메뉴 건너뛰기




Volumn 31, Issue 2, 2017, Pages 88-100

Targeting RNA for processing or destruction by the eukaryotic RNA exosome and its cofactors

Author keywords

3 to 5 ; Endoribonuclease; Exoribonuclease; Exosome; RNA degradation; RNA exosome; RNA processing

Indexed keywords

NUCLEIC ACID BINDING PROTEIN; PROTEIN; PROTEIN DIS3; PROTEIN MPP6; PROTEIN MTR4; PROTEIN RRP47; PROTEIN SKI2; PROTEIN SKI3; PROTEIN SKI7; PROTEIN SKI8P; PROTEIN TRAMP; RNA; TELOMERASE; UNCLASSIFIED DRUG; ACYLTRANSFERASE; SERINE PROTEINASE; TUNICATE RETINOIC ACID-INDUCIBLE MODULAR PROTEASE;

EID: 85014062900     PISSN: 08909369     EISSN: 15495477     Source Type: Journal    
DOI: 10.1101/gad.294769.116     Document Type: Review
Times cited : (160)

References (116)
  • 3
    • 84979729409 scopus 로고    scopus 로고
    • RNA exosome complex regulates stability of the hepatitis B virus X-mRNA transcript in a non stop-mediated (NSD) RNA quality control mechanism
    • Aly HH, Suzuki J, Watashi K, Chayama K, Hoshino S-I, Hijikata M, Kato T, Wakita T. 2016. RNA exosome complex regulates stability of the hepatitis B virus X-mRNA transcript in a non stop-mediated (NSD) RNA quality control mechanism. J Biol Chem 291: 15958–15974.
    • (2016) J Biol Chem , vol.291 , pp. 15958-15974
    • Aly, H.H.1    Suzuki, J.2    Watashi, K.3    Chayama, K.4    Hoshino, S.-I.5    Hijikata, M.6    Kato, T.7    Wakita, T.8
  • 5
    • 0000577868 scopus 로고    scopus 로고
    • The 3’ to 5’ degradation of yeast mRNAs is a general mechanism for mRNA turnover that requires the SKI2 DEVH box protein and 3’ to 5’ exonucleases of the exosome complex
    • Anderson JSJ, Parker R. 1998. The 3’ to 5’ degradation of yeast mRNAs is a general mechanism for mRNA turnover that requires the SKI2 DEVH box protein and 3’ to 5’ exonucleases of the exosome complex. EMBO J 17: 1497–1506.
    • (1998) EMBO J , vol.17 , pp. 1497-1506
    • Anderson, J.S.J.1    Parker, R.2
  • 6
    • 0035801392 scopus 로고    scopus 로고
    • Ski7p G protein interacts with the exosome and the Ski complex for 3’ to 5’ mRNA decay in yeast
    • Araki Y, Takahashi S, Kobayashi T, Kajiho H, Hoshino S, Katada T. 2001. Ski7p G protein interacts with the exosome and the Ski complex for 3’ to 5’ mRNA decay in yeast. EMBO J 20: 4684–4693.
    • (2001) EMBO J , vol.20 , pp. 4684-4693
    • Araki, Y.1    Takahashi, S.2    Kobayashi, T.3    Kajiho, H.4    Hoshino, S.5    Katada, T.6
  • 7
  • 8
    • 70350336247 scopus 로고    scopus 로고
    • The yeast exosome functions as a macromolecular cage to channel RNA substrates for degradation
    • Bonneau F, Basquin J, Ebert J, Lorentzen E, Conti E. 2009. The yeast exosome functions as a macromolecular cage to channel RNA substrates for degradation. Cell 139: 547–559.
    • (2009) Cell , vol.139 , pp. 547-559
    • Bonneau, F.1    Basquin, J.2    Ebert, J.3    Lorentzen, E.4    Conti, E.5
  • 9
    • 0032557455 scopus 로고    scopus 로고
    • Rrp6p, the yeast homologue of the human PM-Scl 100-kDa autoantigen, is essential for efficient 5.8 S rRNA 3’ end formation
    • Briggs MW, Burkard KT, Butler JS. 1998. Rrp6p, the yeast homologue of the human PM-Scl 100-kDa autoantigen, is essential for efficient 5.8 S rRNA 3’ end formation. J Biol Chem 273: 13255–13263.
    • (1998) J Biol Chem , vol.273 , pp. 13255-13263
    • Briggs, M.W.1    Burkard, K.T.2    Butler, J.S.3
  • 11
    • 0034118002 scopus 로고    scopus 로고
    • The yeast antiviral proteins Ski2p, Ski3p, and Ski8p exist as a complex in vivo
    • Brown JT, Bai X, Johnson AW. 2000. The yeast antiviral proteins Ski2p, Ski3p, and Ski8p exist as a complex in vivo. RNA 6: 449–457.
    • (2000) RNA , vol.6 , pp. 449-457
    • Brown, J.T.1    Bai, X.2    Johnson, A.W.3
  • 12
    • 0033960962 scopus 로고    scopus 로고
    • A nuclear 3’ –5’ exonuclease involved in mRNA degradation interacts with Poly(A) polymerase and the hnRNA protein Npl3p
    • Burkard KT, Butler JS. 2000. A nuclear 3’ –5’ exonuclease involved in mRNA degradation interacts with Poly(A) polymerase and the hnRNA protein Npl3p. Mol Cell Biol 20: 604–616.
    • (2000) Mol Cell Biol , vol.20 , pp. 604-616
    • Burkard, K.T.1    Butler, J.S.2
  • 13
    • 0029897304 scopus 로고    scopus 로고
    • A novel family of TRF (DNA topoisomerase I-related function) genes required for proper nuclear segregation
    • Castaño IB, Heath-Pagliuso S, Sadoff BU, Fitzhugh DJ, Christman MF. 1996. A novel family of TRF (DNA topoisomerase I-related function) genes required for proper nuclear segregation. Nucleic Acids Res 24: 2404–2410.
    • (1996) Nucleic Acids Res , vol.24 , pp. 2404-2410
    • Castaño, I.B.1    Heath-Pagliuso, S.2    Sadoff, B.U.3    Fitzhugh, D.J.4    Christman, M.F.5
  • 14
    • 84947939869 scopus 로고    scopus 로고
    • Stage-specific assembly events of the 6-MDa small-sub-unit processome initiate eukaryotic ribosome biogenesis
    • Chaker-Margot M, Hunziker M, Barandun J, Dill BD, Klinge S. 2015. Stage-specific assembly events of the 6-MDa small-sub-unit processome initiate eukaryotic ribosome biogenesis. Nat Struct Mol Biol 22: 920–923.
    • (2015) Nat Struct Mol Biol , vol.22 , pp. 920-923
    • Chaker-Margot, M.1    Hunziker, M.2    Barandun, J.3    Dill, B.D.4    Klinge, S.5
  • 19
    • 79953017227 scopus 로고    scopus 로고
    • The C-terminal region of the exosome-associated protein Rrp47 is specifically required for box C/D small nucleolar RNA 3’ -maturation
    • Costello JL, Stead JA, Feigenbutz M, Jones RM, Mitchell P. 2011. The C-terminal region of the exosome-associated protein Rrp47 is specifically required for box C/D small nucleolar RNA 3’ -maturation. J Biol Chem 286: 4535–4543.
    • (2011) J Biol Chem , vol.286 , pp. 4535-4543
    • Costello, J.L.1    Stead, J.A.2    Feigenbutz, M.3    Jones, R.M.4    Mitchell, P.5
  • 21
    • 84876040204 scopus 로고    scopus 로고
    • The RNA exosome complex central channel controls both exonuclease and endonuclease Dis3 activities in vivo and in vitro
    • Drazkowska K, Tomecki R, Stodus K, Kowalska K, Czarnocki-Cieciura M, Dziembowski A. 2013. The RNA exosome complex central channel controls both exonuclease and endonuclease Dis3 activities in vivo and in vitro. Nucleic Acids Res 41: 3845–3858.
    • (2013) Nucleic Acids Res , vol.41 , pp. 3845-3858
    • Drazkowska, K.1    Tomecki, R.2    Stodus, K.3    Kowalska, K.4    Czarnocki-Cieciura, M.5    Dziembowski, A.6
  • 22
    • 33846068920 scopus 로고    scopus 로고
    • A single subunit, Dis3, is essentially responsible for yeast exosome core activity
    • Dziembowski A, Lorentzen E, Conti E, Séraphin B. 2007. A single subunit, Dis3, is essentially responsible for yeast exosome core activity. Nat Struct Mol Biol 14: 15–22.
    • (2007) Nat Struct Mol Biol , vol.14 , pp. 15-22
    • Dziembowski, A.1    Lorentzen, E.2    Conti, E.3    Séraphin, B.4
  • 23
    • 84901447056 scopus 로고    scopus 로고
    • Post-transcriptional regulation of meiotic genes by a nuclear RNA silencing complex
    • Egan ED, Braun CR, Gygi SP, Moazed D. 2014. Post-transcriptional regulation of meiotic genes by a nuclear RNA silencing complex. RNA 20: 867–881.
    • (2014) RNA , vol.20 , pp. 867-881
    • Egan, E.D.1    Braun, C.R.2    Gygi, S.P.3    Moazed, D.4
  • 24
    • 84906938439 scopus 로고    scopus 로고
    • Oncogenic KRAS signalling in pancreatic cancer
    • Eser S, Schnieke A, Schneider G, Saur D. 2014. Oncogenic KRAS signalling in pancreatic cancer. Br J Cancer 111: 817–822.
    • (2014) Br J Cancer , vol.111 , pp. 817-822
    • Eser, S.1    Schnieke, A.2    Schneider, G.3    Saur, D.4
  • 25
    • 84962057422 scopus 로고    scopus 로고
    • Human Mendelian diseases related to abnormalities of the RNA exosome or its cofactors
    • Fabre A, Badens C. 2014. Human Mendelian diseases related to abnormalities of the RNA exosome or its cofactors. Intractable Rare Dis Res 3: 8–11.
    • (2014) Intractable Rare Dis Res , vol.3 , pp. 8-11
    • Fabre, A.1    Badens, C.2
  • 26
    • 84908006760 scopus 로고    scopus 로고
    • The molecular architecture of the TRAMP complex reveals the organizationand interplay of its two catalytic activities
    • Falk S, Weir JR, Hentschel J, Reichelt P, Bonneau F, Conti E. 2014. The molecular architecture of the TRAMP complex reveals the organizationand interplay of its two catalytic activities. Mol Cell 55: 856–867.
    • (2014) Mol Cell , vol.55 , pp. 856-867
    • Falk, S.1    Weir, J.R.2    Hentschel, J.3    Reichelt, P.4    Bonneau, F.5    Conti, E.6
  • 28
    • 84892399891 scopus 로고    scopus 로고
    • The exosome cofactor Rrp47 is critical for the stability and normal expression of its associated exoribonuclease Rrp6 in Saccharomyces cerevisiae
    • Feigenbutz M, Garland W, Turner M, Mitchell P. 2013. The exosome cofactor Rrp47 is critical for the stability and normal expression of its associated exoribonuclease Rrp6 in Saccharomyces cerevisiae. PLoS One 8: e80752.
    • (2013) Plos One , vol.8
    • Feigenbutz, M.1    Garland, W.2    Turner, M.3    Mitchell, P.4
  • 29
    • 84888401056 scopus 로고    scopus 로고
    • Rrp47 functions in RNA surveillance and stable RNA processing when divorced from the exoribonuclease and exosome-binding domains of Rrp6
    • Garland W, Feigenbutz M, Turner M, Mitchell P. 2013. Rrp47 functions in RNA surveillance and stable RNA processing when divorced from the exoribonuclease and exosome-binding domains of Rrp6. RNA 19: 1659–1668.
    • (2013) RNA , vol.19 , pp. 1659-1668
    • Garland, W.1    Feigenbutz, M.2    Turner, M.3    Mitchell, P.4
  • 30
    • 84951286397 scopus 로고    scopus 로고
    • Coordinated ribosomal ITS2 RNA processing by the Las1 complex integrating endonuclease, polynucleotide kinase, and exonuclease activities
    • Gasse L, Flemming D, Hurt E. 2015. Coordinated ribosomal ITS2 RNA processing by the Las1 complex integrating endonuclease, polynucleotide kinase, and exonuclease activities. Mol Cell 60: 808–815.
    • (2015) Mol Cell , vol.60 , pp. 808-815
    • Gasse, L.1    Flemming, D.2    Hurt, E.3
  • 32
    • 84055217962 scopus 로고    scopus 로고
    • The crystal structure of S. Cerevisiae Ski2, a DExH helicase associated with the cytoplasmic functions of the exosome
    • Halbach F, Rode M, Conti E. 2012. The crystal structure of S. cerevisiae Ski2, a DExH helicase associated with the cytoplasmic functions of the exosome. RNA 18: 124–134.
    • (2012) RNA , vol.18 , pp. 124-134
    • Halbach, F.1    Rode, M.2    Conti, E.3
  • 33
    • 84882796823 scopus 로고    scopus 로고
    • The yeast Ski complex: Crystal structure and RNA channeling to the exosome complex
    • Halbach F, Reichelt P, Rode M, Conti E. 2013. The yeast Ski complex: crystal structure and RNA channeling to the exosome complex. Cell 154: 814–826.
    • (2013) Cell , vol.154 , pp. 814-826
    • Halbach, F.1    Reichelt, P.2    Rode, M.3    Conti, E.4
  • 34
    • 77957014655 scopus 로고    scopus 로고
    • Structure and function of the polymerase core of TRAMP, a RNA surveillance complex
    • Hamill S, Wolin SL, Reinisch KM. 2010. Structure and function of the polymerase core of TRAMP, a RNA surveillance complex. Proc Natl Acad Sci 107: 15045–15050.
    • (2010) Proc Natl Acad Sci , vol.107 , pp. 15045-15050
    • Hamill, S.1    Wolin, S.L.2    Reinisch, K.M.3
  • 35
    • 84991736463 scopus 로고    scopus 로고
    • The RNA exosome channeling and direct access conformations have distinct in vivo functions
    • Han J, van Hoof A. 2016. The RNA exosome channeling and direct access conformations have distinct in vivo functions. Cell Rep 16: 3348–3358.
    • (2016) Cell Rep , vol.16 , pp. 3348-3358
    • Han, J.1    Van Hoof, A.2
  • 39
    • 77954952539 scopus 로고    scopus 로고
    • The crystal structure of Mtr4 reveals a novel arch domain required for rRNA processing
    • Jackson RN, Klauer AA, Hintze BJ, Robinson H, van Hoof A, Johnson SJ. 2010. The crystal structure of Mtr4 reveals a novel arch domain required for rRNA processing. EMBO J 29: 2205–2216.
    • (2010) EMBO J , vol.29 , pp. 2205-2216
    • Jackson, R.N.1    Klauer, A.A.2    Hintze, B.J.3    Robinson, H.4    Van Hoof, A.5    Johnson, S.J.6
  • 40
    • 85007504686 scopus 로고    scopus 로고
    • C1D family proteins in coordinating RNA processing, chromosome condensation and DNA damage response
    • Jackson RA, Wu JS, Chen ES. 2016. C1D family proteins in coordinating RNA processing, chromosome condensation and DNA damage response. Cell Div 11: 2.
    • (2016) Cell Div , vol.11 , pp. 2
    • Jackson, R.A.1    Js, W.2    Chen, E.S.3
  • 42
    • 2642574393 scopus 로고    scopus 로고
    • Nuclear surveillance and degradation of hypomodified initiator tRNAMet in S. Cerevisiae
    • Kadaba S, Krueger A, Trice T, Krecic AM, Hinnebusch AG, Anderson J. 2004. Nuclear surveillance and degradation of hypomodified initiator tRNAMet in S. cerevisiae. Genes Dev 18: 1227–1240.
    • (2004) Genes Dev , vol.18 , pp. 1227-1240
    • Kadaba, S.1    Krueger, A.2    Trice, T.3    Krecic, A.M.4    Hinnebusch, A.G.5    Anderson, J.6
  • 44
    • 84952683219 scopus 로고    scopus 로고
    • The regulation and functions of the nuclear RNA exosome complex
    • Kilchert C, Wittmann S, Vasiljeva L. 2016. The regulation and functions of the nuclear RNA exosome complex. Nat Rev Mol Cell Biol 17: 227–239.
    • (2016) Nat Rev Mol Cell Biol , vol.17 , pp. 227-239
    • Kilchert, C.1    Wittmann, S.2    Vasiljeva, L.3
  • 45
    • 84975068585 scopus 로고    scopus 로고
    • Exosome cofactors connect transcription termination to RNA processing by guiding terminated transcripts to the appropriate exonuclease within the nuclear exosome
    • Kim K, Heo D-H, Kim I, Suh J-Y, Kim M. 2016. Exosome cofactors connect transcription termination to RNA processing by guiding terminated transcripts to the appropriate exonuclease within the nuclear exosome. J Biol Chem 291: 13229–13242.
    • (2016) J Biol Chem , vol.291 , pp. 13229-13242
    • Kim, K.1    Heo, D.-H.2    Kim, I.3    Suh, J.-Y.4    Kim, M.5
  • 46
    • 0018662419 scopus 로고
    • Splicing of yeast tRNA precursors: Structure of the reaction intermediates
    • Knapp G, Ogden RC, Peebles CL, Abelson J. 1979. Splicing of yeast tRNA precursors: structure of the reaction intermediates. Cell 18: 37–45.
    • (1979) Cell , vol.18 , pp. 37-45
    • Knapp, G.1    Ogden, R.C.2    Peebles, C.L.3    Abelson, J.4
  • 47
    • 84936847213 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae Ski7 is a GTP-binding protein adopting the characteristic conformation of active translational GTPases
    • Kowalinski E, Schuller A, Green R, Conti E. 2015. Saccharomyces cerevisiae Ski7 is a GTP-binding protein adopting the characteristic conformation of active translational GTPases. Structure 23: 1336–1343.
    • (2015) Structure , vol.23 , pp. 1336-1343
    • Kowalinski, E.1    Schuller, A.2    Green, R.3    Conti, E.4
  • 49
    • 84991738289 scopus 로고    scopus 로고
    • Cytoplasmic RNA decay pathways—enzymes and mechanisms
    • Łabno A, Tomecki R, Dziembowski A. 2016. Cytoplasmic RNA decay pathways—enzymes and mechanisms. Biochim Biophys Acta 1863: 3125–3147.
    • (2016) Biochim Biophys Acta , vol.1863 , pp. 3125-3147
    • Łabno, A.1    Tomecki, R.2    Dziembowski, A.3
  • 51
    • 57749189164 scopus 로고    scopus 로고
    • Endonucleolytic RNA cleavage by a eukaryotic exosome
    • Lebreton A, Tomecki R, Dziembowski A, Séraphin B. 2008. Endonucleolytic RNA cleavage by a eukaryotic exosome. Nature 456: 993–996.
    • (2008) Nature , vol.456 , pp. 993-996
    • Lebreton, A.1    Tomecki, R.2    Dziembowski, A.3    Séraphin, B.4
  • 53
    • 33845407784 scopus 로고    scopus 로고
    • Reconstitution, activities, and structure of the eukaryotic RNA exosome
    • Liu Q, Greimann JC, Lima CD. 2006. Reconstitution, activities, and structure of the eukaryotic RNA exosome. Cell 127: 1223–1237.
    • (2006) Cell , vol.127 , pp. 1223-1237
    • Liu, Q.1    Greimann, J.C.2    Lima, C.D.3
  • 57
    • 84940388230 scopus 로고    scopus 로고
    • Gateway arch to the RNA exosome
    • Losh JS, van Hoof A. 2015. Gateway arch to the RNA exosome. Cell 162: 940–941.
    • (2015) Cell , vol.162 , pp. 940-941
    • Losh, J.S.1    Van Hoof, A.2
  • 58
    • 84936797315 scopus 로고    scopus 로고
    • Interaction between the RNA-dependent ATPase and poly(A) polymerase subunits of the TRAMP complex is mediated by short peptides and important for snoRNA processing
    • Losh JS, King AK, Bakelar J, Taylor L, Loomis J, Rosenzweig JA, Johnson SJ, van Hoof A. 2015. Interaction between the RNA-dependent ATPase and poly(A) polymerase subunits of the TRAMP complex is mediated by short peptides and important for snoRNA processing. Nucleic Acids Res 43: 1848–1858.
    • (2015) Nucleic Acids Res , vol.43 , pp. 1848-1858
    • Losh, J.S.1    King, A.K.2    Bakelar, J.3    Taylor, L.4    Loomis, J.5    Rosenzweig, J.A.6    Johnson, S.J.7    Van Hoof, A.8
  • 60
    • 84880224541 scopus 로고    scopus 로고
    • Exonuclease hDIS3L2 specifies an exosome-independent 3’ -5’ degradation pathway of human cytoplasmic mRNA
    • Lubas M, Damgaard CK, Tomecki R, Cysewski D, Jensen TH, Dziembowski A. 2013. Exonuclease hDIS3L2 specifies an exosome-independent 3’ -5’ degradation pathway of human cytoplasmic mRNA. EMBO J 32: 1855–1868.
    • (2013) EMBO J , vol.32 , pp. 1855-1868
    • Lubas, M.1    Damgaard, C.K.2    Tomecki, R.3    Cysewski, D.4    Jensen, T.H.5    Dziembowski, A.6
  • 61
    • 0026565203 scopus 로고
    • Cyclic 2’,3’ -phosphates and nontemplated nucleotides at the 3’ end of spliceosomal U6 small nuclear RNAs
    • Lund E, Dahlberg JE. 1992. Cyclic 2’,3’ -phosphates and nontemplated nucleotides at the 3’ end of spliceosomal U6 small nuclear RNAs. Science 255: 327–330.
    • (1992) Science , vol.255 , pp. 327-330
    • Lund, E.1    Dahlberg, J.E.2
  • 63
    • 84953639031 scopus 로고    scopus 로고
    • DGCR8 acts as an adaptor for the exosome complex to degrade double-stranded structured RNAs
    • Macias S, Cordiner RA, Gautier P, Plass M, Cáceres JF. 2015. DGCR8 acts as an adaptor for the exosome complex to degrade double-stranded structured RNAs. Mol Cell 60: 873–885.
    • (2015) Mol Cell , vol.60 , pp. 873-885
    • Macias, S.1    Cordiner, R.A.2    Gautier, P.3    Plass, M.4    Cáceres, J.F.5
  • 64
    • 84874742223 scopus 로고    scopus 로고
    • Crystal structure of an RNA-bound 11-subunit eukaryotic exosome complex
    • Makino DL, Baumgärtner M, Conti E. 2013. Crystal structure of an RNA-bound 11-subunit eukaryotic exosome complex. Nature 495: 70–75.
    • (2013) Nature , vol.495 , pp. 70-75
    • Makino, D.L.1    Baumgärtner, M.2    Conti, E.3
  • 67
    • 84989162246 scopus 로고    scopus 로고
    • Exosome complex orchestrates developmental signaling to balance proliferation and differentiation during erythropoiesis
    • McIver SC, Katsumura KR, Davids E, Liu P, Kang Y-A, Yang D, Bresnick EH. 2016. Exosome complex orchestrates developmental signaling to balance proliferation and differentiation during erythropoiesis. Elife 5: 5399.
    • (2016) Elife , vol.5 , pp. 5399
    • McIver, S.C.1    Katsumura, K.R.2    Davids, E.3    Liu, P.4    Kang, Y.-A.5    Yang, D.6    Bresnick, E.H.7
  • 69
    • 84863613835 scopus 로고    scopus 로고
    • Progenitor function in self-renewing human epidermis is maintained by the exosome
    • Mistry DS, Chen Y, Sen GL. 2012. Progenitor function in self-renewing human epidermis is maintained by the exosome. Cell Stem Cell 11: 127–135.
    • (2012) Cell Stem Cell , vol.11 , pp. 127-135
    • Mistry, D.S.1    Chen, Y.2    Sen, G.L.3
  • 70
    • 77955964738 scopus 로고    scopus 로고
    • Rrp47 and the function of the Sas10/C1D domain
    • Mitchell P. 2010. Rrp47 and the function of the Sas10/C1D domain. Biochem Soc Trans 38: 1088–1092.
    • (2010) Biochem Soc Trans , vol.38 , pp. 1088-1092
    • Mitchell, P.1
  • 71
    • 0030702085 scopus 로고    scopus 로고
    • The exosome: A conserved eukaryotic RNA processing complex containing multiple 3’ –5’ exoribonucleases
    • Mitchell P, Petfalski E, Shevchenko A, Mann M, Tollervey D. 1997. The exosome: a conserved eukaryotic RNA processing complex containing multiple 3’ –5’ exoribonucleases. Cell 91: 457–466.
    • (1997) Cell , vol.91 , pp. 457-466
    • Mitchell, P.1    Petfalski, E.2    Shevchenko, A.3    Mann, M.4    Tollervey, D.5
  • 73
    • 84983316613 scopus 로고    scopus 로고
    • Relative contributions of the structural and catalytic roles of Rrp6 in exosomal degradation of individual mRNAs
    • Mukherjee K, Gardin J, Futcher B, Leatherwood J. 2016. Relative contributions of the structural and catalytic roles of Rrp6 in exosomal degradation of individual mRNAs. RNA 22: 1311–1319.
    • (2016) RNA , vol.22 , pp. 1311-1319
    • Mukherjee, K.1    Gardin, J.2    Futcher, B.3    Leatherwood, J.4
  • 74
    • 84982954679 scopus 로고    scopus 로고
    • A polyadenylation-dependent 3’ end maturation pathway is required for the synthesis of the human telomerase RNA
    • Nguyen D, Grenier St-Sauveur V, Bergeron D, Dupuis-Sandoval F, Scott MS, Bachand F. 2015a. A polyadenylation-dependent 3’ end maturation pathway is required for the synthesis of the human telomerase RNA. Cell Rep 13: 2244–2257.
    • (2015) Cell Rep , vol.13 , pp. 2244-2257
    • Nguyen, D.1    Grenier St-Sauveur, V.2    Bergeron, D.3    Dupuis-Sandoval, F.4    Scott, M.S.5    Bachand, F.6
  • 76
    • 0024007279 scopus 로고
    • Cold-sensitive and caffeine-supersensitive mutants of the Schizosaccharomyces pombe dis genes implicated in sister chromatid separation during mitosis
    • Ohkura H, Adachi Y, Kinoshita N, Niwa O, Toda T, Yanagida M. 1988. Cold-sensitive and caffeine-supersensitive mutants of the Schizosaccharomyces pombe dis genes implicated in sister chromatid separation during mitosis. EMBO J 7: 1465–1473.
    • (1988) EMBO J , vol.7 , pp. 1465-1473
    • Ohkura, H.1    Adachi, Y.2    Kinoshita, N.3    Niwa, O.4    Toda, T.5    Yanagida, M.6
  • 79
    • 0021262150 scopus 로고
    • Superkiller mutations in Saccharomyces cerevisiae suppress exclusion of M2 double-stranded RNA by L-A-HN and confer cold sensitivity in the presence of M and L-A-HN
    • Ridley SP, Sommer SS, Wickner RB. 1984. Superkiller mutations in Saccharomyces cerevisiae suppress exclusion of M2 double-stranded RNA by L-A-HN and confer cold sensitivity in the presence of M and L-A-HN. Mol Cell Biol 4: 761–770.
    • (1984) Mol Cell Biol , vol.4 , pp. 761-770
    • Ridley, S.P.1    Sommer, S.S.2    Wickner, R.B.3
  • 80
    • 85012054078 scopus 로고    scopus 로고
    • The 3’ to 5’ exoribonuclease DIS3: From structure and mechanisms to biological functions and role in human disease
    • Robinson SR, Oliver AW, Chevassut TJ, Newbury SF. 2015. The 3’ to 5’ exoribonuclease DIS3: from structure and mechanisms to biological functions and role in human disease. Biomolecules 5: 1515–1539.
    • (2015) Biomolecules , vol.5 , pp. 1515-1539
    • Robinson, S.R.1    Oliver, A.W.2    Chevassut, T.J.3    Newbury, S.F.4
  • 82
    • 29244475356 scopus 로고    scopus 로고
    • MPP6 is an exosome-associated RNA-binding protein involved in 5.8S rRNA maturation
    • Schilders G. 2005. MPP6 is an exosome-associated RNA-binding protein involved in 5.8S rRNA maturation. Nucleic Acids Res 33: 6795–6804.
    • (2005) Nucleic Acids Res , vol.33 , pp. 6795-6804
    • Schilders, G.1
  • 84
    • 62049085366 scopus 로고    scopus 로고
    • The N-terminal PIN domain of the exosome subunit Rrp44 harbors endonuclease activity and tethers Rrp44 to the yeast core exosome
    • Schneider C, Leung E, Brown J, Tollervey D. 2008. The N-terminal PIN domain of the exosome subunit Rrp44 harbors endonuclease activity and tethers Rrp44 to the yeast core exosome. Nucleic Acids Res 37: 1127–1140.
    • (2008) Nucleic Acids Res , vol.37 , pp. 1127-1140
    • Schneider, C.1    Leung, E.2    Brown, J.3    Tollervey, D.4
  • 86
    • 84919337863 scopus 로고    scopus 로고
    • The exosome-binding factors Rrp6 and Rrp47 form a composite surface for recruiting the Mtr4 helicase
    • Schuch B, Feigenbutz M, Makino DL, Falk S, Basquin C, Mitchell P, Conti E. 2014. The exosome-binding factors Rrp6 and Rrp47 form a composite surface for recruiting the Mtr4 helicase. EMBO J 33: 2829–2846.
    • (2014) EMBO J , vol.33 , pp. 2829-2846
    • Schuch, B.1    Feigenbutz, M.2    Makino, D.L.3    Falk, S.4    Basquin, C.5    Mitchell, P.6    Conti, E.7
  • 87
    • 77149132138 scopus 로고    scopus 로고
    • Capture and sequence analysis of RNAs with terminal 2’,3’ -cyclic phosphates
    • Schutz K, Hesselberth JR, Fields S. 2010. Capture and sequence analysis of RNAs with terminal 2’,3’ -cyclic phosphates. RNA 16: 621–631.
    • (2010) RNA , vol.16 , pp. 621-631
    • Schutz, K.1    Hesselberth, J.R.2    Fields, S.3
  • 89
    • 84868141731 scopus 로고    scopus 로고
    • Mpn1, mutated in poikiloderma with neutrope-nia protein 1, is a conserved 3’ -to-5’ RNA exonuclease processing U6 small nuclear RNA
    • Shchepachev V, Wischnewski H, Missiaglia E, Soneson C, Azzalin CM. 2012. Mpn1, mutated in poikiloderma with neutrope-nia protein 1, is a conserved 3’ -to-5’ RNA exonuclease processing U6 small nuclear RNA. Cell Rep 2: 855–865.
    • (2012) Cell Rep , vol.2 , pp. 855-865
    • Shchepachev, V.1    Wischnewski, H.2    Missiaglia, E.3    Soneson, C.4    Azzalin, C.M.5
  • 90
  • 92
    • 84960172419 scopus 로고    scopus 로고
    • Inhibition of telomerase RNA decay rescues telomerase deficiency caused by dyskerin or PARN defects
    • Shukla S, Schmidt JC, Goldfarb KC, Cech TR, Parker R. 2016. Inhibition of telomerase RNA decay rescues telomerase deficiency caused by dyskerin or PARN defects. Nat Struct Mol Biol 23: 286–292.
    • (2016) Nat Struct Mol Biol , vol.23 , pp. 286-292
    • Shukla, S.1    Schmidt, J.C.2    Goldfarb, K.C.3    Cech, T.R.4    Parker, R.5
  • 96
    • 0021962536 scopus 로고
    • Nucleolar localization of the PM-Scl antigen
    • Targoff IN, Reichlin M. 1985. Nucleolar localization of the PM-Scl antigen. Arthritis Rheum 28: 226–230.
    • (1985) Arthritis Rheum , vol.28 , pp. 226-230
    • Targoff, I.N.1    Reichlin, M.2
  • 98
    • 84940378977 scopus 로고    scopus 로고
    • The exosome is recruited to RNA substrates through specific adaptor proteins
    • Thoms M, Thomson E, Baßler J, Gnädig M, Griesel S, Hurt E. 2015. The exosome is recruited to RNA substrates through specific adaptor proteins. Cell 162: 1029–1038.
    • (2015) Cell , vol.162 , pp. 1029-1038
    • Thoms, M.1    Thomson, E.2    Baßler, J.3    Gnädig, M.4    Griesel, S.5    Hurt, E.6
  • 99
    • 0018074347 scopus 로고
    • Chromosomal superkiller mutants of Saccharomyces cerevisiae
    • Toh-E A, Guerry P, Wickner RB. 1978. Chromosomal superkiller mutants of Saccharomyces cerevisiae. J Bacteriology 136: 1002–1007.
    • (1978) J Bacteriology , vol.136 , pp. 1002-1007
    • Toh-, E.A.1    Guerry, P.2    Wickner, R.B.3
  • 104
    • 0032727868 scopus 로고    scopus 로고
    • The exosome: A proteasome for RNA?
    • van Hoof A, Parker R. 1999. The exosome: a proteasome for RNA? Cell 99: 347–350.
    • (1999) Cell , vol.99 , pp. 347-350
    • Van Hoof, A.1    Parker, R.2
  • 105
    • 0033777266 scopus 로고    scopus 로고
    • Function of the Ski4p (Csl4p) and Ski7p proteins in 3’ -to-5’ degradation of mRNA
    • van Hoof A, Staples RR, Baker RE, Parker R. 2000. Function of the Ski4p (Csl4p) and Ski7p proteins in 3’ -to-5’ degradation of mRNA. Mol Cell Biol 20: 8230–8243.
    • (2000) Mol Cell Biol , vol.20 , pp. 8230-8243
    • Van Hoof, A.1    Staples, R.R.2    Baker, R.E.3    Parker, R.4
  • 106
    • 0037155584 scopus 로고    scopus 로고
    • Exosome-mediated recognition and degradation of mRNAs lacking a termination codon
    • van Hoof A, Frischmeyer PA, Dietz HC, Parker R. 2002. Exosome-mediated recognition and degradation of mRNAs lacking a termination codon. Science 295: 2262–2264.
    • (2002) Science , vol.295 , pp. 2262-2264
    • Van Hoof, A.1    Frischmeyer, P.A.2    Dietz, H.C.3    Parker, R.4
  • 108
    • 23644443992 scopus 로고    scopus 로고
    • Domain interactions within the Ski2/3/8 complex and between the Ski complex and Ski7p
    • Wang L, Lewis MS, Johnson AW. 2005. Domain interactions within the Ski2/3/8 complex and between the Ski complex and Ski7p. RNA 11: 1291–1302.
    • (2005) RNA , vol.11 , pp. 1291-1302
    • Wang, L.1    Lewis, M.S.2    Johnson, A.W.3
  • 109
    • 84867395423 scopus 로고    scopus 로고
    • Exo- and endoribonucleolytic activities of yeast cytoplasmic and nuclear RNA exosomes are dependent on the noncatalytic core and central channel
    • Wasmuth EV, Lima CD. 2012. Exo- and endoribonucleolytic activities of yeast cytoplasmic and nuclear RNA exosomes are dependent on the noncatalytic core and central channel. Mol Cell 48: 133–144.
    • (2012) Mol Cell , vol.48 , pp. 133-144
    • Wasmuth, E.V.1    Lima, C.D.2
  • 110
    • 85013998934 scopus 로고    scopus 로고
    • The Rrp6 C-terminal domain binds RNA and activates the nuclear RNA exosome
    • Wasmuth EV, Lima CD. 2017. The Rrp6 C-terminal domain binds RNA and activates the nuclear RNA exosome. Nucleic Acids Res 45: 846–860.
    • (2017) Nucleic Acids Res , vol.45 , pp. 846-860
    • Wasmuth, E.V.1    Lima, C.D.2
  • 111
    • 84904821452 scopus 로고    scopus 로고
    • Structure of an Rrp6-RNA exosome complex bound to poly(A) RNA
    • Wasmuth EV, Januszyk K, Lima CD. 2014. Structure of an Rrp6-RNA exosome complex bound to poly(A) RNA. Nature 511: 435–439.
    • (2014) Nature , vol.511 , pp. 435-439
    • Wasmuth, E.V.1    Januszyk, K.2    Lima, C.D.3
  • 112
    • 77955453339 scopus 로고    scopus 로고
    • Structural analysis reveals the characteristic features of Mtr4, a DExH helicase involved in nuclear RNA processing and surveillance
    • Weir JR, Bonneau F, Hentschel J, Conti E. 2010. Structural analysis reveals the characteristic features of Mtr4, a DExH helicase involved in nuclear RNA processing and surveillance. Proc Natl Acad Sci 107: 12139–12144.
    • (2010) Proc Natl Acad Sci , vol.107 , pp. 12139-12144
    • Weir, J.R.1    Bonneau, F.2    Hentschel, J.3    Conti, E.4
  • 113
    • 84887113964 scopus 로고    scopus 로고
    • Ribosome biogenesis in the yeast Saccharomyces cerevisiae
    • Woolford JL, Baserga SJ. 2013. Ribosome biogenesis in the yeast Saccharomyces cerevisiae. Genetics 195: 643–681.
    • (2013) Genetics , vol.195 , pp. 643-681
    • Woolford, J.L.1    Baserga, S.J.2
  • 116
    • 84995545531 scopus 로고    scopus 로고
    • Nuclear RNA exosome at 3.1 Å reveals substrate specificities, RNA paths, and allosteric inhibition of Rrp44/Dis3
    • Zinder JC, Wasmuth EV, Lima CD. 2016. Nuclear RNA exosome at 3.1 Å reveals substrate specificities, RNA paths, and allosteric inhibition of Rrp44/Dis3. Mol Cell 64: 734–745.
    • (2016) Mol Cell , vol.64 , pp. 734-745
    • Zinder, J.C.1    Wasmuth, E.V.2    Lima, C.D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.