메뉴 건너뛰기




Volumn 12, Issue 4, 2017, Pages 828-863

Author Correction: Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening (Nature Protocols, (2017), 12, 4, (828-863), 10.1038/nprot.2017.016);Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening

Author keywords

[No Author keywords available]

Indexed keywords

CRISPR ASSOCIATED PROTEIN; LENTIVIRUS VECTOR;

EID: 85018853205     PISSN: 17542189     EISSN: 17502799     Source Type: Journal    
DOI: 10.1038/s41596-018-0063-0     Document Type: Erratum
Times cited : (757)

References (77)
  • 1
    • 45549089565 scopus 로고    scopus 로고
    • The art and design of genetic screens: RNA interference
    • Boutros, M. & Ahringer, J. The art and design of genetic screens: RNA interference. Nat. Rev. Genet. 9, 554–566 (2008).
    • (2008) Nat. Rev. Genet. , vol.9 , pp. 554-566
    • Boutros, M.1    Ahringer, J.2
  • 2
    • 33646187810 scopus 로고    scopus 로고
    • High-throughput RNAi screening in cultured cells: A user’s guide
    • Echeverri, C.J. & Perrimon, N. High-throughput RNAi screening in cultured cells: a user’s guide. Nat. Rev. Genet. 7, 373–384 (2006).
    • (2006) Nat. Rev. Genet. , vol.7 , pp. 373-384
    • Echeverri, C.J.1    Perrimon, N.2
  • 3
    • 84928205754 scopus 로고    scopus 로고
    • High-throughput functional genomics using CRISPR-Cas9
    • Shalem, O., Sanjana, N.E. & Zhang, F. High-throughput functional genomics using CRISPR-Cas9. Nat. Rev. Genet. 16, 299–311 (2015).
    • (2015) Nat. Rev. Genet. , vol.16 , pp. 299-311
    • Shalem, O.1    Sanjana, N.E.2    Zhang, F.3
  • 4
    • 0035942736 scopus 로고    scopus 로고
    • Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells
    • Elbashir, S.M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001).
    • (2001) Nature , vol.411 , pp. 494-498
    • Elbashir, S.M.1
  • 5
    • 0032545933 scopus 로고    scopus 로고
    • Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans
    • Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998).
    • (1998) Nature , vol.391 , pp. 806-811
    • Fire, A.1
  • 6
    • 0036788304 scopus 로고    scopus 로고
    • Gene silencing in mammals by small interfering RNAs
    • McManus, M.T. & Sharp, P.A. Gene silencing in mammals by small interfering RNAs. Nat. Rev. Genet. 3, 737–747 (2002).
    • (2002) Nat. Rev. Genet. , vol.3 , pp. 737-747
    • McManus, M.T.1    Sharp, P.A.2
  • 7
    • 4644223259 scopus 로고    scopus 로고
    • Mechanisms of gene silencing by double-stranded RNA
    • Meister, G. & Tuschl, T. Mechanisms of gene silencing by double-stranded RNA. Nature 431, 343–349 (2004).
    • (2004) Nature , vol.431 , pp. 343-349
    • Meister, G.1    Tuschl, T.2
  • 8
    • 12144289681 scopus 로고    scopus 로고
    • A large-scale RNAi screen in human cells identifies new components of the p53 pathway
    • Berns, K. et al. A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature 428, 431–437 (2004).
    • (2004) Nature , vol.428 , pp. 431-437
    • Berns, K.1
  • 9
    • 0842309871 scopus 로고    scopus 로고
    • Genome-wide RNAi analysis of growth and viability in Drosophila cells
    • Boutros, M. et al. Genome-wide RNAi analysis of growth and viability in Drosophila cells. Science 303, 832–835 (2004).
    • (2004) Science , vol.303 , pp. 832-835
    • Boutros, M.1
  • 10
    • 33644519040 scopus 로고    scopus 로고
    • Building mammalian signalling pathways with RNAi screens
    • Moffat, J. & Sabatini, D.M. Building mammalian signalling pathways with RNAi screens. Nat. Rev. Mol. Cell Biol. 7, 177–187 (2006).
    • (2006) Nat. Rev. Mol. Cell Biol. , vol.7 , pp. 177-187
    • Moffat, J.1    Sabatini, D.M.2
  • 11
    • 12144288006 scopus 로고    scopus 로고
    • A resource for large-scale RNA-interference-based screens in mammals
    • Paddison, P.J. et al. A resource for large-scale RNA-interference-based screens in mammals. Nature 428, 427–431 (2004).
    • (2004) Nature , vol.428 , pp. 427-431
    • Paddison, P.J.1
  • 12
    • 33747794587 scopus 로고    scopus 로고
    • Genome-scale loss-of-function screening with a lentiviral RNAi library
    • Root, D.E., Hacohen, N., Hahn, W.C., Lander, E.S. & Sabatini, D.M. Genome-scale loss-of-function screening with a lentiviral RNAi library. Nat. Methods 3, 715–719 (2006).
    • (2006) Nat. Methods , vol.3 , pp. 715-719
    • Root, D.E.1    Hacohen, N.2    Hahn, W.C.3    Lander, E.S.4    Sabatini, D.M.5
  • 13
    • 27644436787 scopus 로고    scopus 로고
    • Second-generation shRNA libraries covering the mouse and human genomes
    • Silva, J.M. et al. Second-generation shRNA libraries covering the mouse and human genomes. Nat. Genet. 37, 1281–1288 (2005).
    • (2005) Nat. Genet. , vol.37 , pp. 1281-1288
    • Silva, J.M.1
  • 14
    • 33646188259 scopus 로고    scopus 로고
    • 3′ UTR seed matches, but not overall identity, are associated with RNAi off-targets
    • Birmingham, A. et al. 3′ UTR seed matches, but not overall identity, are associated with RNAi off-targets. Nat. Methods 3, 199–204 (2006).
    • (2006) Nat. Methods , vol.3 , pp. 199-204
    • Birmingham, A.1
  • 15
    • 0037685280 scopus 로고    scopus 로고
    • Expression profiling reveals off-target gene regulation by RNAi
    • Jackson, A.L. et al. Expression profiling reveals off-target gene regulation by RNAi. Nat. Biotechnol. 21, 635–637 (2003).
    • (2003) Nat. Biotechnol. , vol.21 , pp. 635-637
    • Jackson, A.L.1
  • 16
    • 74049124186 scopus 로고    scopus 로고
    • Recognizing and avoiding siRNA off-target effects for target identification and therapeutic application
    • Jackson, A.L. & Linsley, P.S. Recognizing and avoiding siRNA off-target effects for target identification and therapeutic application. Nat. Rev. Drug Discov. 9, 57–67 (2010).
    • (2010) Nat. Rev. Drug Discov. , vol.9 , pp. 57-67
    • Jackson, A.L.1    Linsley, P.S.2
  • 17
    • 84954214717 scopus 로고    scopus 로고
    • Biology and applications of CRISPR systems: Harnessing nature’s toolbox for genome engineering
    • Wright, A.V., Nunez, J.K. & Doudna, J.A. Biology and applications of CRISPR systems: harnessing nature’s toolbox for genome engineering. Cell 164, 29–44 (2016).
    • (2016) Cell , vol.164 , pp. 29-44
    • Wright, A.V.1    Nunez, J.K.2    Doudna, J.A.3
  • 18
    • 84943160849 scopus 로고    scopus 로고
    • CRISPR-Cas immunity in prokaryotes
    • Marraffini, L.A. CRISPR-Cas immunity in prokaryotes. Nature 526, 55–61 (2015).
    • (2015) Nature , vol.526 , pp. 55-61
    • Marraffini, L.A.1
  • 19
    • 84902096048 scopus 로고    scopus 로고
    • Development and applications of CRISPR-Cas9 for genome engineering
    • Hsu, P.D., Lander, E.S. & Zhang, F. Development and applications of CRISPR-Cas9 for genome engineering. Cell 157, 1262–1278 (2014).
    • (2014) Cell , vol.157 , pp. 1262-1278
    • Hsu, P.D.1    Lander, E.S.2    Zhang, F.3
  • 20
    • 78149261827 scopus 로고    scopus 로고
    • The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA
    • Garneau, J.E. et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468, 67–71 (2010).
    • (2010) Nature , vol.468 , pp. 67-71
    • Garneau, J.E.1
  • 21
    • 79953250082 scopus 로고    scopus 로고
    • CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III
    • Deltcheva, E. et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471, 602–607 (2011).
    • (2011) Nature , vol.471 , pp. 602-607
    • Deltcheva, E.1
  • 22
    • 84865070369 scopus 로고    scopus 로고
    • A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
    • Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).
    • (2012) Science , vol.337 , pp. 816-821
    • Jinek, M.1
  • 23
    • 84866859751 scopus 로고    scopus 로고
    • Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria
    • Gasiunas, G., Barrangou, R., Horvath, P. & Siksnys, V. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc. Natl. Acad. Sci. USA 109, E2579–E2586 (2012).
    • (2012) Proc. Natl. Acad. Sci. USA , vol.109 , pp. E2579-E2586
    • Gasiunas, G.1    Barrangou, R.2    Horvath, P.3    Siksnys, V.4
  • 24
    • 84873729095 scopus 로고    scopus 로고
    • Multiplex genome engineering using CRISPR/Cas systems
    • Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).
    • (2013) Science , vol.339 , pp. 819-823
    • Cong, L.1
  • 25
    • 84873734105 scopus 로고    scopus 로고
    • RNA-guided human genome engineering via Cas9
    • Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013).
    • (2013) Science , vol.339 , pp. 823-826
    • Mali, P.1
  • 26
    • 0028061666 scopus 로고
    • Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease
    • Rouet, P., Smih, F. & Jasin, M. Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol. Cell Biol. 14, 8096–8106 (1994).
    • (1994) Mol. Cell Biol. , vol.14 , pp. 8096-8106
    • Rouet, P.1    Smih, F.2    Jasin, M.3
  • 27
    • 84926521955 scopus 로고    scopus 로고
    • Highly efficient Cas9-mediated transcriptional programming
    • Chavez, A. et al. Highly efficient Cas9-mediated transcriptional programming. Nat. Methods 12, 326–328 (2015).
    • (2015) Nat. Methods , vol.12 , pp. 326-328
    • Chavez, A.1
  • 28
    • 84908352138 scopus 로고    scopus 로고
    • Genome-scale CRISPR-mediated control of gene repression and activation
    • Gilbert, L.A. et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159, 647–661 (2014).
    • (2014) Cell , vol.159 , pp. 647-661
    • Gilbert, L.A.1
  • 29
    • 84880571335 scopus 로고    scopus 로고
    • CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes
    • Gilbert, L.A. et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154, 442–451 (2013).
    • (2013) Cell , vol.154 , pp. 442-451
    • Gilbert, L.A.1
  • 30
    • 84923096541 scopus 로고    scopus 로고
    • Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex
    • Konermann, S. et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517, 583–588 (2015).
    • (2015) Nature , vol.517 , pp. 583-588
    • Konermann, S.1
  • 31
    • 84884907424 scopus 로고    scopus 로고
    • CRISPR RNA-guided activation of endogenous human genes
    • Maeder, M.L. et al. CRISPR RNA-guided activation of endogenous human genes. Nat. Methods 10, 977–979 (2013).
    • (2013) Nat. Methods , vol.10 , pp. 977-979
    • Maeder, M.L.1
  • 32
    • 84884160273 scopus 로고    scopus 로고
    • CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering
    • Mali, P. et al. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat. Biotechnol. 31, 833–838 (2013).
    • (2013) Nat. Biotechnol. , vol.31 , pp. 833-838
    • Mali, P.1
  • 33
    • 84884906690 scopus 로고    scopus 로고
    • RNA-guided gene activation by CRISPR-Cas9-based transcription factors
    • Perez-Pinera, P. et al. RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat. Methods 10, 973–976 (2013).
    • (2013) Nat. Methods , vol.10 , pp. 973-976
    • Perez-Pinera, P.1
  • 34
    • 84874687019 scopus 로고    scopus 로고
    • Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression
    • Qi, L.S. et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152, 1173–1183 (2013).
    • (2013) Cell , vol.152 , pp. 1173-1183
    • Qi, L.S.1
  • 35
    • 84882976110 scopus 로고    scopus 로고
    • Optical control of mammalian endogenous transcription and epigenetic states
    • Konermann, S. et al. Optical control of mammalian endogenous transcription and epigenetic states. Nature 500, 472–476 (2013).
    • (2013) Nature , vol.500 , pp. 472-476
    • Konermann, S.1
  • 37
    • 84969791285 scopus 로고    scopus 로고
    • Nat. Methods 13, 563–567 (2016).
    • (2016) Nat. Methods , vol.13 , pp. 563-567
  • 38
    • 84892765883 scopus 로고    scopus 로고
    • Genome-scale CRISPR-Cas9 knockout screening in human cells
    • Shalem, O. et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343, 84–87 (2014).
    • (2014) Science , vol.343 , pp. 84-87
    • Shalem, O.1
  • 39
    • 84892749369 scopus 로고    scopus 로고
    • Genetic screens in human cells using the CRISPR-Cas9 system
    • Wang, T., Wei, J.J., Sabatini, D.M. & Lander, E.S. Genetic screens in human cells using the CRISPR-Cas9 system. Science 343, 80–84 (2014).
    • (2014) Science , vol.343 , pp. 80-84
    • Wang, T.1    Wei, J.J.2    Sabatini, D.M.3    Lander, E.S.4
  • 40
    • 84898665052 scopus 로고    scopus 로고
    • Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library
    • Koike-Yusa, H., Li, Y., Tan, E.P., Velasco-Herrera Mdel, C. & Yusa, K. Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nat. Biotechnol. 32, 267–273 (2014).
    • (2014) Nat. Biotechnol. , vol.32 , pp. 267-273
    • Koike-Yusa, H.1    Li, Y.2    Tan, E.P.3    Velasco-Herrera Mdel, C.4    Yusa, K.5
  • 41
    • 84900861730 scopus 로고    scopus 로고
    • High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells
    • Zhou, Y. et al. High-throughput screening of a CRISPR/Cas9 library for functional genomics in human cells. Nature 509, 487–491 (2014).
    • (2014) Nature , vol.509 , pp. 487-491
    • Zhou, Y.1
  • 42
    • 84921540377 scopus 로고    scopus 로고
    • Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation
    • Doench, J.G. et al. Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nat. Biotechnol. 32, 1262–1267 (2014).
    • (2014) Nat. Biotechnol. , vol.32 , pp. 1262-1267
    • Doench, J.G.1
  • 43
    • 84925008880 scopus 로고    scopus 로고
    • Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis
    • Chen, S. et al. Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell 160, 1246–1260 (2015).
    • (2015) Cell , vol.160 , pp. 1246-1260
    • Chen, S.1
  • 44
    • 84930939029 scopus 로고    scopus 로고
    • Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains
    • Shi, J. et al. Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains. Nat. Biotechnol. 33, 661–667 (2015).
    • (2015) Nat. Biotechnol. , vol.33 , pp. 661-667
    • Shi, J.1
  • 45
    • 84938744950 scopus 로고    scopus 로고
    • A genome-wide CRISPR screen in primary immune cells to dissect regulatory networks
    • Parnas, O. et al. A genome-wide CRISPR screen in primary immune cells to dissect regulatory networks. Cell 162, 675–686 (2015).
    • (2015) Cell , vol.162 , pp. 675-686
    • Parnas, O.1
  • 46
    • 84947471999 scopus 로고    scopus 로고
    • Identification and characterization of essential genes in the human genome
    • Wang, T. et al. Identification and characterization of essential genes in the human genome. Science 350, 1096–1101 (2015).
    • (2015) Science , vol.350 , pp. 1096-1101
    • Wang, T.1
  • 47
    • 84959418862 scopus 로고    scopus 로고
    • Multiplexed barcoded CRISPR-Cas9 screening enabled by CombiGEM
    • Wong, A.S. et al. Multiplexed barcoded CRISPR-Cas9 screening enabled by CombiGEM. Proc. Natl. Acad. Sci. USA 113, 2544–2549 (2016).
    • (2016) Proc. Natl. Acad. Sci. USA , vol.113 , pp. 2544-2549
    • Wong, A.S.1
  • 48
    • 84957605863 scopus 로고    scopus 로고
    • Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9
    • Doench, J.G. et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat. Biotechnol. 34, 184–191 (2016).
    • (2016) Nat. Biotechnol. , vol.34 , pp. 184-191
    • Doench, J.G.1
  • 49
    • 84959335983 scopus 로고    scopus 로고
    • Hypoxia as a therapy for mitochondrial disease
    • Jain, I.H. et al. Hypoxia as a therapy for mitochondrial disease. Science 352, 54–61 (2016).
    • (2016) Science , vol.352 , pp. 54-61
    • Jain, I.H.1
  • 50
    • 84977639708 scopus 로고    scopus 로고
    • Genetic dissection of Flaviviridae host factors through genome-scale CRISPR screens
    • Marceau, C.D. et al. Genetic dissection of Flaviviridae host factors through genome-scale CRISPR screens. Nature 535, 159–163 (2016).
    • (2016) Nature , vol.535 , pp. 159-163
    • Marceau, C.D.1
  • 51
    • 84977606002 scopus 로고    scopus 로고
    • A CRISPR screen defines a signal peptide processing pathway required by flaviviruses
    • Zhang, R. et al. A CRISPR screen defines a signal peptide processing pathway required by flaviviruses. Nature 535, 164–168 (2016).
    • (2016) Nature , vol.535 , pp. 164-168
    • Zhang, R.1
  • 52
    • 84991577902 scopus 로고    scopus 로고
    • CRISPR/Cas9 screens reveal requirements for host cell sulfation and fucosylation in bacterial type III secretion system-mediated cytotoxicity
    • Blondel, C.J. et al. CRISPR/Cas9 screens reveal requirements for host cell sulfation and fucosylation in bacterial type III secretion system-mediated cytotoxicity. Cell Host Microbe 20, 226–237 (2016).
    • (2016) Cell Host Microbe , vol.20 , pp. 226-237
    • Blondel, C.J.1
  • 53
    • 84983314890 scopus 로고    scopus 로고
    • Discovery of a proteinaceous cellular receptor for anorovirus
    • Orchard, R.C. et al. Discovery of a proteinaceous cellular receptor for anorovirus. Science 353, 933–936 (2016).
    • (2016) Science , vol.353 , pp. 933-936
    • Orchard, R.C.1
  • 54
    • 84946925193 scopus 로고    scopus 로고
    • BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis
    • Canver, M.C. et al. BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis. Nature 527, 192–197 (2015).
    • (2015) Nature , vol.527 , pp. 192-197
    • Canver, M.C.1
  • 55
    • 84957590341 scopus 로고    scopus 로고
    • Functional genetic screens for enhancer elements in the human genome using CRISPR-Cas9
    • Korkmaz, G. et al. Functional genetic screens for enhancer elements in the human genome using CRISPR-Cas9. Nat. Biotechnol. 34, 192–198 (2016).
    • (2016) Nat. Biotechnol. , vol.34 , pp. 192-198
    • Korkmaz, G.1
  • 56
    • 84960387483 scopus 로고    scopus 로고
    • A new class of temporarily phenotypic enhancers identified by CRISPR/Cas9-mediated genetic screening
    • Diao, Y. et al. A new class of temporarily phenotypic enhancers identified by CRISPR/Cas9-mediated genetic screening. Genome Res. 26, 397–405 (2016).
    • (2016) Genome Res. , vol.26 , pp. 397-405
    • Diao, Y.1
  • 57
    • 84988985113 scopus 로고    scopus 로고
    • High-resolution interrogation of functional elements in the noncoding genome
    • Sanjana, N.E. et al. High-resolution interrogation of functional elements in the noncoding genome. Science 353, 1545–1549 (2016).
    • (2016) Science , vol.353 , pp. 1545-1549
    • Sanjana, N.E.1
  • 58
    • 84990852918 scopus 로고    scopus 로고
    • Systematic mapping of functional enhancer-promoter connections with CRISPR interference
    • Fulco, C.P. et al. Systematic mapping of functional enhancer-promoter connections with CRISPR interference. Science 354, 769–773 (2016).
    • (2016) Science , vol.354 , pp. 769-773
    • Fulco, C.P.1
  • 59
    • 84880570576 scopus 로고    scopus 로고
    • High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells
    • Fu, Y. et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat. Biotechnol. 31, 822–826 (2013).
    • (2013) Nat. Biotechnol. , vol.31 , pp. 822-826
    • Fu, Y.1
  • 60
    • 84884165315 scopus 로고    scopus 로고
    • DNA targeting specificity of RNA-guided Cas9 nucleases
    • Hsu, P.D. et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 31, 827–832 (2013).
    • (2013) Nat. Biotechnol. , vol.31 , pp. 827-832
    • Hsu, P.D.1
  • 61
    • 84884155038 scopus 로고    scopus 로고
    • High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity
    • Pattanayak, V. et al. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat. Biotechnol. 31, 839–843 (2013).
    • (2013) Nat. Biotechnol. , vol.31 , pp. 839-843
    • Pattanayak, V.1
  • 62
    • 84974622979 scopus 로고    scopus 로고
    • CRISPR knockout screening outperforms shRNA and CRISPRi in identifying essential genes
    • Evers, B. et al. CRISPR knockout screening outperforms shRNA and CRISPRi in identifying essential genes. Nat. Biotechnol. 34, 631–633 (2016).
    • (2016) Nat. Biotechnol. , vol.34 , pp. 631-633
    • Evers, B.1
  • 63
    • 84982913128 scopus 로고    scopus 로고
    • CRISPR screens provide a comprehensive assessment of cancer vulnerabilities but generate false-positive hits for highly amplified genomic regions
    • Munoz, D.M. et al. CRISPR screens provide a comprehensive assessment of cancer vulnerabilities but generate false-positive hits for highly amplified genomic regions. Cancer Discov. 6, 900–913 (2016).
    • (2016) Cancer Discov. , vol.6 , pp. 900-913
    • Munoz, D.M.1
  • 64
    • 84982918709 scopus 로고    scopus 로고
    • Genomic copy number dictates a gene-independent cell response to CRISPR/Cas9 targeting
    • Aguirre, A.J. et al. Genomic copy number dictates a gene-independent cell response to CRISPR/Cas9 targeting. Cancer Discov. 6, 914–929 (2016).
    • (2016) Cancer Discov. , vol.6 , pp. 914-929
    • Aguirre, A.J.1
  • 65
    • 84974588043 scopus 로고    scopus 로고
    • Systematic comparison of CRISPR/Cas9 and RNAi screens for essential genes
    • Morgens, D.W., Deans, R.M., Li, A. & Bassik, M.C. Systematic comparison of CRISPR/Cas9 and RNAi screens for essential genes. Nat. Biotechnol. 34, 634–636 (2016).
    • (2016) Nat. Biotechnol. , vol.34 , pp. 634-636
    • Morgens, D.W.1    Deans, R.M.2    Li, A.3    Bassik, M.C.4
  • 66
    • 84890429468 scopus 로고    scopus 로고
    • High-content genome-wide RNAi screens identify regulators of parkin upstream of mitophagy
    • Hasson, S.A. et al. High-content genome-wide RNAi screens identify regulators of parkin upstream of mitophagy. Nature 504, 291–295 (2013).
    • (2013) Nature , vol.504 , pp. 291-295
    • Hasson, S.A.1
  • 67
    • 33646033137 scopus 로고    scopus 로고
    • A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high-content screen
    • Moffat, J. et al. A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high-content screen. Cell 124, 1283–1298 (2006).
    • (2006) Cell , vol.124 , pp. 1283-1298
    • Moffat, J.1
  • 68
    • 33646057010 scopus 로고    scopus 로고
    • High-throughput RNAi screening by time-lapse imaging of live human cells
    • Neumann, B. et al. High-throughput RNAi screening by time-lapse imaging of live human cells. Nat. Methods 3, 385–390 (2006).
    • (2006) Nat. Methods , vol.3 , pp. 385-390
    • Neumann, B.1
  • 69
    • 84905262730 scopus 로고    scopus 로고
    • Improved vectors and genome-wide libraries for CRISPR screening
    • Sanjana, N.E., Shalem, O. & Zhang, F. Improved vectors and genome-wide libraries for CRISPR screening. Nat. Methods 11, 783–784 (2014).
    • (2014) Nat. Methods , vol.11 , pp. 783-784
    • Sanjana, N.E.1    Shalem, O.2    Zhang, F.3
  • 70
    • 35848929692 scopus 로고    scopus 로고
    • A probability-based approach for the analysis of large-scale RNAi screens
    • Konig, R. et al. A probability-based approach for the analysis of large-scale RNAi screens. Nat. Methods 4, 847–849 (2007).
    • (2007) Nat. Methods , vol.4 , pp. 847-849
    • Konig, R.1
  • 71
    • 58149521944 scopus 로고    scopus 로고
    • Highly parallel identification of essential genes in cancer cells
    • Luo, B. et al. Highly parallel identification of essential genes in cancer cells. Proc. Natl. Acad. Sci. USA 105, 20380–20385 (2008).
    • (2008) Proc. Natl. Acad. Sci. USA , vol.105 , pp. 20380-20385
    • Luo, B.1
  • 72
    • 84996567029 scopus 로고    scopus 로고
    • MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens
    • Li, W. et al. MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens. Genome Biol. 15, 554 (2014).
    • (2014) Genome Biol. , vol.15 , pp. 554
    • Li, W.1
  • 73
    • 84887010498 scopus 로고    scopus 로고
    • Genome engineering using the CRISPR-Cas9 system
    • Ran, F.A. et al. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8, 2281–2308 (2013).
    • (2013) Nat. Protoc. , vol.8 , pp. 2281-2308
    • Ran, F.A.1
  • 74
    • 84884288934 scopus 로고    scopus 로고
    • Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity
    • Ran, F.A. et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154, 1380–1389 (2013).
    • (2013) Cell , vol.154 , pp. 1380-1389
    • Ran, F.A.1
  • 75
    • 84975678715 scopus 로고    scopus 로고
    • Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system
    • Zetsche, B. et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163, 759–771 (2015).
    • (2015) Cell , vol.163 , pp. 759-771
    • Zetsche, B.1
  • 76
    • 84947225411 scopus 로고    scopus 로고
    • Orthogonal gene knockout and activation with a catalytically active Cas9 nuclease
    • Dahlman, J.E. et al. Orthogonal gene knockout and activation with a catalytically active Cas9 nuclease. Nat. Biotechnol. 33, 1159–1161 (2015).
    • (2015) Nat. Biotechnol. , vol.33 , pp. 1159-1161
    • Dahlman, J.E.1
  • 77
    • 84946471431 scopus 로고    scopus 로고
    • Cas9 gRNA engineering for genome editing, activation and repression
    • Kiani, S. et al. Cas9 gRNA engineering for genome editing, activation and repression. Nat. Methods 12, 1051–1054 (2015).
    • (2015) Nat. Methods , vol.12 , pp. 1051-1054
    • Kiani, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.