologues required for normal active site conformation
    • Wang, J., Beher, D., Nyborg, A. C., Shearman, M. S., Golde, T. E., and Goate, A. (2006) C-terminal PAL motif of presenilin and presenilin homologues required for normal active site conformation J. Neurochem. 96, 218-227 10.1111/j.1471-4159.2005.03548.x
    • (2006) J. Neurochem. , vol.96 , pp. 218-227
    • Wang, J.1    Beher, D.2    Nyborg, A.C.3    Shearman, M.S.4    Golde, T.E.5    Goate, A.6
  • 36
    • 81155154306 scopus 로고    scopus 로고
    • Lysine 624 of the Amyloid Precursor Protein (APP) Is a Critical Determinant of Amyloid β Peptide Length SUPPORT for A SEQUENTIAL MODEL of γ-SECRETASE INTRAMEMBRANE PROTEOLYSIS and REGULATION by the AMYLOID β PRECURSOR PROTEIN (APP) JUXTAMEMBRANE REGION
    • Kukar, T. L., Ladd, T. B., Robertson, P., Pintchovski, S. A., Moore, B., Bann, M. A., Ren, Z., Jansen-West, K., Malphrus, K., and Eggert, S. et al. 2011, Lysine 624 of the Amyloid Precursor Protein (APP) Is a Critical Determinant of Amyloid β Peptide Length SUPPORT FOR A SEQUENTIAL MODEL OF γ-SECRETASE INTRAMEMBRANE PROTEOLYSIS AND REGULATION BY THE AMYLOID β PRECURSOR PROTEIN (APP) JUXTAMEMBRANE REGION J. Biol. Chem. 286, 39804-39812 10.1074/jbc.M111.274696
    • (2011) J. Biol. Chem. , vol.286 , pp. 39804-39812
    • Kukar, T.L.1    Ladd, T.B.2    Robertson, P.3    Pintchovski, S.A.4    Moore, B.5    Bann, M.A.6    Ren, Z.7    Jansen-West, K.8    Malphrus, K.9    Eggert, S.10
  • 37
    • 84896507992 scopus 로고    scopus 로고
    • Impact of bilayer lipid composition on the structure and topology of the transmembrane amyloid precursor C99 protein
    • Song, Y., Mittendorf, K. F., Lu, Z., and Sanders, C. R. (2014) Impact of bilayer lipid composition on the structure and topology of the transmembrane amyloid precursor C99 protein J. Am. Chem. Soc. 136, 4093-4096 10.1021/ja4114374
    • (2014) J. Am. Chem. Soc. , vol.136 , pp. 4093-4096
    • Song, Y.1    Mittendorf, K.F.2    Lu, Z.3    Sanders, C.R.4
  • 39
    • 84991201576 scopus 로고    scopus 로고
    • Transmembrane substrate determinants for γ-secretase processing of APP CTFβ
    • Fernandez, M. A., Biette, K. M., Dolios, G., Seth, D., Wang, R., and Wolfe, M. S. (2016) Transmembrane substrate determinants for γ-secretase processing of APP CTFβ Biochemistry 55, 5675-5688 10.1021/acs.biochem.6b00718
    • (2016) Biochemistry , vol.55 , pp. 5675-5688
    • Fernandez, M.A.1    Biette, K.M.2    Dolios, G.3    Seth, D.4    Wang, R.5    Wolfe, M.S.6
  • 40
    • 0035923750 scopus 로고    scopus 로고
    • Interaction with telencephalin and the amyloid precursor protein predicts a ring structure for presenilins
    • Annaert, W. G., Esselens, C., Baert, V., Boeve, C., Snellings, G., Cupers, P., Craessaerts, K., and De Strooper, B. (2001) Interaction with telencephalin and the amyloid precursor protein predicts a ring structure for presenilins Neuron 32, 579-589 10.1016/S0896-6273(01)00512-8
    • (2001) Neuron , vol.32 , pp. 579-589
    • Annaert, W.G.1    Esselens, C.2    Baert, V.3    Boeve, C.4    Snellings, G.5    Cupers, P.6    Craessaerts, K.7    De Strooper, B.8
  • 41
    • 78049336297 scopus 로고    scopus 로고
    • Residue-specific side-chain packing determines the backbone dynamics of transmembrane model helices
    • Quint, S., Widmaier, S., Minde, D., Hornburg, D., Langosch, D., and Scharnagl, C. (2010) Residue-specific side-chain packing determines the backbone dynamics of transmembrane model helices Biophys. J. 99, 2541-2549 10.1016/j.bpj.2010.08.031
    • (2010) Biophys. J. , vol.99 , pp. 2541-2549
    • Quint, S.1    Widmaier, S.2    Minde, D.3    Hornburg, D.4    Langosch, D.5    Scharnagl, C.6
  • 42
    • 84865071760 scopus 로고    scopus 로고
    • Bendix: Intuitive helix geometry analysis and abstraction
    • Dahl, A. C. E., Chavent, M., and Sansom, M. S. P. (2012) Bendix: intuitive helix geometry analysis and abstraction Bioinformatics 28, 2193-2194 10.1093/bioinformatics/bts357
    • (2012) Bioinformatics , vol.28 , pp. 2193-2194
    • Dahl, A.C.E.1    Chavent, M.2    Sansom, M.S.P.3
  • 46
    • 6344233805 scopus 로고    scopus 로고
    • Selected Non-steroidal Anti-inflammatory Drugs and Their Derivatives Target γ-Secretase at a Novel Site EVIDENCE for AN ALLOSTERIC MECHANISM
    • Beher, D., Clarke, E. E., Wrigley, J. D., Martin, A. C., Nadin, A., Churcher, I., and Shearman, M. S. (2004) Selected Non-steroidal Anti-inflammatory Drugs and Their Derivatives Target γ-Secretase at a Novel Site EVIDENCE FOR AN ALLOSTERIC MECHANISM J. Biol. Chem. 279, 43419-43426 10.1074/jbc.M404937200
    • (2004) J. Biol. Chem. , vol.279 , pp. 43419-43426
    • Beher, D.1    Clarke, E.E.2    Wrigley, J.D.3    Martin, A.C.4    Nadin, A.5    Churcher, I.6    Shearman, M.S.7
  • 48
    • 81155154304 scopus 로고    scopus 로고
    • Substrate sequence influences γ-secretase modulator activity, role of the transmembrane domain of the amyloid precursor protein
    • Sagi, S. A., Lessard, C. B., Winden, K. D., Maruyama, H., Koo, J. C., Weggen, S., Kukar, T. L., Golde, T. E., and Koo, E. H. (2011) Substrate sequence influences γ-secretase modulator activity, role of the transmembrane domain of the amyloid precursor protein J. Biol. Chem. 286, 39794-39803 10.1074/jbc.M111.277228
    • (2011) J. Biol. Chem. , vol.286 , pp. 39794-39803
    • Sagi, S.A.1    Lessard, C.B.2    Winden, K.D.3    Maruyama, H.4    Koo, J.C.5    Weggen, S.6    Kukar, T.L.7    Golde, T.E.8    Koo, E.H.9
  • 49
    • 84956700602 scopus 로고    scopus 로고
    • Nicastrin functions to sterically hinder γ-secretase-substrate interactions driven by substrate transmembrane domain
    • Bolduc, D. M., Montagna, D. R., Gu, Y., Selkoe, D. J., and Wolfe, M. S. (2016) Nicastrin functions to sterically hinder γ-secretase-substrate interactions driven by substrate transmembrane domain Proc. Natl. Acad. Sci. U. S. A. 113, E509-E518 10.1073/pnas.1512952113
    • (2016) Proc. Natl. Acad. Sci. U. S. A. , vol.113 , pp. E509-E518
    • Bolduc, D.M.1    Montagna, D.R.2    Gu, Y.3    Selkoe, D.J.4    Wolfe, M.S.5
  • 51
    • 84946416234 scopus 로고    scopus 로고
    • GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers
    • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., and Lindahl, E. (2015) GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers SoftwareX 1-2, 19-25 10.1016/j.softx.2015.06.001
    • (2015) SoftwareX , vol.12 , pp. 19-25
    • Abraham, M.J.1    Murtola, T.2    Schulz, R.3    Páll, S.4    Smith, J.C.5    Hess, B.6    Lindahl, E.7
  • 52
    • 84941358324 scopus 로고    scopus 로고
    • CHARMM-GUI martini maker for coarse-grained simulations with the martini force field
    • Qi, Y., Ingólfsson, H. I., Cheng, X., Lee, J., Marrink, S. J., and Im, W. (2015) CHARMM-GUI martini maker for coarse-grained simulations with the martini force field J. Chem. Theory Comput. 11, 4486-4494 10.1021/acs.jctc.5b00513
    • (2015) J. Chem. Theory Comput. , vol.11 , pp. 4486-4494
    • Qi, Y.1    Ingólfsson, H.I.2    Cheng, X.3    Lee, J.4    Marrink, S.J.5    Im, W.6
  • 53
    • 84861060898 scopus 로고    scopus 로고
    • OPM database and PPM web server: Resources for positioning of proteins in membranes
    • Lomize, M. A., Pogozheva, I. D., Joo, H., Mosberg, H. I., and Lomize, A. L. (2012) OPM database and PPM web server: resources for positioning of proteins in membranes Nucleic Acids Res. 40, D370-D376 10.1093/nar/gkr703
    • (2012) Nucleic Acids Res. , vol.40 , pp. D370-D376
    • Lomize, M.A.1    Pogozheva, I.D.2    Joo, H.3    Mosberg, H.I.4    Lomize, A.L.5
  • 55
    • 0035526029 scopus 로고    scopus 로고
    • Structure and Dynamics of the TIP3P, SPC, and SPC/E Water Models at 298 K
    • Mark, P. and Nilsson, L. (2001) Structure and Dynamics of the TIP3P, SPC, and SPC/E Water Models at 298 K J. Phys. Chem. A 105, 9954-9960 10.1021/jp003020w
    • (2001) J. Phys. Chem. A , vol.105 , pp. 9954-9960
    • Mark, P.1    Nilsson, L.2
  • 58
    • 0038494571 scopus 로고    scopus 로고
    • Calculation of helix packing angles in protein structures
    • Dalton, J. A R., Michalopoulos, I., and Westhead, D. R. (2003) Calculation of helix packing angles in protein structures Bioinformatics 19, 1298 10.1093/bioinformatics/btg141
    • (2003) Bioinformatics , vol.19 , pp. 1298
    • Dalton, J.A.R.1    Michalopoulos, I.2    Westhead, D.R.3
  • 59
    • 84987924576 scopus 로고    scopus 로고
    • Specific Binding of Cholesterol to C99 Domain of Amyloid Precursor Protein Depends Critically on Charge State of Protein
    • Panahi, A., Bandara, A., Pantelopulos, G. A., Dominguez, L., and Straub, J. E. (2016) Specific Binding of Cholesterol to C99 Domain of Amyloid Precursor Protein Depends Critically on Charge State of Protein J. Phys. Chem. Lett. 7, 3535-3541 10.1021/acs.jpclett.6b01624
    • (2016) J. Phys. Chem. Lett. , vol.7 , pp. 3535-3541
    • Panahi, A.1    Bandara, A.2    Pantelopulos, G.A.3    Dominguez, L.4    Straub, J.E.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.