-
1
-
-
84941711334
-
Designed nucleases for targeted genome editing
-
Lee, J., Chung, J.-H., Kim, H. M., Kim, D.-W. & Kim, H. Designed nucleases for targeted genome editing. Plant Biotechnol. J. 14, 448-462 (2016).
-
(2016)
Plant Biotechnol. J.
, vol.14
, pp. 448-462
-
-
Lee, J.1
Chung, J.-H.2
Kim, H.M.3
Kim, D.-W.4
Kim, H.5
-
2
-
-
84938521400
-
Genome editing with engineered nucleases in plants
-
Osakabe, Y. & Osakabe, K. Genome editing with engineered nucleases in plants. Plant Cell Physiol. 56, 389-400 (2015).
-
(2015)
Plant Cell Physiol.
, vol.56
, pp. 389-400
-
-
Osakabe, Y.1
Osakabe, K.2
-
3
-
-
84874627868
-
Plant genome engineering with sequence-specific nucleases
-
Voytas, D. F. Plant genome engineering with sequence-specific nucleases. Annu. Rev. Plant Biol. 64, 327-350 (2013).
-
(2013)
Annu. Rev. Plant Biol.
, vol.64
, pp. 327-350
-
-
Voytas, D.F.1
-
4
-
-
84964310738
-
The CRISPR/Cas genome-editing tool: Application in improvement of crops
-
Khatodia, S., Bhatotia, K., Passricha, N., Khurana, S. M. P. & Tuteja, N. The CRISPR/Cas Genome-Editing Tool: Application in Improvement of Crops. Front. Plant Sci. 7, 506 (2016).
-
(2016)
Front. Plant Sci.
, vol.7
, pp. 506
-
-
Khatodia, S.1
Bhatotia, K.2
Passricha, N.3
Khurana, S.M.P.4
Tuteja, N.5
-
5
-
-
84922522034
-
The CRISPR-cas system for plant genome editing: Advances and opportunities
-
Kumar, V. & Jain, M. The CRISPR-Cas system for plant genome editing: advances and opportunities. J. Exp. Bot. 66, 47-57 (2015).
-
(2015)
J. Exp. Bot.
, vol.66
, pp. 47-57
-
-
Kumar, V.1
Jain, M.2
-
6
-
-
84927514894
-
In vivo genome editing using staphylococcus aureus cas9
-
Ran, F. A. et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature 520, 186-191 (2015).
-
(2015)
Nature
, vol.520
, pp. 186-191
-
-
Ran, F.A.1
-
7
-
-
84895832944
-
Phylogeny of cas9 determines functional exchangeability of dual-RNA and cas9 among orthologous type II CRISPR-cas systems
-
Fonfara, I. et al. Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems. Nucleic Acids Res. 42, 2577-2590 (2014).
-
(2014)
Nucleic Acids Res.
, vol.42
, pp. 2577-2590
-
-
Fonfara, I.1
-
8
-
-
84944449180
-
An updated evolutionary classification of CRISPR-cas systems
-
Makarova, K. S. et al. An updated evolutionary classification of CRISPR-Cas systems. Nat. Rev. Microbiol. 13, 722-736 (2015).
-
(2015)
Nat. Rev. Microbiol.
, vol.13
, pp. 722-736
-
-
Makarova, K.S.1
-
9
-
-
84865070369
-
A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
-
Jinek, M. et al. A Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive Bacterial Immunity. Science (80-.). 337, 816-821 (2012).
-
(2012)
Science (80-.)
, vol.337
, pp. 816-821
-
-
Jinek, M.1
-
10
-
-
84884663630
-
Efficient genome engineering in human pluripotent stem cells using cas9 from neisseria meningitidis
-
Hou, Z. et al. Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis. Proc. Natl. Acad. Sci. U. S. A. 110, 15644-15649 (2013).
-
(2013)
Proc. Natl. Acad. Sci. U. S. A.
, vol.110
, pp. 15644-15649
-
-
Hou, Z.1
-
11
-
-
84961350912
-
Highly efficient heritable plant genome engineering using cas9 orthologues from streptococcus thermophilus and staphylococcus aureus
-
Steinert, J., Schiml, S., Fauser, F. & Puchta, H. Highly efficient heritable plant genome engineering using Cas9 orthologues from Streptococcus thermophilus and Staphylococcus aureus. Plant J. 84, 1295-1305 (2015).
-
(2015)
Plant J.
, vol.84
, pp. 1295-1305
-
-
Steinert, J.1
Schiml, S.2
Fauser, F.3
Puchta, H.4
-
12
-
-
84971254394
-
Highly specific targeted mutagenesis in plants using staphylococcus aureus cas9
-
Kaya, H., Mikami, M., Endo, A., Endo, M. & Toki, S. Highly specific targeted mutagenesis in plants using Staphylococcus aureus Cas9. Sci. Rep. 6, 26871 (2016).
-
(2016)
Sci. Rep.
, vol.6
, pp. 26871
-
-
Kaya, H.1
Mikami, M.2
Endo, A.3
Endo, M.4
Toki, S.5
-
13
-
-
84975678715
-
Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-cas system
-
Zetsche, B. et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163, 759-771 (2015).
-
(2015)
Cell
, vol.163
, pp. 759-771
-
-
Zetsche, B.1
-
14
-
-
15444370124
-
Processing of DNA for nonhomologous end-joining by cell-free extract
-
Budman, J. & Chu, G. Processing of DNA for nonhomologous end-joining by cell-free extract. EMBO J. 24, 849-860 (2005).
-
(2005)
EMBO J.
, vol.24
, pp. 849-860
-
-
Budman, J.1
Chu, G.2
-
15
-
-
84982949939
-
Advancing crop transformation in the era of genome editing
-
Altpeter, F. et al. Advancing Crop Transformation in the Era of Genome Editing. Plant Cell 28, 1510-1520 (2016).
-
(2016)
Plant Cell
, vol.28
, pp. 1510-1520
-
-
Altpeter, F.1
-
16
-
-
84941956073
-
CRISPR/Cas9-mediated genome editing and gene replacement in plants: Transitioning from lab to field
-
Schaeffer, S. M. & Nakata, P. A. CRISPR/Cas9-mediated genome editing and gene replacement in plants: Transitioning from lab to field. Plant Sci. 240, 130-142 (2015).
-
(2015)
Plant Sci.
, vol.240
, pp. 130-142
-
-
Schaeffer, S.M.1
Nakata, P.A.2
-
17
-
-
84938551854
-
Comparison of CRISPR/Cas9 expression constructs for efficient targeted mutagenesis in rice
-
Mikami, M., Toki, S. & Endo, M. Comparison of CRISPR/Cas9 expression constructs for efficient targeted mutagenesis in rice. Plant Mol. Biol. 88, 561-572 (2015).
-
(2015)
Plant Mol. Biol.
, vol.88
, pp. 561-572
-
-
Mikami, M.1
Toki, S.2
Endo, M.3
-
18
-
-
0027549678
-
Polyubiquitin gene expression and structural properties of the ubi4-2 gene in petroselinum crispum
-
Kawalleck, P., Somssich, I. E., Feldbrugge, M., Hahlbrock, K. & Weisshaar, B. Polyubiquitin gene expression and structural properties of the ubi4-2 gene in Petroselinum crispum. Plant Mol. Biol. 21, 673-684 (1993).
-
(1993)
Plant Mol. Biol.
, vol.21
, pp. 673-684
-
-
Kawalleck, P.1
Somssich, I.E.2
Feldbrugge, M.3
Hahlbrock, K.4
Weisshaar, B.5
-
19
-
-
84904068340
-
Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in arabidopsis thaliana
-
Fauser, F., Schiml, S. & Puchta, H. Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana. Plant J. 79, 348-359 (2014).
-
(2014)
Plant J.
, vol.79
, pp. 348-359
-
-
Fauser, F.1
Schiml, S.2
Puchta, H.3
-
20
-
-
0001153595
-
Expression of a maize ubiquitin gene promoter-bar chimeric gene in transgenic rice plants
-
Toki, S. et al. Expression of a Maize Ubiquitin Gene Promoter-bar Chimeric Gene in Transgenic Rice Plants. Plant Physiol. 100, 1503-1507 (1992).
-
(1992)
Plant Physiol.
, vol.100
, pp. 1503-1507
-
-
Toki, S.1
-
21
-
-
0029556712
-
Genetic dissection of carotenoid synthesis in arabidopsis defines plastoquinone as an essential component of phytoene desaturation
-
Norris, S. R., Barrette, T. R. & Della Penna, D. Genetic dissection of carotenoid synthesis in arabidopsis defines plastoquinone as an essential component of phytoene desaturation. Plant Cell 7, 2139-2149 (1995).
-
(1995)
Plant Cell
, vol.7
, pp. 2139-2149
-
-
Norris, S.R.1
Barrette, T.R.2
Della Penna, D.3
-
22
-
-
0031792144
-
LAM1 is required for dorsoventrality and lateral growth of the leaf blade in nicotiana
-
McHale, N. A. & Marcotrigiano, M. LAM1 is required for dorsoventrality and lateral growth of the leaf blade in Nicotiana. Development 125, 4235-4243 (1998).
-
(1998)
Development
, vol.125
, pp. 4235-4243
-
-
McHale, N.A.1
Marcotrigiano, M.2
-
23
-
-
79960875239
-
STENOFOLIA regulates blade outgrowth and leaf vascular patterning in medicago truncatula and nicotiana sylvestris
-
Tadege, M. et al. STENOFOLIA regulates blade outgrowth and leaf vascular patterning in Medicago truncatula and Nicotiana sylvestris. Plant Cell 23, 2125-2142 (2011).
-
(2011)
Plant Cell
, vol.23
, pp. 2125-2142
-
-
Tadege, M.1
-
24
-
-
0037324745
-
SUPERWOMAN1 and DROOPING LEAF genes control floral organ identity in rice
-
Nagasawa, N. et al. SUPERWOMAN1 and DROOPING LEAF genes control floral organ identity in rice. Development 130, 705-718 (2003).
-
(2003)
Development
, vol.130
, pp. 705-718
-
-
Nagasawa, N.1
-
25
-
-
1042290704
-
The YABBY gene DROOPING LEAF regulates carpel specification and midrib development in oryza sativa
-
Yamaguchi, T. et al. The YABBY gene DROOPING LEAF regulates carpel specification and midrib development in Oryza sativa. Plant Cell 16, 500-509 (2004).
-
(2004)
Plant Cell
, vol.16
, pp. 500-509
-
-
Yamaguchi, T.1
-
26
-
-
33747135959
-
Acetohydroxyacid synthase and its role in the biosynthetic pathway for branched-chain amino acids
-
McCourt, J. A. & Duggleby, R. G. Acetohydroxyacid synthase and its role in the biosynthetic pathway for branched-chain amino acids. Amino Acids 31, 173-210 (2006).
-
(2006)
Amino Acids
, vol.31
, pp. 173-210
-
-
McCourt, J.A.1
Duggleby, R.G.2
-
27
-
-
14644388598
-
Imidazolinone-tolerant crops: History, current status and future
-
Tan, S., Evans, R. R., Dahmer, M. L., Singh, B. K. & Shaner, D. L. Imidazolinone-tolerant crops: history, current status and future. Pest Manag. Sci. 61, 246-257 (2005).
-
(2005)
Pest Manag. Sci.
, vol.61
, pp. 246-257
-
-
Tan, S.1
Evans, R.R.2
Dahmer, M.L.3
Singh, B.K.4
Shaner, D.L.5
-
28
-
-
0038643756
-
Molecular characterization of the arabidopsis 9-cis epoxycarotenoid dioxygenase gene family
-
Tan, B. C. et al. Molecular characterization of the Arabidopsis 9-cis epoxycarotenoid dioxygenase gene family. Plant J 35, 44-56 (2003).
-
(2003)
Plant J
, vol.35
, pp. 44-56
-
-
Tan, B.C.1
-
29
-
-
54149109965
-
Comprehensive transcriptome analysis of phytohormone biosynthesis and signaling genes in microspore/pollen and tapetum of rice
-
Hirano, K. et al. Comprehensive transcriptome analysis of phytohormone biosynthesis and signaling genes in microspore/pollen and tapetum of rice. Plant Cell Physiol. 49, 1429-1450 (2008).
-
(2008)
Plant Cell Physiol.
, vol.49
, pp. 1429-1450
-
-
Hirano, K.1
-
30
-
-
33748319354
-
Early infection of scutellum tissue with agrobacterium allows high-speed transformation of rice
-
Toki, S. et al. Early infection of scutellum tissue with Agrobacterium allows high-speed transformation of rice. Plant J. 47, 969-976 (2006).
-
(2006)
Plant J.
, vol.47
, pp. 969-976
-
-
Toki, S.1
-
31
-
-
84941941829
-
Parameters affecting frequency of CRISPR/Cas9 mediated targeted mutagenesis in rice
-
Mikami, M., Toki, S. & Endo, M. Parameters affecting frequency of CRISPR/Cas9 mediated targeted mutagenesis in rice. Plant Cell Rep. 34, 1807-1815 (2015).
-
(2015)
Plant Cell Rep.
, vol.34
, pp. 1807-1815
-
-
Mikami, M.1
Toki, S.2
Endo, M.3
-
32
-
-
84922664019
-
Multigene knockout utilizing off-target mutations of the CRISPR/Cas9 system in rice
-
Endo, M., Mikami, M. & Toki, S. Multigene knockout utilizing off-target mutations of the CRISPR/Cas9 system in rice. Plant Cell Physiol. 56, 41-47 (2015).
-
(2015)
Plant Cell Physiol.
, vol.56
, pp. 41-47
-
-
Endo, M.1
Mikami, M.2
Toki, S.3
-
33
-
-
84956831321
-
A defect in DNA ligase4 enhances the frequency of TALEN-mediated targeted mutagenesis in rice
-
Nishizawa-Yokoi, A. et al. A Defect in DNA Ligase4 Enhances the Frequency of TALEN-Mediated Targeted Mutagenesis in Rice. Plant Physiol. 170, 653-666 (2016).
-
(2016)
Plant Physiol.
, vol.170
, pp. 653-666
-
-
Nishizawa-Yokoi, A.1
-
34
-
-
84941312953
-
Development of germ-line-specific CRISPR-cas9 systems to improve the production of heritable gene modifications in arabidopsis
-
Mao, Y. et al. Development of germ-line-specific CRISPR-Cas9 systems to improve the production of heritable gene modifications in Arabidopsis. Plant Biotechnol. J. 14, 519-532 (2016).
-
(2016)
Plant Biotechnol. J.
, vol.14
, pp. 519-532
-
-
Mao, Y.1
-
35
-
-
84920435758
-
Site-directed mutagenesis in arabidopsis thaliana using dividing tissue-targeted RGEN of the CRISPR/Cas system to generate heritable null alleles
-
Hyun, Y. et al. Site-directed mutagenesis in Arabidopsis thaliana using dividing tissue-targeted RGEN of the CRISPR/Cas system to generate heritable null alleles. Planta 241, 271-284 (2015).
-
(2015)
Planta
, vol.241
, pp. 271-284
-
-
Hyun, Y.1
-
36
-
-
77955406102
-
Site-directed mutagenesis in arabidopsis using custom-designed zinc finger nucleases
-
Osakabe, K., Osakabe, Y. & Toki, S. Site-directed mutagenesis in Arabidopsis using custom-designed zinc finger nucleases. Proc. Natl. Acad. Sci. 107, 12034-12039 (2010).
-
(2010)
Proc. Natl. Acad. Sci.
, vol.107
, pp. 12034-12039
-
-
Osakabe, K.1
Osakabe, Y.2
Toki, S.3
-
37
-
-
84971507156
-
Precision targeted mutagenesis via cas9 paired nickases in rice
-
Mikami, M., Toki, S. & Endo, M. Precision Targeted Mutagenesis via Cas9 Paired Nickases in Rice. Plant Cell Physiol. 57, 1058-1068 (2016).
-
(2016)
Plant Cell Physiol.
, vol.57
, pp. 1058-1068
-
-
Mikami, M.1
Toki, S.2
Endo, M.3
-
38
-
-
84874663256
-
TALENs and ZFNs are associated with different mutation signatures
-
Kim, Y., Kweon, J. & Kim, J.-S. TALENs and ZFNs are associated with different mutation signatures. Nature methods 10, 185 (2013).
-
(2013)
Nature Methods
, vol.10
, pp. 185
-
-
Kim, Y.1
Kweon, J.2
Kim, J.-S.3
-
39
-
-
77953229115
-
The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway
-
Lieber, M. R. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu. Rev. Biochem. 79, 181-211 (2010).
-
(2010)
Annu. Rev. Biochem.
, vol.79
, pp. 181-211
-
-
Lieber, M.R.1
-
40
-
-
34249702972
-
Processing of DNA for nonhomologous end-joining is controlled by kinase activity and XRCC4/ligase IV
-
Budman, J., Kim, S. A. & Chu, G. Processing of DNA for nonhomologous end-joining is controlled by kinase activity and XRCC4/ligase IV. J. Biol. Chem. 282, 11950-11959 (2007).
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 11950-11959
-
-
Budman, J.1
Kim, S.A.2
Chu, G.3
-
41
-
-
84982854588
-
Probing the impact of chromatin conformation on genome editing tools
-
Chen, X. et al. Probing the impact of chromatin conformation on genome editing tools. Nucleic Acids Res. 44, 6482-6492 (2016).
-
(2016)
Nucleic Acids Res.
, vol.44
, pp. 6482-6492
-
-
Chen, X.1
-
42
-
-
84929135130
-
Epigenome editing by a CRISPR-cas9-based acetyltransferase activates genes from promoters and enhancers
-
Hilton, I. B. et al. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat. Biotechnol. 33, 510-517 (2015).
-
(2015)
Nat. Biotechnol.
, vol.33
, pp. 510-517
-
-
Hilton, I.B.1
-
43
-
-
84937905397
-
Chemically modified guide RNAs enhance CRISPR-cas genome editing in human primary cells
-
Hendel, A. et al. Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells. Nat. Biotechnol. 33, 985-989 (2015).
-
(2015)
Nat. Biotechnol.
, vol.33
, pp. 985-989
-
-
Hendel, A.1
-
44
-
-
84921540377
-
Rational design of highly active sgRNAs for CRISPR-cas9-mediated gene inactivation
-
Doench, J. G. et al. Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nat. Biotechnol. 32, 1262-1267 (2014).
-
(2014)
Nat. Biotechnol.
, vol.32
, pp. 1262-1267
-
-
Doench, J.G.1
-
45
-
-
84964862130
-
The CRISPR-associated DNA-cleaving enzyme cpf1 also processes precursor CRISPR RNA
-
Fonfara, I., Richter, H., Bratovic, M., Le Rhun, A. & Charpentier, E. The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature 532, 517-521 (2016).
-
(2016)
Nature
, vol.532
, pp. 517-521
-
-
Fonfara, I.1
Richter, H.2
Bratovic, M.3
Le Rhun, A.4
Charpentier, E.5
-
46
-
-
84981347695
-
Genome-wide specificities of CRISPR-cas cpf1 nucleases in human cells
-
Kleinstiver, B. P. et al. Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells. Nat. Biotechnol. 34, 869-74 (2016).
-
(2016)
Nat. Biotechnol.
, vol.34
, pp. 869-874
-
-
Kleinstiver, B.P.1
-
47
-
-
84937908208
-
Engineered CRISPR-cas9 nucleases with altered PAM specificities
-
Kleinstiver, B. P. et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523, 481-485 (2015).
-
(2015)
Nature
, vol.523
, pp. 481-485
-
-
Kleinstiver, B.P.1
-
48
-
-
84962580403
-
Structural basis for the altered PAM specificities of engineered CRISPR-cas9
-
Hirano, S., Nishimasu, H., Ishitani, R. & Nureki, O. Structural Basis for the Altered PAM Specificities of Engineered CRISPR-Cas9. Mol. Cell 61, 886-894 (2016).
-
(2016)
Mol. Cell
, vol.61
, pp. 886-894
-
-
Hirano, S.1
Nishimasu, H.2
Ishitani, R.3
Nureki, O.4
-
49
-
-
84962514403
-
Structural plasticity of PAM recognition by engineered variants of the RNA-guided endonuclease cas9
-
Anders, C., Bargsten, K. & Jinek, M. Structural Plasticity of PAM Recognition by Engineered Variants of the RNA-Guided Endonuclease Cas9. Mol. Cell 61, 895-902 (2016).
-
(2016)
Mol. Cell
, vol.61
, pp. 895-902
-
-
Anders, C.1
Bargsten, K.2
Jinek, M.3
-
50
-
-
84952943845
-
Rationally engineered cas9 nucleases with improved specificity
-
Slaymaker, I. M. et al. Rationally engineered Cas9 nucleases with improved specificity. Science 351, 84-88 (2016).
-
(2016)
Science
, vol.351
, pp. 84-88
-
-
Slaymaker, I.M.1
-
51
-
-
84981318543
-
Genome-wide analysis reveals specificities of cpf1 endonucleases in human cells
-
Kim, D. et al. Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells. Nat. Biotechnol. 34, 863-868 (2016).
-
(2016)
Nat. Biotechnol.
, vol.34
, pp. 863-868
-
-
Kim, D.1
-
52
-
-
84981356862
-
Generation of knockout mice by cpf1-mediated gene targeting
-
Kim, Y. et al. Generation of knockout mice by Cpf1-mediated gene targeting. Nat. Biotechnol. 34, 808-810 (2016).
-
(2016)
Nat. Biotechnol.
, vol.34
, pp. 808-810
-
-
Kim, Y.1
-
53
-
-
0028500170
-
The small, versatile pPZP family of agrobacterium binary vectors for plant transformation
-
Hajdukiewicz, P., Svab, Z. & Maliga, P. The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol. Biol. 25, 989-994 (1994).
-
(1994)
Plant Mol. Biol.
, vol.25
, pp. 989-994
-
-
Hajdukiewicz, P.1
Svab, Z.2
Maliga, P.3
|