-
1
-
-
84974606818
-
C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector
-
Abudayyeh, O.O., Gootenberg, J.S., Konermann, S., Joung, J., Slaymaker, I.M., Cox, D.B.T., Shmakov, S. et al. (2016) C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science, 353, aaf5573.
-
(2016)
Science
, vol.353
, pp. aaf5573
-
-
Abudayyeh, O.O.1
Gootenberg, J.S.2
Konermann, S.3
Joung, J.4
Slaymaker, I.M.5
Cox, D.B.T.6
Shmakov, S.7
-
2
-
-
84981731420
-
Manipulating the biosynthesis of bioactive compound alkaloids for next-generation metabolic engineering in opium poppy using CRISPR-Cas 9 genome editing technology
-
Alagoz, Y., Gurkok, T., Zhang, B. and Unver, T. (2016) Manipulating the biosynthesis of bioactive compound alkaloids for next-generation metabolic engineering in opium poppy using CRISPR-Cas 9 genome editing technology. Sci. Rep. 6, 30910.
-
(2016)
Sci. Rep.
, vol.6
, pp. 30910
-
-
Alagoz, Y.1
Gurkok, T.2
Zhang, B.3
Unver, T.4
-
3
-
-
84946745735
-
CRISPR/Cas9-mediated viral interference in plants
-
Ali, Z., Abulfaraj, A., Idris, A., Ali, S., Tashkandi, M. and Mahfouz, M.M. (2015a) CRISPR/Cas9-mediated viral interference in plants. Genome Biol. 16, 238.
-
(2015)
Genome Biol.
, vol.16
, pp. 238
-
-
Ali, Z.1
Abulfaraj, A.2
Idris, A.3
Ali, S.4
Tashkandi, M.5
Mahfouz, M.M.6
-
4
-
-
84938746255
-
Efficient virus-mediated genome editing in plants using the CRISPR/Cas9 system
-
Ali, Z., Abulfaraj, A., Li, L., Ghosh, N., Piatek, M., Mahjoub, A., Aouida, M. et al. (2015b) Efficient virus-mediated genome editing in plants using the CRISPR/Cas9 system. Mol. Plant, 8, 1288–1291.
-
(2015)
Mol. Plant
, vol.8
, pp. 1288-1291
-
-
Ali, Z.1
Abulfaraj, A.2
Li, L.3
Ghosh, N.4
Piatek, M.5
Mahjoub, A.6
Aouida, M.7
-
5
-
-
84971278887
-
CRISPR/Cas9-mediated immunity to geminiviruses: differential interference and evasion
-
Ali, Z., Ali, S., Tashkandi, M., Zaidi, S.S.-E.-A. and Mahfouz, M.M. (2016) CRISPR/Cas9-mediated immunity to geminiviruses: differential interference and evasion. Sci. Rep. 6, 26912.
-
(2016)
Sci. Rep.
, vol.6
, pp. 26912
-
-
Ali, Z.1
Ali, S.2
Tashkandi, M.3
Zaidi, S.S.-E.-A.4
Mahfouz, M.M.5
-
6
-
-
85009919974
-
Conferring resistance to geminiviruses with the CRISPR–Cas prokaryotic immune system
-
Baltes, N.J., Hummel, A.W., Konecna, E., Cegan, R., Bruns, A.N., Bisaro, D.M. and Voytas, D.F. (2015) Conferring resistance to geminiviruses with the CRISPR–Cas prokaryotic immune system. Nat. Plants, 1, 15145.
-
(2015)
Nat. Plants
, vol.1
, pp. 15145
-
-
Baltes, N.J.1
Hummel, A.W.2
Konecna, E.3
Cegan, R.4
Bruns, A.N.5
Bisaro, D.M.6
Voytas, D.F.7
-
7
-
-
34047118522
-
CRISPR provides acquired resistance against viruses in prokaryotes
-
Barrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., Romero, D.A. et al. (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science, 315, 1709–1712.
-
(2007)
Science
, vol.315
, pp. 1709-1712
-
-
Barrangou, R.1
Fremaux, C.2
Deveau, H.3
Richards, M.4
Boyaval, P.5
Moineau, S.6
Romero, D.A.7
-
8
-
-
85012284419
-
New CRISPR-Cas systems from uncultivated microbes
-
Burstein, D., Harrington, L.B., Strutt, S.C. and Probst, A.J. (2017) New CRISPR-Cas systems from uncultivated microbes. Nature, 542, 237–241.
-
(2017)
Nature
, vol.542
, pp. 237-241
-
-
Burstein, D.1
Harrington, L.B.2
Strutt, S.C.3
Probst, A.J.4
-
9
-
-
85027950047
-
Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology
-
Chandrasekaran, J., Brumin, M., Wolf, D., Leibman, D., Klap, C., Pearlsman, M., Sherman, A. et al. (2016) Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Mol. Plant Pathol. 17, 1140–1153.
-
(2016)
Mol. Plant Pathol.
, vol.17
, pp. 1140-1153
-
-
Chandrasekaran, J.1
Brumin, M.2
Wolf, D.3
Leibman, D.4
Klap, C.5
Pearlsman, M.6
Sherman, A.7
-
10
-
-
84989870879
-
A multifunctional AAV-CRISPR-Cas9 and its host response
-
Chew, W.L., Tabebordbar, M., Cheng, J.K.W., Mali, P., Wu, E.Y., Ng, A.H.M., Zhu, K. et al. (2016) A multifunctional AAV-CRISPR-Cas9 and its host response. Nat. Methods, 13, 868–874.
-
(2016)
Nat. Methods
, vol.13
, pp. 868-874
-
-
Chew, W.L.1
Tabebordbar, M.2
Cheng, J.K.W.3
Mali, P.4
Wu, E.Y.5
Ng, A.H.M.6
Zhu, K.7
-
11
-
-
84874624936
-
Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease
-
Cho, S.W., Kim, S., Kim, J.M. and Kim, J.-S. (2013) Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat. Biotechnol. 31, 230–232.
-
(2013)
Nat. Biotechnol.
, vol.31
, pp. 230-232
-
-
Cho, S.W.1
Kim, S.2
Kim, J.M.3
Kim, J.-S.4
-
12
-
-
84873729095
-
Multiplex genome engineering using CRISPR/Cas systems
-
Cong, L., Ran, F.A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P.D. et al. (2013) Multiplex genome engineering using CRISPR/Cas systems. Science, 339, 819–823.
-
(2013)
Science
, vol.339
, pp. 819-823
-
-
Cong, L.1
Ran, F.A.2
Cox, D.3
Lin, S.4
Barretto, R.5
Habib, N.6
Hsu, P.D.7
-
13
-
-
84991728709
-
Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection
-
East-Seletsky, A., O'Connell, M.R., Knight, S.C., Burstein, D., Cate, J.H.D., Tjian, R. and Doudna, J.A. (2016) Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection. Nature, 538, 270–273.
-
(2016)
Nature
, vol.538
, pp. 270-273
-
-
East-Seletsky, A.1
O'Connell, M.R.2
Knight, S.C.3
Burstein, D.4
Cate, J.H.D.5
Tjian, R.6
Doudna, J.A.7
-
14
-
-
85000542327
-
Efficient targeted mutagenesis of rice and tobacco genomes using Cpf1 from Francisella novicida
-
Endo, A., Masafumi, M., Kaya, H. and Toki, S. (2016) Efficient targeted mutagenesis of rice and tobacco genomes using Cpf1 from Francisella novicida. Sci. Rep. 6, 38169.
-
(2016)
Sci. Rep.
, vol.6
, pp. 38169
-
-
Endo, A.1
Masafumi, M.2
Kaya, H.3
Toki, S.4
-
15
-
-
84904068340
-
Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana
-
Fauser, F., Schiml, S. and Puchta, H. (2014) Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana. Plant J. 79, 348–359.
-
(2014)
Plant J.
, vol.79
, pp. 348-359
-
-
Fauser, F.1
Schiml, S.2
Puchta, H.3
-
16
-
-
84885181396
-
Efficient genome editing in plants using a CRISPR/Cas system
-
Feng, Z., Zhang, B., Ding, W., Liu, X., Yang, D.-L., Wei, P., Cao, F. et al. (2013) Efficient genome editing in plants using a CRISPR/Cas system. Cell Res. 23, 1229–1232.
-
(2013)
Cell Res.
, vol.23
, pp. 1229-1232
-
-
Feng, Z.1
Zhang, B.2
Ding, W.3
Liu, X.4
Yang, D.-L.5
Wei, P.6
Cao, F.7
-
17
-
-
78149261827
-
The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA
-
Garneau, J.E., Dupuis, M.E., Villion, M., Romero, D.A., Barrangou, R., Boyaval, P., Fremaux, C. et al. (2010) The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature, 468, 67–71.
-
(2010)
Nature
, vol.468
, pp. 67-71
-
-
Garneau, J.E.1
Dupuis, M.E.2
Villion, M.3
Romero, D.A.4
Barrangou, R.5
Boyaval, P.6
Fremaux, C.7
-
18
-
-
84866859751
-
Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria
-
Gasiunas, G., Barrangou, R., Horvath, P. and Siksnys, V. (2012) Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc. Natl Acad. Sci. USA, 109, E2579–E2586.
-
(2012)
Proc. Natl Acad. Sci. USA
, vol.109
, pp. E2579-E2586
-
-
Gasiunas, G.1
Barrangou, R.2
Horvath, P.3
Siksnys, V.4
-
19
-
-
84902210542
-
Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification
-
Guilinger, J.P., Thompson, D.B. and Liu, D.R. (2014) Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat. Biotechnol. 32, 577–582.
-
(2014)
Nat. Biotechnol.
, vol.32
, pp. 577-582
-
-
Guilinger, J.P.1
Thompson, D.B.2
Liu, D.R.3
-
20
-
-
84884663630
-
Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis
-
Hou, Z., Zhang, Y., Propson, N.E., Howden, S.E., Chu, L., Sontheimer, E.J. and Thomson, J.A. (2013) Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis. Proc. Natl Acad. Sci. USA, 110, 15644–15649.
-
(2013)
Proc. Natl Acad. Sci. USA
, vol.110
, pp. 15644-15649
-
-
Hou, Z.1
Zhang, Y.2
Propson, N.E.3
Howden, S.E.4
Chu, L.5
Sontheimer, E.J.6
Thomson, J.A.7
-
21
-
-
85009495102
-
Targeted mutagenesis in rice using CRISPR-Cpf1 system
-
Hu, X., Wang, C., Liu, Q., Fu, Y. and Wang, K. (2016) Targeted mutagenesis in rice using CRISPR-Cpf1 system. J. Genet. Genomics, 44, 2016–2018.
-
(2016)
J. Genet. Genomics
, vol.44
, pp. 2016-2018
-
-
Hu, X.1
Wang, C.2
Liu, Q.3
Fu, Y.4
Wang, K.5
-
22
-
-
0023600057
-
Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product
-
Ishino, Y., Shinagawa, H., Makino, K., Amemura, M. and Nakata, A. (1987) Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J. Bacteriol. 169, 5429–5433.
-
(1987)
J. Bacteriol.
, vol.169
, pp. 5429-5433
-
-
Ishino, Y.1
Shinagawa, H.2
Makino, K.3
Amemura, M.4
Nakata, A.5
-
23
-
-
0036267740
-
Identification of genes that are associated with DNA repeats in prokaryotes
-
Jansen, R., van Embden, J.D.A., Gaastra, W. and Schouls, L.M. (2002) Identification of genes that are associated with DNA repeats in prokaryotes. Mol. Microbiol. 43, 1565–1575.
-
(2002)
Mol. Microbiol.
, vol.43
, pp. 1565-1575
-
-
Jansen, R.1
van Embden, J.D.A.2
Gaastra, W.3
Schouls, L.M.4
-
24
-
-
84947775797
-
Establishing a CRISPR-Cas-like immune system conferring DNA virus resistance in plants
-
Ji, X., Zhang, H., Zhang, Y., Wang, Y. and Gao, C. (2015) Establishing a CRISPR-Cas-like immune system conferring DNA virus resistance in plants. Nat. Plants, 1, 15144.
-
(2015)
Nat. Plants
, vol.1
, pp. 15144
-
-
Ji, X.1
Zhang, H.2
Zhang, Y.3
Wang, Y.4
Gao, C.5
-
25
-
-
84886926151
-
Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice
-
Jiang, W., Zhou, H., Bi, H., Fromm, M., Yang, B. and Weeks, D.P. (2013) Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res. 41, e188.
-
(2013)
Nucleic Acids Res.
, vol.41
-
-
Jiang, W.1
Zhou, H.2
Bi, H.3
Fromm, M.4
Yang, B.5
Weeks, D.P.6
-
26
-
-
84865070369
-
A programmable dual-RNA – guided DNA endonuclease in adaptive bacterial immunity
-
Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A. and Charpentier, E. (2012) A programmable dual-RNA – guided DNA endonuclease in adaptive bacterial immunity. Science, 337, 816–822.
-
(2012)
Science
, vol.337
, pp. 816-822
-
-
Jinek, M.1
Chylinski, K.2
Fonfara, I.3
Hauer, M.4
Doudna, J.A.5
Charpentier, E.6
-
27
-
-
84876567971
-
RNA-programmed genome editing in human cells
-
Jinek, M., East, A., Cheng, A., Lin, S., Ma, E. and Doudna, J.A. (2013) RNA-programmed genome editing in human cells. eLife, e00471.
-
(2013)
eLife
-
-
Jinek, M.1
East, A.2
Cheng, A.3
Lin, S.4
Ma, E.5
Doudna, J.A.6
-
28
-
-
84971254394
-
Highly specific targeted mutagenesis in plants using Staphylococcus aureus Cas9
-
Kaya, H., Mikami, M., Endo, A., Endo, M. and Toki, S. (2016) Highly specific targeted mutagenesis in plants using Staphylococcus aureus Cas9. Sci. Rep. 6, 26871.
-
(2016)
Sci. Rep.
, vol.6
, pp. 26871
-
-
Kaya, H.1
Mikami, M.2
Endo, A.3
Endo, M.4
Toki, S.5
-
29
-
-
85013155616
-
CRISPR/Cpf1-mediated DNA-free plant genome editing
-
Kim, H., Kim, S.-T., Ryu, J., Kang, B.-C., Kim, J.-S. and Kim, S.-G. (2017) CRISPR/Cpf1-mediated DNA-free plant genome editing. Nat. Commun. 8, 14406.
-
(2017)
Nat. Commun.
, vol.8
, pp. 14406
-
-
Kim, H.1
Kim, S.-T.2
Ryu, J.3
Kang, B.-C.4
Kim, J.-S.5
Kim, S.-G.6
-
30
-
-
84949791988
-
Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition
-
Kleinstiver, B.P., Prew, M.S., Tsai, S.Q., Nguyen, N.T., Topkar, V.V., Zheng, Z. and Joung, J.K. (2015a) Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition. Nat. Biotechnol. 33, 1293–1298.
-
(2015)
Nat. Biotechnol.
, vol.33
, pp. 1293-1298
-
-
Kleinstiver, B.P.1
Prew, M.S.2
Tsai, S.Q.3
Nguyen, N.T.4
Topkar, V.V.5
Zheng, Z.6
Joung, J.K.7
-
31
-
-
84937908208
-
Engineered CRISPR-Cas9 nucleases with altered PAM specificities
-
Kleinstiver, B.P., Prew, M.S., Tsai, S.Q., Topkar, V.V., Nguyen, N.T., Zheng, Z., Gonzales, A.P.W. et al. (2015b) Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature, 523, 481–485.
-
(2015)
Nature
, vol.523
, pp. 481-485
-
-
Kleinstiver, B.P.1
Prew, M.S.2
Tsai, S.Q.3
Topkar, V.V.4
Nguyen, N.T.5
Zheng, Z.6
Gonzales, A.P.W.7
-
32
-
-
84971006562
-
Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage
-
Komor, A.C., Kim, Y.B., Packer, M.S., Zuris, J.A. and Liu, D.R. (2016) Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature, 533, 420–424.
-
(2016)
Nature
, vol.533
, pp. 420-424
-
-
Komor, A.C.1
Kim, Y.B.2
Packer, M.S.3
Zuris, J.A.4
Liu, D.R.5
-
33
-
-
77249170184
-
Establishing, maintaining and modifying DNA methylation patterns in plants and animals
-
Law, J.A. and Jacobsen, S.E. (2010) Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat. Rev. Genet. 11, 204–220.
-
(2010)
Nat. Rev. Genet.
, vol.11
, pp. 204-220
-
-
Law, J.A.1
Jacobsen, S.E.2
-
34
-
-
84883785822
-
Multiplex and homologous recombination mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9
-
Li, J.-F., Norville, J.E., Aach, J., McCormack, M., Zhang, D., Bush, J., Church, G.M. et al. (2013) Multiplex and homologous recombination mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat. Biotechnol. 31, 688–691.
-
(2013)
Nat. Biotechnol.
, vol.31
, pp. 688-691
-
-
Li, J.-F.1
Norville, J.E.2
Aach, J.3
McCormack, M.4
Zhang, D.5
Bush, J.6
Church, G.M.7
-
35
-
-
85009243700
-
Generation of targeted point mutations in rice by a modified CRISPR/Cas9 system
-
Li, J., Sun, Y., Du, J., Zhao, Y. and Xia, L. (2016) Generation of targeted point mutations in rice by a modified CRISPR/Cas9 system. Mol. Plant, 10, 526–529.
-
(2016)
Mol. Plant
, vol.10
, pp. 526-529
-
-
Li, J.1
Sun, Y.2
Du, J.3
Zhao, Y.4
Xia, L.5
-
36
-
-
85010058709
-
Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes
-
Liang, Z., Chen, K., Li, T., Zhang, Y., Wang, Y., Zhao, Q., Liu, J. et al. (2017) Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nat. Commun. 8, 14261.
-
(2017)
Nat. Commun.
, vol.8
, pp. 14261
-
-
Liang, Z.1
Chen, K.2
Li, T.3
Zhang, Y.4
Wang, Y.5
Zhao, Q.6
Liu, J.7
-
37
-
-
84988569121
-
Editing DNA methylation in the mammalian genome
-
Liu, X.S., Wu, H., Ji, X., Stelzer, Y., Wu, X., Czauderna, S., Shu, J. et al. (2016) Editing DNA methylation in the mammalian genome. Cell, 167, 233–247.
-
(2016)
Cell
, vol.167
, pp. 233-247
-
-
Liu, X.S.1
Wu, H.2
Ji, X.3
Stelzer, Y.4
Wu, X.5
Czauderna, S.6
Shu, J.7
-
38
-
-
84942931752
-
A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation
-
Lowder, L.G., Zhang, D., Baltes, N.J., Paul, J.W., Tang, X., Zheng, X., Voytas, D.F. et al. (2015) A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation. Plant Physiol. 169, 971–985.
-
(2015)
Plant Physiol.
, vol.169
, pp. 971-985
-
-
Lowder, L.G.1
Zhang, D.2
Baltes, N.J.3
Paul, J.W.4
Tang, X.5
Zheng, X.6
Voytas, D.F.7
-
39
-
-
85009355218
-
Precise editing of a target base in the rice genome using a modified CRISPR/Cas9 system
-
Lu, Y. and Zhu, J. (2016) Precise editing of a target base in the rice genome using a modified CRISPR/Cas9 system. Mol. Plant, 10, 523–525.
-
(2016)
Mol. Plant
, vol.10
, pp. 523-525
-
-
Lu, Y.1
Zhu, J.2
-
40
-
-
34248374277
-
A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action
-
Makarova, K.S., Grishin, N.V., Shabalina, S.A., Wolf, Y.I. and Koonin, E.V. (2006) A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol. Direct, 1, 7.
-
(2006)
Biol. Direct
, vol.1
, pp. 7
-
-
Makarova, K.S.1
Grishin, N.V.2
Shabalina, S.A.3
Wolf, Y.I.4
Koonin, E.V.5
-
41
-
-
84944449180
-
An updated evolutionary classification of CRISPR-Cas systems
-
Makarova, K.S., Wolf, Y.I., Alkhnbashi, O.S., Costa, F., Shah, S.A., Saunders, S.J., Barrangou, R. et al. (2015) An updated evolutionary classification of CRISPR-Cas systems. Nat. Rev. Microbiol. 13, 722–736.
-
(2015)
Nat. Rev. Microbiol.
, vol.13
, pp. 722-736
-
-
Makarova, K.S.1
Wolf, Y.I.2
Alkhnbashi, O.S.3
Costa, F.4
Shah, S.A.5
Saunders, S.J.6
Barrangou, R.7
-
42
-
-
84873734105
-
RNA-guided human genome engineering via Cas9
-
Mali, P., Yang, L., Esvelt, K.M., Aach, J., Guell, M., DiCarlo, J.E., Norville, J.E. et al. (2013) RNA-guided human genome engineering via Cas9. Science, 339, 823–826.
-
(2013)
Science
, vol.339
, pp. 823-826
-
-
Mali, P.1
Yang, L.2
Esvelt, K.M.3
Aach, J.4
Guell, M.5
DiCarlo, J.E.6
Norville, J.E.7
-
43
-
-
85007321869
-
DNA-free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins
-
Malnoy, M., Viola, R., Jung, M.-H., Koo, O.-J., Kim, S., Kim, J.-S., Velasco, R. et al. (2016) DNA-free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins. Front. Plant Sci. 7, 1904.
-
(2016)
Front. Plant Sci.
, vol.7
, pp. 1904
-
-
Malnoy, M.1
Viola, R.2
Jung, M.-H.3
Koo, O.-J.4
Kim, S.5
Kim, J.-S.6
Velasco, R.7
-
44
-
-
78249245697
-
Nontransgenic genome modification in plant cells
-
Marton, I., Zuker, A., Shklarman, E., Zeevi, V., Tovkach, A., Roffe, S., Ovadis, M. et al. (2010) Nontransgenic genome modification in plant cells. Plant Physiol. 154, 1079–1087.
-
(2010)
Plant Physiol.
, vol.154
, pp. 1079-1087
-
-
Marton, I.1
Zuker, A.2
Shklarman, E.3
Zeevi, V.4
Tovkach, A.5
Roffe, S.6
Ovadis, M.7
-
45
-
-
84968324811
-
Recent progress in CRISPR/Cas9 technology
-
Mei, Y., Wang, Y., Chen, H., Sun, Z.S. and Ju, X.D. (2016) Recent progress in CRISPR/Cas9 technology. J. Genet. Genom. 43, 63–75.
-
(2016)
J. Genet. Genom.
, vol.43
, pp. 63-75
-
-
Mei, Y.1
Wang, Y.2
Chen, H.3
Sun, Z.S.4
Ju, X.D.5
-
46
-
-
84885180177
-
Targeted mutagenesis in rice using CRISPR-Cas system
-
Miao, J., Guo, D., Zhang, J., Huang, Q., Qin, G., Zhang, X., Wan, J. et al. (2013) Targeted mutagenesis in rice using CRISPR-Cas system. Cell Res. 23, 1233–1236.
-
(2013)
Cell Res.
, vol.23
, pp. 1233-1236
-
-
Miao, J.1
Guo, D.2
Zhang, J.3
Huang, Q.4
Qin, G.5
Zhang, X.6
Wan, J.7
-
47
-
-
84971507156
-
Precision targeted mutagenesis via Cas9 paired nickases in rice
-
Mikami, M., Toki, S. and Endo, M. (2016) Precision targeted mutagenesis via Cas9 paired nickases in rice. Plant Cell Physiol. 57, 1058–1068.
-
(2016)
Plant Cell Physiol.
, vol.57
, pp. 1058-1068
-
-
Mikami, M.1
Toki, S.2
Endo, M.3
-
48
-
-
0029166294
-
Long stretches of short tandem repeats are present in the largest replicons of the Archaea Haloferax mediterranei and Haloferax volcanii and could be involved in replicon partitioning
-
Mojica, F.J.M., Ferrer, C., Juez, G. and Rodriguez-Valera, F. (1995) Long stretches of short tandem repeats are present in the largest replicons of the Archaea Haloferax mediterranei and Haloferax volcanii and could be involved in replicon partitioning. Mol. Microbiol. 17, 85–93.
-
(1995)
Mol. Microbiol.
, vol.17
, pp. 85-93
-
-
Mojica, F.J.M.1
Ferrer, C.2
Juez, G.3
Rodriguez-Valera, F.4
-
49
-
-
0034034401
-
Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria
-
Mojica, F.J.M., Díez-Villaseñor, C., Soria, E. and Juez, G. (2000) Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria. Mol. Microbiol. 36, 244–246.
-
(2000)
Mol. Microbiol.
, vol.36
, pp. 244-246
-
-
Mojica, F.J.M.1
Díez-Villaseñor, C.2
Soria, E.3
Juez, G.4
-
50
-
-
84883828590
-
Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease
-
Nekrasov, V., Staskawicz, B., Weigel, D., Jones, J.D.G. and Kamoun, S. (2013) Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat. Biotechnol. 31, 691–693.
-
(2013)
Nat. Biotechnol.
, vol.31
, pp. 691-693
-
-
Nekrasov, V.1
Staskawicz, B.2
Weigel, D.3
Jones, J.D.G.4
Kamoun, S.5
-
51
-
-
84981516964
-
Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems
-
Nishida, K., Arazoe, T., Yachie, N., Banno, S., Kakimoto, M., Tabata, M., Mochizuki, M. et al. (2016) Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science, 353, aaf8729.
-
(2016)
Science
, vol.353
, pp. aaf8729
-
-
Nishida, K.1
Arazoe, T.2
Yachie, N.3
Banno, S.4
Kakimoto, M.5
Tabata, M.6
Mochizuki, M.7
-
52
-
-
84884906690
-
RNA-guided gene activation by CRISPR-Cas9-based transcription factors
-
Perez-Pinera, P., Kocak, D.D., Vockley, C.M., Adler, A.F., Kabadi, A.M., Polstein, L.R., Thakore, P.I. et al. (2013) RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat. Methods, 10, 973–976.
-
(2013)
Nat. Methods
, vol.10
, pp. 973-976
-
-
Perez-Pinera, P.1
Kocak, D.D.2
Vockley, C.M.3
Adler, A.F.4
Kabadi, A.M.5
Polstein, L.R.6
Thakore, P.I.7
-
53
-
-
84928212884
-
RNA-guided transcriptional regulation in planta via synthetic dCas9-based transcription factors
-
Piatek, A., Ali, Z., Baazim, H., Li, L., Abulfaraj, A., Al-Shareef, S., Aouida, M. et al. (2015) RNA-guided transcriptional regulation in planta via synthetic dCas9-based transcription factors. Plant Biotechnol. J. 13, 578–589.
-
(2015)
Plant Biotechnol. J.
, vol.13
, pp. 578-589
-
-
Piatek, A.1
Ali, Z.2
Baazim, H.3
Li, L.4
Abulfaraj, A.5
Al-Shareef, S.6
Aouida, M.7
-
54
-
-
84929206935
-
Cas9-mediated targeting of viral RNA in eukaryotic cells
-
Price, A.A., Sampson, T.R., Ratner, H.K., Grakoui, A. and Weiss, D.S. (2015) Cas9-mediated targeting of viral RNA in eukaryotic cells. Proc. Natl Acad. Sci. USA, 112, 6164–6169.
-
(2015)
Proc. Natl Acad. Sci. USA
, vol.112
, pp. 6164-6169
-
-
Price, A.A.1
Sampson, T.R.2
Ratner, H.K.3
Grakoui, A.4
Weiss, D.S.5
-
55
-
-
85027907349
-
Engineering of CRISPR/Cas9-mediated potyvirus resistance in transgene-free Arabidopsis plants
-
Pyott, D.E., Sheehan, E. and Molnar, A. (2016) Engineering of CRISPR/Cas9-mediated potyvirus resistance in transgene-free Arabidopsis plants. Mol. Plant Pathol. 4, 1–13.
-
(2016)
Mol. Plant Pathol.
, vol.4
, pp. 1-13
-
-
Pyott, D.E.1
Sheehan, E.2
Molnar, A.3
-
56
-
-
84874687019
-
Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression
-
Qi, L.S., Larson, M.H., Gilbert, L.A., Doudna, J.A., Weissman, J.S., Arkin, A.P. and Lim, W.A. (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell, 152, 1173–1183.
-
(2013)
Cell
, vol.152
, pp. 1173-1183
-
-
Qi, L.S.1
Larson, M.H.2
Gilbert, L.A.3
Doudna, J.A.4
Weissman, J.S.5
Arkin, A.P.6
Lim, W.A.7
-
57
-
-
84884288934
-
Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity
-
Ran, F.A., Hsu, P.D., Lin, C.Y., Gootenberg, J.S., Konermann, S., Trevino, A.E., Scott, D.A. et al. (2013) Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell, 154, 1380–1389.
-
(2013)
Cell
, vol.154
, pp. 1380-1389
-
-
Ran, F.A.1
Hsu, P.D.2
Lin, C.Y.3
Gootenberg, J.S.4
Konermann, S.5
Trevino, A.E.6
Scott, D.A.7
-
58
-
-
84927514894
-
In vivo genome editing using Staphylococcus aureus Cas9
-
Ran, F.A., Cong, L., Yan, W.X., Scott, D.A., Gootenberg, J.S., Kriz, A.J., Zetsche, B. et al. (2015) In vivo genome editing using Staphylococcus aureus Cas9. Nature, 520, 186–190.
-
(2015)
Nature
, vol.520
, pp. 186-190
-
-
Ran, F.A.1
Cong, L.2
Yan, W.X.3
Scott, D.A.4
Gootenberg, J.S.5
Kriz, A.J.6
Zetsche, B.7
-
59
-
-
84992739289
-
CRISPR/Cas9: a new tool for RNA imaging in live cells
-
Rau, K. and Rentmeister, A. (2016) CRISPR/Cas9: a new tool for RNA imaging in live cells. ChemBioChem, 17, 1682–1684.
-
(2016)
ChemBioChem
, vol.17
, pp. 1682-1684
-
-
Rau, K.1
Rentmeister, A.2
-
60
-
-
84877782955
-
A CRISPR/Cas system mediates bacterial innate immune evasion and virulence
-
Sampson, T.R., Saroj, S.D., Llewellyn, A.C., Tzeng, Y. and Weiss, D.S. (2013) A CRISPR/Cas system mediates bacterial innate immune evasion and virulence. Nature, 497, 254–257.
-
(2013)
Nature
, vol.497
, pp. 254-257
-
-
Sampson, T.R.1
Saroj, S.D.2
Llewellyn, A.C.3
Tzeng, Y.4
Weiss, D.S.5
-
61
-
-
84916624400
-
The CRISPR/Cas system can be used as nuclease for in planta gene targeting and as paired nickases for directed mutagenesis in Arabidopsis resulting in heritable progeny
-
Schiml, S., Fauser, F. and Puchta, H. (2014) The CRISPR/Cas system can be used as nuclease for in planta gene targeting and as paired nickases for directed mutagenesis in Arabidopsis resulting in heritable progeny. Plant J. 80, 1139–1150.
-
(2014)
Plant J.
, vol.80
, pp. 1139-1150
-
-
Schiml, S.1
Fauser, F.2
Puchta, H.3
-
62
-
-
84976505796
-
Repair of adjacent single-strand breaks is often accompanied by the formation of tandem sequence duplications in plant genomes
-
Schiml, S., Fauser, F. and Puchta, H. (2016) Repair of adjacent single-strand breaks is often accompanied by the formation of tandem sequence duplications in plant genomes. Proc. Natl Acad. Sci. USA, 113, 7266–7271.
-
(2016)
Proc. Natl Acad. Sci. USA
, vol.113
, pp. 7266-7271
-
-
Schiml, S.1
Fauser, F.2
Puchta, H.3
-
63
-
-
85042815594
-
Targeted genome modification of crop plants using a CRISPR-Cas system
-
Shan, Q.W., Wang, Y.P., Li, J., Zhang, Y., Chen, K.L., Liang, Z., Zhang, K. et al. (2013) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat. Biotechnol. 31, 686–688.
-
(2013)
Nat. Biotechnol.
, vol.31
, pp. 686-688
-
-
Shan, Q.W.1
Wang, Y.P.2
Li, J.3
Zhang, Y.4
Chen, K.L.5
Liang, Z.6
Zhang, K.7
-
64
-
-
84947736727
-
Discovery and functional characterization of diverse Class 2 CRISPR-Cas systems
-
Shmakov, S., Abudayyeh, O.O., Makarova, K.S., Wolf, Y.I., Gootenberg, J.S., Semenova, E., Minakhin, L. et al. (2015) Discovery and functional characterization of diverse Class 2 CRISPR-Cas systems. Mol. Cell, 60, 385–397.
-
(2015)
Mol. Cell
, vol.60
, pp. 385-397
-
-
Shmakov, S.1
Abudayyeh, O.O.2
Makarova, K.S.3
Wolf, Y.I.4
Gootenberg, J.S.5
Semenova, E.6
Minakhin, L.7
-
65
-
-
84952943845
-
Rationally engineered Cas9 nucleases with improved specificity
-
Slaymaker, I.M., Gao, L., Zetsche, B., Scott, D.A., Yan, W.X. and Zhang, F. (2016) Rationally engineered Cas9 nucleases with improved specificity. Science, 351, 84–88.
-
(2016)
Science
, vol.351
, pp. 84-88
-
-
Slaymaker, I.M.1
Gao, L.2
Zetsche, B.3
Scott, D.A.4
Yan, W.X.5
Zhang, F.6
-
66
-
-
85009135352
-
CRISPR/Cas9: a powerful tool for crop genome editing
-
Song, G., Jia, M., Chen, K., Kong, X., Khattak, B., Xie, C., Li, A. et al. (2016) CRISPR/Cas9: a powerful tool for crop genome editing. Crop J. 4, 75–82.
-
(2016)
Crop J.
, vol.4
, pp. 75-82
-
-
Song, G.1
Jia, M.2
Chen, K.3
Kong, X.4
Khattak, B.5
Xie, C.6
Li, A.7
-
67
-
-
84961350912
-
Highly efficient heritable plant genome engineering using Cas9 orthologues from Streptococcus thermophilus and Staphylococcus aureus
-
Steinert, J., Schiml, S., Fauser, F. and Puchta, H. (2015) Highly efficient heritable plant genome engineering using Cas9 orthologues from Streptococcus thermophilus and Staphylococcus aureus. Plant J. 84, 1295–1305.
-
(2015)
Plant J.
, vol.84
, pp. 1295-1305
-
-
Steinert, J.1
Schiml, S.2
Fauser, F.3
Puchta, H.4
-
68
-
-
84955574772
-
Site-directed mutagenesis in Petunia × hybrida protoplast system using direct delivery of purified recombinant Cas9 ribonucleoproteins
-
Subburaj, S., Chung, S.J., Lee, C., Ryu, S.M., Kim, D.H., Kim, J.S., Bae, S. et al. (2016) Site-directed mutagenesis in Petunia × hybrida protoplast system using direct delivery of purified recombinant Cas9 ribonucleoproteins. Plant Cell Rep. 35, 1535–1544.
-
(2016)
Plant Cell Rep.
, vol.35
, pp. 1535-1544
-
-
Subburaj, S.1
Chung, S.J.2
Lee, C.3
Ryu, S.M.4
Kim, D.H.5
Kim, J.S.6
Bae, S.7
-
69
-
-
85007363846
-
Precise genome modification via sequence-specific nucleases-mediated gene targeting for crop improvement
-
Sun, Y., Li, J. and Xia, L. (2016) Precise genome modification via sequence-specific nucleases-mediated gene targeting for crop improvement. Front. Plant Sci. 7, 1928.
-
(2016)
Front. Plant Sci.
, vol.7
, pp. 1928
-
-
Sun, Y.1
Li, J.2
Xia, L.3
-
70
-
-
84995550201
-
Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes
-
Svitashev, S., Schwartz, C., Lenderts, B., Young, J.K. and Cigan, A.M. (2016) Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes. Nat. Commun. 7, 13274.
-
(2016)
Nat. Commun.
, vol.7
, pp. 13274
-
-
Svitashev, S.1
Schwartz, C.2
Lenderts, B.3
Young, J.K.4
Cigan, A.M.5
-
71
-
-
84902204289
-
Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing
-
Tsai, S.Q., Wyvekens, N., Khayter, C., Foden, J.A., Thapar, V., Reyon, D., Goodwin, M.J. et al. (2014) Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat. Biotechnol. 32, 569–576.
-
(2014)
Nat. Biotechnol.
, vol.32
, pp. 569-576
-
-
Tsai, S.Q.1
Wyvekens, N.2
Khayter, C.3
Foden, J.A.4
Thapar, V.5
Reyon, D.6
Goodwin, M.J.7
-
72
-
-
84890831873
-
RNA guided genome editing for target gene mutations in wheat
-
Upadhyay, S.K., Kumar, J., Alok, A. and Tuli, R. (2013) RNA guided genome editing for target gene mutations in wheat. G3, 3, 2233–2238.
-
(2013)
G3
, vol.3
, pp. 2233-2238
-
-
Upadhyay, S.K.1
Kumar, J.2
Alok, A.3
Tuli, R.4
-
73
-
-
84979034770
-
Repurposing the CRISPR-Cas9 system for targeted DNA methylation
-
Vojta, A., Dobrinic, P., Tadic, V., Bockor, L., Korac, P., Julg, B., Klasic, M. et al. (2016) Repurposing the CRISPR-Cas9 system for targeted DNA methylation. Nucleic Acids Res. 44, 5615–5628.
-
(2016)
Nucleic Acids Res.
, vol.44
, pp. 5615-5628
-
-
Vojta, A.1
Dobrinic, P.2
Tadic, V.3
Bockor, L.4
Korac, P.5
Julg, B.6
Klasic, M.7
-
74
-
-
84939191325
-
Use of designer nucleases for targeted gene and genome editing in plants
-
Weeks, D.P., Spalding, M.H. and Yang, B. (2016) Use of designer nucleases for targeted gene and genome editing in plants. Plant Biotechnol. J. 14, 483–495.
-
(2016)
Plant Biotechnol. J.
, vol.14
, pp. 483-495
-
-
Weeks, D.P.1
Spalding, M.H.2
Yang, B.3
-
75
-
-
84857097177
-
RNA-guided genetic silencing systems in bacteria and archaea
-
Wiedenheft, B., Sternberg, S.H. and Doudna, J.A. (2012) RNA-guided genetic silencing systems in bacteria and archaea. Nature, 482, 331–338.
-
(2012)
Nature
, vol.482
, pp. 331-338
-
-
Wiedenheft, B.1
Sternberg, S.H.2
Doudna, J.A.3
-
76
-
-
84938709908
-
The regulatory status of genome-edited crops
-
Wolt, J.D., Wang, K. and Yang, B. (2016) The regulatory status of genome-edited crops. Plant Biotechnol. J. 14, 510–518.
-
(2016)
Plant Biotechnol. J.
, vol.14
, pp. 510-518
-
-
Wolt, J.D.1
Wang, K.2
Yang, B.3
-
77
-
-
84947255513
-
DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins
-
Woo, J.W., Kim, J., Kwon, S.I., Corvalan, C., Cho, S.W., Kim, H., Kim, S.-G. et al. (2015) DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat. Biotechnol. 33, 1162–1164.
-
(2015)
Nat. Biotechnol.
, vol.33
, pp. 1162-1164
-
-
Woo, J.W.1
Kim, J.2
Kwon, S.I.3
Corvalan, C.4
Cho, S.W.5
Kim, H.6
Kim, S.-G.7
-
78
-
-
84924322574
-
Rational design of a split-Cas9 enzyme complex
-
Wright, A.V., Sternberg, S.H., Taylor, D.W., Staahl, B.T., Bardales, J.A., Kornfeld, J.E. and Doudna, J.A. (2015) Rational design of a split-Cas9 enzyme complex. Proc. Natl Acad. Sci. USA, 112, 2984–2989.
-
(2015)
Proc. Natl Acad. Sci. USA
, vol.112
, pp. 2984-2989
-
-
Wright, A.V.1
Sternberg, S.H.2
Taylor, D.W.3
Staahl, B.T.4
Bardales, J.A.5
Kornfeld, J.E.6
Doudna, J.A.7
-
79
-
-
84884962826
-
RNA-guided genome editing in plants using a CRISPR-Cas system
-
Xie, K. and Yang, Y. (2013) RNA-guided genome editing in plants using a CRISPR-Cas system. Mol. Plant, 6, 1975–1983.
-
(2013)
Mol. Plant
, vol.6
, pp. 1975-1983
-
-
Xie, K.1
Yang, Y.2
-
80
-
-
85013471837
-
Generation of targeted mutant rice using a CRISPR-Cpf1 system
-
Xu, R., Qin, R., Li, H., Li, D., Li, L., Wei, P. and Yang, J. (2016) Generation of targeted mutant rice using a CRISPR-Cpf1 system. Plant Biotechnol. J. doi: 10.1111/pbi.12669
-
(2016)
Plant Biotechnol. J.
-
-
Xu, R.1
Qin, R.2
Li, H.3
Li, D.4
Li, L.5
Wei, P.6
Yang, J.7
-
81
-
-
84975678715
-
Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system
-
Zetsche, B., Gootenberg, J.S., Abudayyeh, O.O., Slaymaker, I.M., Makarova, K.S., Essletzbichler, P., Volz, S.E. et al. (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell, 163, 759–771.
-
(2015)
Cell
, vol.163
, pp. 759-771
-
-
Zetsche, B.1
Gootenberg, J.S.2
Abudayyeh, O.O.3
Slaymaker, I.M.4
Makarova, K.S.5
Essletzbichler, P.6
Volz, S.E.7
-
82
-
-
85012981989
-
Progress in genome editing technology and its application in plants
-
Zhang, K., Raboanatahiry, N., Zhu, B. and Li, M. (2017) Progress in genome editing technology and its application in plants. Front. Plant Sci. 8, 177.
-
(2017)
Front. Plant Sci.
, vol.8
, pp. 177
-
-
Zhang, K.1
Raboanatahiry, N.2
Zhu, B.3
Li, M.4
|