-
1
-
-
0033214175
-
Functions of the exosome in rRNA, snoRNA and snRNA synthesis
-
Allmang C, Kufel J, Chanfreau G, Mitchell P, Petfalski E, Tollervey D. 1999a. Functions of the exosome in rRNA, snoRNA and snRNA synthesis. EMBO J 18: 5399–5410.
-
(1999)
EMBO J
, vol.18
, pp. 5399-5410
-
-
Allmang, C.1
Kufel, J.2
Chanfreau, G.3
Mitchell, P.4
Petfalski, E.5
Tollervey, D.6
-
2
-
-
0033567131
-
The yeast exosome and human PM-Scl are related complexes of 3’ –5’ exonucleases
-
Allmang C, Petfalski E, Podtelejnikov A, Mann M, Tollervey D, Mitchell P. 1999b. The yeast exosome and human PM-Scl are related complexes of 3’ –5’ exonucleases. Genes Dev 13: 2148–2158.
-
(1999)
Genes Dev
, vol.13
, pp. 2148-2158
-
-
Allmang, C.1
Petfalski, E.2
Podtelejnikov, A.3
Mann, M.4
Tollervey, D.5
Mitchell, P.6
-
3
-
-
84979729409
-
RNA exosome complex regulates stability of the hepatitis B virus X-mRNA transcript in a non stop-mediated (NSD) RNA quality control mechanism
-
Aly HH, Suzuki J, Watashi K, Chayama K, Hoshino S-I, Hijikata M, Kato T, Wakita T. 2016. RNA exosome complex regulates stability of the hepatitis B virus X-mRNA transcript in a non stop-mediated (NSD) RNA quality control mechanism. J Biol Chem 291: 15958–15974.
-
(2016)
J Biol Chem
, vol.291
, pp. 15958-15974
-
-
Aly, H.H.1
Suzuki, J.2
Watashi, K.3
Chayama, K.4
Hoshino, S.-I.5
Hijikata, M.6
Kato, T.7
Wakita, T.8
-
4
-
-
84890145122
-
The human cap-binding complex is functionally connected to the nuclear RNA exosome
-
Andersen PR, Domanski M, Kristiansen MS, Storvall H, Ntini E, Verheggen C, Schein A, Bunkenborg J, Poser I, Hallais M, et al. 2013. The human cap-binding complex is functionally connected to the nuclear RNA exosome. Nat Struct Mol Biol 20: 1367–1376.
-
(2013)
Nat Struct Mol Biol
, vol.20
, pp. 1367-1376
-
-
Andersen, P.R.1
Domanski, M.2
Kristiansen, M.S.3
Storvall, H.4
Ntini, E.5
Verheggen, C.6
Schein, A.7
Bunkenborg, J.8
Poser, I.9
Hallais, M.10
-
5
-
-
0000577868
-
The 3’ to 5’ degradation of yeast mRNAs is a general mechanism for mRNA turnover that requires the SKI2 DEVH box protein and 3’ to 5’ exonucleases of the exosome complex
-
Anderson JSJ, Parker R. 1998. The 3’ to 5’ degradation of yeast mRNAs is a general mechanism for mRNA turnover that requires the SKI2 DEVH box protein and 3’ to 5’ exonucleases of the exosome complex. EMBO J 17: 1497–1506.
-
(1998)
EMBO J
, vol.17
, pp. 1497-1506
-
-
Anderson, J.S.J.1
Parker, R.2
-
6
-
-
0035801392
-
Ski7p G protein interacts with the exosome and the Ski complex for 3’ to 5’ mRNA decay in yeast
-
Araki Y, Takahashi S, Kobayashi T, Kajiho H, Hoshino S, Katada T. 2001. Ski7p G protein interacts with the exosome and the Ski complex for 3’ to 5’ mRNA decay in yeast. EMBO J 20: 4684–4693.
-
(2001)
EMBO J
, vol.20
, pp. 4684-4693
-
-
Araki, Y.1
Takahashi, S.2
Kobayashi, T.3
Kajiho, H.4
Hoshino, S.5
Katada, T.6
-
7
-
-
55549097135
-
Exonucleolysis is required for nuclear mRNA quality control in yeast THO mutants
-
Assenholt J, Mouaikel J, Andersen KR, Brodersen DE, Libri D, Jensen TH. 2008. Exonucleolysis is required for nuclear mRNA quality control in yeast THO mutants. RNA 14: 2305–2313.
-
(2008)
RNA
, vol.14
, pp. 2305-2313
-
-
Assenholt, J.1
Mouaikel, J.2
Andersen, K.R.3
Brodersen, D.E.4
Libri, D.5
Jensen, T.H.6
-
8
-
-
70350336247
-
The yeast exosome functions as a macromolecular cage to channel RNA substrates for degradation
-
Bonneau F, Basquin J, Ebert J, Lorentzen E, Conti E. 2009. The yeast exosome functions as a macromolecular cage to channel RNA substrates for degradation. Cell 139: 547–559.
-
(2009)
Cell
, vol.139
, pp. 547-559
-
-
Bonneau, F.1
Basquin, J.2
Ebert, J.3
Lorentzen, E.4
Conti, E.5
-
9
-
-
0032557455
-
Rrp6p, the yeast homologue of the human PM-Scl 100-kDa autoantigen, is essential for efficient 5.8 S rRNA 3’ end formation
-
Briggs MW, Burkard KT, Butler JS. 1998. Rrp6p, the yeast homologue of the human PM-Scl 100-kDa autoantigen, is essential for efficient 5.8 S rRNA 3’ end formation. J Biol Chem 273: 13255–13263.
-
(1998)
J Biol Chem
, vol.273
, pp. 13255-13263
-
-
Briggs, M.W.1
Burkard, K.T.2
Butler, J.S.3
-
10
-
-
0035794216
-
Three novel components of the human exosome
-
Brouwer R, Allmang C, Raijmakers R, van Aarssen Y, Egberts WV, Petfalski E, van Venrooij WJ, Tollervey D, Pruijn GJM. 2000. Three novel components of the human exosome. J Biol Chem 276: 6177–6184.
-
(2000)
J Biol Chem
, vol.276
, pp. 6177-6184
-
-
Brouwer, R.1
Allmang, C.2
Raijmakers, R.3
Van Aarssen, Y.4
Egberts, W.V.5
Petfalski, E.6
Van Venrooij, W.J.7
Tollervey, D.8
Pruijn, G.J.M.9
-
11
-
-
0034118002
-
The yeast antiviral proteins Ski2p, Ski3p, and Ski8p exist as a complex in vivo
-
Brown JT, Bai X, Johnson AW. 2000. The yeast antiviral proteins Ski2p, Ski3p, and Ski8p exist as a complex in vivo. RNA 6: 449–457.
-
(2000)
RNA
, vol.6
, pp. 449-457
-
-
Brown, J.T.1
Bai, X.2
Johnson, A.W.3
-
12
-
-
0033960962
-
A nuclear 3’ –5’ exonuclease involved in mRNA degradation interacts with Poly(A) polymerase and the hnRNA protein Npl3p
-
Burkard KT, Butler JS. 2000. A nuclear 3’ –5’ exonuclease involved in mRNA degradation interacts with Poly(A) polymerase and the hnRNA protein Npl3p. Mol Cell Biol 20: 604–616.
-
(2000)
Mol Cell Biol
, vol.20
, pp. 604-616
-
-
Burkard, K.T.1
Butler, J.S.2
-
13
-
-
0029897304
-
A novel family of TRF (DNA topoisomerase I-related function) genes required for proper nuclear segregation
-
Castaño IB, Heath-Pagliuso S, Sadoff BU, Fitzhugh DJ, Christman MF. 1996. A novel family of TRF (DNA topoisomerase I-related function) genes required for proper nuclear segregation. Nucleic Acids Res 24: 2404–2410.
-
(1996)
Nucleic Acids Res
, vol.24
, pp. 2404-2410
-
-
Castaño, I.B.1
Heath-Pagliuso, S.2
Sadoff, B.U.3
Fitzhugh, D.J.4
Christman, M.F.5
-
14
-
-
84947939869
-
Stage-specific assembly events of the 6-MDa small-sub-unit processome initiate eukaryotic ribosome biogenesis
-
Chaker-Margot M, Hunziker M, Barandun J, Dill BD, Klinge S. 2015. Stage-specific assembly events of the 6-MDa small-sub-unit processome initiate eukaryotic ribosome biogenesis. Nat Struct Mol Biol 22: 920–923.
-
(2015)
Nat Struct Mol Biol
, vol.22
, pp. 920-923
-
-
Chaker-Margot, M.1
Hunziker, M.2
Barandun, J.3
Dill, B.D.4
Klinge, S.5
-
16
-
-
79951494668
-
Initial genome sequencing and analysis of multiple myeloma
-
Chapman MA, Lawrence MS, Keats JJ, Cibulskis K, Sougnez C, Schinzel AC, Harview CL, Brunet J-P, Ahmann GJ, Adli M, et al. 2011. Initial genome sequencing and analysis of multiple myeloma. Nature 471: 467–472.
-
(2011)
Nature
, vol.471
, pp. 467-472
-
-
Chapman, M.A.1
Lawrence, M.S.2
Keats, J.J.3
Cibulskis, K.4
Sougnez, C.5
Schinzel, A.C.6
Harview, C.L.7
Brunet, J.-P.8
Ahmann, G.J.9
Adli, M.10
-
17
-
-
37349038984
-
Ge-nome-wide high-resolution mapping of exosome substrates reveals hidden features in the Arabidopsis transcriptome
-
Chekanova JA, Gregory BD, Reverdatto SV, Chen H, Kumar R, Hooker T, Yazaki J, Li P, Skiba N, Peng Q, et al. 2007. Ge-nome-wide high-resolution mapping of exosome substrates reveals hidden features in the Arabidopsis transcriptome. Cell 131: 1340–1353.
-
(2007)
Cell
, vol.131
, pp. 1340-1353
-
-
Chekanova, J.A.1
Gregory, B.D.2
Reverdatto, S.V.3
Chen, H.4
Kumar, R.5
Hooker, T.6
Yazaki, J.7
Li, P.8
Skiba, N.9
Peng, Q.10
-
18
-
-
18044371822
-
AU binding proteins recruit the exosome to degrade ARE-containing mRNAs
-
Chen CY, Gherzi R, Ong SE, Chan EL, Raijmakers R, Pruijn GJ, Stoecklin G, Moroni C, Mann M, Karin M. 2001. AU binding proteins recruit the exosome to degrade ARE-containing mRNAs. Cell 107: 451–464.
-
(2001)
Cell
, vol.107
, pp. 451-464
-
-
Chen, C.Y.1
Gherzi, R.2
Ong, S.E.3
Chan, E.L.4
Raijmakers, R.5
Pruijn, G.J.6
Stoecklin, G.7
Moroni, C.8
Mann, M.9
Karin, M.10
-
19
-
-
79953017227
-
The C-terminal region of the exosome-associated protein Rrp47 is specifically required for box C/D small nucleolar RNA 3’ -maturation
-
Costello JL, Stead JA, Feigenbutz M, Jones RM, Mitchell P. 2011. The C-terminal region of the exosome-associated protein Rrp47 is specifically required for box C/D small nucleolar RNA 3’ -maturation. J Biol Chem 286: 4535–4543.
-
(2011)
J Biol Chem
, vol.286
, pp. 4535-4543
-
-
Costello, J.L.1
Stead, J.A.2
Feigenbutz, M.3
Jones, R.M.4
Mitchell, P.5
-
20
-
-
84983247234
-
Purification and analysis of endogenous human RNA exosome complexes
-
Domanski M, Upla P, Rice WJ, Molloy KR, Ketaren NE, Stokes DL, Jensen TH, Rout MP, LaCava J. 2016. Purification and analysis of endogenous human RNA exosome complexes. RNA 22: 1467–1475.
-
(2016)
RNA
, vol.22
, pp. 1467-1475
-
-
Domanski, M.1
Upla, P.2
Rice, W.J.3
Molloy, K.R.4
Ketaren, N.E.5
Stokes, D.L.6
Jensen, T.H.7
Rout, M.P.8
Lacava, J.9
-
21
-
-
84876040204
-
The RNA exosome complex central channel controls both exonuclease and endonuclease Dis3 activities in vivo and in vitro
-
Drazkowska K, Tomecki R, Stodus K, Kowalska K, Czarnocki-Cieciura M, Dziembowski A. 2013. The RNA exosome complex central channel controls both exonuclease and endonuclease Dis3 activities in vivo and in vitro. Nucleic Acids Res 41: 3845–3858.
-
(2013)
Nucleic Acids Res
, vol.41
, pp. 3845-3858
-
-
Drazkowska, K.1
Tomecki, R.2
Stodus, K.3
Kowalska, K.4
Czarnocki-Cieciura, M.5
Dziembowski, A.6
-
22
-
-
33846068920
-
A single subunit, Dis3, is essentially responsible for yeast exosome core activity
-
Dziembowski A, Lorentzen E, Conti E, Séraphin B. 2007. A single subunit, Dis3, is essentially responsible for yeast exosome core activity. Nat Struct Mol Biol 14: 15–22.
-
(2007)
Nat Struct Mol Biol
, vol.14
, pp. 15-22
-
-
Dziembowski, A.1
Lorentzen, E.2
Conti, E.3
Séraphin, B.4
-
23
-
-
84901447056
-
Post-transcriptional regulation of meiotic genes by a nuclear RNA silencing complex
-
Egan ED, Braun CR, Gygi SP, Moazed D. 2014. Post-transcriptional regulation of meiotic genes by a nuclear RNA silencing complex. RNA 20: 867–881.
-
(2014)
RNA
, vol.20
, pp. 867-881
-
-
Egan, E.D.1
Braun, C.R.2
Gygi, S.P.3
Moazed, D.4
-
25
-
-
84962057422
-
Human Mendelian diseases related to abnormalities of the RNA exosome or its cofactors
-
Fabre A, Badens C. 2014. Human Mendelian diseases related to abnormalities of the RNA exosome or its cofactors. Intractable Rare Dis Res 3: 8–11.
-
(2014)
Intractable Rare Dis Res
, vol.3
, pp. 8-11
-
-
Fabre, A.1
Badens, C.2
-
26
-
-
84908006760
-
The molecular architecture of the TRAMP complex reveals the organizationand interplay of its two catalytic activities
-
Falk S, Weir JR, Hentschel J, Reichelt P, Bonneau F, Conti E. 2014. The molecular architecture of the TRAMP complex reveals the organizationand interplay of its two catalytic activities. Mol Cell 55: 856–867.
-
(2014)
Mol Cell
, vol.55
, pp. 856-867
-
-
Falk, S.1
Weir, J.R.2
Hentschel, J.3
Reichelt, P.4
Bonneau, F.5
Conti, E.6
-
27
-
-
84999851910
-
Structure of the RBM7–ZCCHC8 core of the NEXT complex reveals connections to splicing factors
-
Falk S, Finogenova K, Melko M, Benda C, Lykke-Andersen S, Jensen TH, Conti E. 2016. Structure of the RBM7–ZCCHC8 core of the NEXT complex reveals connections to splicing factors. Nat Commun 7: 13573.
-
(2016)
Nat Commun
, vol.7
-
-
Falk, S.1
Finogenova, K.2
Melko, M.3
Benda, C.4
Lykke-Andersen, S.5
Jensen, T.H.6
Conti, E.7
-
28
-
-
84892399891
-
The exosome cofactor Rrp47 is critical for the stability and normal expression of its associated exoribonuclease Rrp6 in Saccharomyces cerevisiae
-
Feigenbutz M, Garland W, Turner M, Mitchell P. 2013. The exosome cofactor Rrp47 is critical for the stability and normal expression of its associated exoribonuclease Rrp6 in Saccharomyces cerevisiae. PLoS One 8: e80752.
-
(2013)
Plos One
, vol.8
-
-
Feigenbutz, M.1
Garland, W.2
Turner, M.3
Mitchell, P.4
-
29
-
-
84888401056
-
Rrp47 functions in RNA surveillance and stable RNA processing when divorced from the exoribonuclease and exosome-binding domains of Rrp6
-
Garland W, Feigenbutz M, Turner M, Mitchell P. 2013. Rrp47 functions in RNA surveillance and stable RNA processing when divorced from the exoribonuclease and exosome-binding domains of Rrp6. RNA 19: 1659–1668.
-
(2013)
RNA
, vol.19
, pp. 1659-1668
-
-
Garland, W.1
Feigenbutz, M.2
Turner, M.3
Mitchell, P.4
-
30
-
-
84951286397
-
Coordinated ribosomal ITS2 RNA processing by the Las1 complex integrating endonuclease, polynucleotide kinase, and exonuclease activities
-
Gasse L, Flemming D, Hurt E. 2015. Coordinated ribosomal ITS2 RNA processing by the Las1 complex integrating endonuclease, polynucleotide kinase, and exonuclease activities. Mol Cell 60: 808–815.
-
(2015)
Mol Cell
, vol.60
, pp. 808-815
-
-
Gasse, L.1
Flemming, D.2
Hurt, E.3
-
31
-
-
84869093362
-
Extensive degradation of RNA precursors by the exosome in wild-type cells
-
Gudipati RK, Xu Z, Lebreton A, Séraphin B, Steinmetz LM, Jacquier A, Libri D. 2012. Extensive degradation of RNA precursors by the exosome in wild-type cells. Mol Cell 48: 409–421.
-
(2012)
Mol Cell
, vol.48
, pp. 409-421
-
-
Gudipati, R.K.1
Xu, Z.2
Lebreton, A.3
Séraphin, B.4
Steinmetz, L.M.5
Jacquier, A.6
Libri, D.7
-
32
-
-
84055217962
-
The crystal structure of S. Cerevisiae Ski2, a DExH helicase associated with the cytoplasmic functions of the exosome
-
Halbach F, Rode M, Conti E. 2012. The crystal structure of S. cerevisiae Ski2, a DExH helicase associated with the cytoplasmic functions of the exosome. RNA 18: 124–134.
-
(2012)
RNA
, vol.18
, pp. 124-134
-
-
Halbach, F.1
Rode, M.2
Conti, E.3
-
33
-
-
84882796823
-
The yeast Ski complex: Crystal structure and RNA channeling to the exosome complex
-
Halbach F, Reichelt P, Rode M, Conti E. 2013. The yeast Ski complex: crystal structure and RNA channeling to the exosome complex. Cell 154: 814–826.
-
(2013)
Cell
, vol.154
, pp. 814-826
-
-
Halbach, F.1
Reichelt, P.2
Rode, M.3
Conti, E.4
-
34
-
-
77957014655
-
Structure and function of the polymerase core of TRAMP, a RNA surveillance complex
-
Hamill S, Wolin SL, Reinisch KM. 2010. Structure and function of the polymerase core of TRAMP, a RNA surveillance complex. Proc Natl Acad Sci 107: 15045–15050.
-
(2010)
Proc Natl Acad Sci
, vol.107
, pp. 15045-15050
-
-
Hamill, S.1
Wolin, S.L.2
Reinisch, K.M.3
-
35
-
-
84991736463
-
The RNA exosome channeling and direct access conformations have distinct in vivo functions
-
Han J, van Hoof A. 2016. The RNA exosome channeling and direct access conformations have distinct in vivo functions. Cell Rep 16: 3348–3358.
-
(2016)
Cell Rep
, vol.16
, pp. 3348-3358
-
-
Han, J.1
Van Hoof, A.2
-
36
-
-
33746005932
-
Selective elimination of messenger RNA prevents an incidence of untimely meiosis
-
Harigaya Y, Tanaka H, Yamanaka S, Tanaka K, Watanabe Y, Tsutsumi C, Chikashige Y, Hiraoka Y, Yamashita A, Yamamoto M. 2006. Selective elimination of messenger RNA prevents an incidence of untimely meiosis. Nature 442: 45–50.
-
(2006)
Nature
, vol.442
, pp. 45-50
-
-
Harigaya, Y.1
Tanaka, H.2
Yamanaka, S.3
Tanaka, K.4
Watanabe, Y.5
Tsutsumi, C.6
Chikashige, Y.7
Hiraoka, Y.8
Yamashita, A.9
Yamamoto, M.10
-
37
-
-
84922998994
-
An overview of pre-ribosomal RNA processing in eukaryotes
-
Henras AK, Plisson-Chastang C, O’Donohue M-F, Chakraborty A, Gleizes P-E. 2014. An overview of pre-ribosomal RNA processing in eukaryotes. Wiley Interdiscip Rev RNA 6: 225–242.
-
(2014)
Wiley Interdiscip Rev RNA
, vol.6
, pp. 225-242
-
-
Henras, A.K.1
Plisson-Chastang, C.2
O’Donohue, M.-F.3
Chakraborty, A.4
Gleizes, P.-E.5
-
38
-
-
85014843250
-
Functional characterization of a chr13q22.1 pancreatic cancer risk locus reveals long-range interaction and allele-specific ef fects on DIS3 expression
-
Hoskins JW, Ibrahim A, Emmanuel MA, Manmiller SM, Wu Y, O’Neill M, Jia J, Collins I, Zhang M, Thomas JV, et al. 2016. Functional characterization of a chr13q22.1 pancreatic cancer risk locus reveals long-range interaction and allele-specific ef fects on DIS3 expression. Hum Mol Genet. doi:10.1093/hmg/ddw300
-
(2016)
Hum Mol Genet
-
-
Hoskins, J.W.1
Ibrahim, A.2
Emmanuel, M.A.3
Manmiller, S.M.4
Wu, Y.5
O’Neill, M.6
Jia, J.7
Collins, I.8
Zhang, M.9
Thomas, J.V.10
-
39
-
-
77954952539
-
The crystal structure of Mtr4 reveals a novel arch domain required for rRNA processing
-
Jackson RN, Klauer AA, Hintze BJ, Robinson H, van Hoof A, Johnson SJ. 2010. The crystal structure of Mtr4 reveals a novel arch domain required for rRNA processing. EMBO J 29: 2205–2216.
-
(2010)
EMBO J
, vol.29
, pp. 2205-2216
-
-
Jackson, R.N.1
Klauer, A.A.2
Hintze, B.J.3
Robinson, H.4
Van Hoof, A.5
Johnson, S.J.6
-
40
-
-
85007504686
-
C1D family proteins in coordinating RNA processing, chromosome condensation and DNA damage response
-
Jackson RA, Wu JS, Chen ES. 2016. C1D family proteins in coordinating RNA processing, chromosome condensation and DNA damage response. Cell Div 11: 2.
-
(2016)
Cell Div
, vol.11
, pp. 2
-
-
Jackson, R.A.1
Js, W.2
Chen, E.S.3
-
42
-
-
2642574393
-
Nuclear surveillance and degradation of hypomodified initiator tRNAMet in S. Cerevisiae
-
Kadaba S, Krueger A, Trice T, Krecic AM, Hinnebusch AG, Anderson J. 2004. Nuclear surveillance and degradation of hypomodified initiator tRNAMet in S. cerevisiae. Genes Dev 18: 1227–1240.
-
(2004)
Genes Dev
, vol.18
, pp. 1227-1240
-
-
Kadaba, S.1
Krueger, A.2
Trice, T.3
Krecic, A.M.4
Hinnebusch, A.G.5
Anderson, J.6
-
43
-
-
85042094383
-
A short splicing isoform of HBS1L links the cytoplasmic exosome and SKI complexes in humans
-
Kalisiak K, Kulinski TM, Tomecki R, Cysewski D, Pietras Z, Chlebowski A, Kowalska K, Dziembowski A. 2016. A short splicing isoform of HBS1L links the cytoplasmic exosome and SKI complexes in humans. Nucleic Acids Res. doi:10.1093/nar/gkw862
-
(2016)
Nucleic Acids Res
-
-
Kalisiak, K.1
Kulinski, T.M.2
Tomecki, R.3
Cysewski, D.4
Pietras, Z.5
Chlebowski, A.6
Kowalska, K.7
Dziembowski, A.8
-
44
-
-
84952683219
-
The regulation and functions of the nuclear RNA exosome complex
-
Kilchert C, Wittmann S, Vasiljeva L. 2016. The regulation and functions of the nuclear RNA exosome complex. Nat Rev Mol Cell Biol 17: 227–239.
-
(2016)
Nat Rev Mol Cell Biol
, vol.17
, pp. 227-239
-
-
Kilchert, C.1
Wittmann, S.2
Vasiljeva, L.3
-
45
-
-
84975068585
-
Exosome cofactors connect transcription termination to RNA processing by guiding terminated transcripts to the appropriate exonuclease within the nuclear exosome
-
Kim K, Heo D-H, Kim I, Suh J-Y, Kim M. 2016. Exosome cofactors connect transcription termination to RNA processing by guiding terminated transcripts to the appropriate exonuclease within the nuclear exosome. J Biol Chem 291: 13229–13242.
-
(2016)
J Biol Chem
, vol.291
, pp. 13229-13242
-
-
Kim, K.1
Heo, D.-H.2
Kim, I.3
Suh, J.-Y.4
Kim, M.5
-
46
-
-
0018662419
-
Splicing of yeast tRNA precursors: Structure of the reaction intermediates
-
Knapp G, Ogden RC, Peebles CL, Abelson J. 1979. Splicing of yeast tRNA precursors: structure of the reaction intermediates. Cell 18: 37–45.
-
(1979)
Cell
, vol.18
, pp. 37-45
-
-
Knapp, G.1
Ogden, R.C.2
Peebles, C.L.3
Abelson, J.4
-
47
-
-
84936847213
-
Saccharomyces cerevisiae Ski7 is a GTP-binding protein adopting the characteristic conformation of active translational GTPases
-
Kowalinski E, Schuller A, Green R, Conti E. 2015. Saccharomyces cerevisiae Ski7 is a GTP-binding protein adopting the characteristic conformation of active translational GTPases. Structure 23: 1336–1343.
-
(2015)
Structure
, vol.23
, pp. 1336-1343
-
-
Kowalinski, E.1
Schuller, A.2
Green, R.3
Conti, E.4
-
48
-
-
84992358935
-
Structure of a cytoplasmic 11-subunit RNA exosome complex
-
Kowalinski E, Kögel A, Ebert J, Reichelt P, Stegmann E, Habermann B, Conti E. 2016. Structure of a cytoplasmic 11-subunit RNA exosome complex. Mol Cell 63: 125–134.
-
(2016)
Mol Cell
, vol.63
, pp. 125-134
-
-
Kowalinski, E.1
Kögel, A.2
Ebert, J.3
Reichelt, P.4
Stegmann, E.5
Habermann, B.6
Conti, E.7
-
49
-
-
84991738289
-
Cytoplasmic RNA decay pathways—enzymes and mechanisms
-
Łabno A, Tomecki R, Dziembowski A. 2016. Cytoplasmic RNA decay pathways—enzymes and mechanisms. Biochim Biophys Acta 1863: 3125–3147.
-
(2016)
Biochim Biophys Acta
, vol.1863
, pp. 3125-3147
-
-
Łabno, A.1
Tomecki, R.2
Dziembowski, A.3
-
50
-
-
20444368818
-
RNA degradation by the exosome is promoted by a nuclear polyadenylation complex
-
LaCava J, Houseley J, Saveanu C, Petfalski E, Thompson E, Jacquier A, Tollervey D. 2005. RNA degradation by the exosome is promoted by a nuclear polyadenylation complex. Cell 121: 713–724.
-
(2005)
Cell
, vol.121
, pp. 713-724
-
-
Lacava, J.1
Houseley, J.2
Saveanu, C.3
Petfalski, E.4
Thompson, E.5
Jacquier, A.6
Tollervey, D.7
-
52
-
-
84889599430
-
Mtr4-like protein coordinates nuclear RNA processing for heterochromatin assembly and for telomere maintenance
-
Lee NN, Chalamcharla VR, Reyes-Turcu F, Mehta S, Zofall M, Balachandran V, Dhakshnamoorthy J, Taneja N, Yamanaka S, Zhou M, et al. 2013. Mtr4-like protein coordinates nuclear RNA processing for heterochromatin assembly and for telomere maintenance. Cell 155: 1061–1074.
-
(2013)
Cell
, vol.155
, pp. 1061-1074
-
-
Lee, N.N.1
Chalamcharla, V.R.2
Reyes-Turcu, F.3
Mehta, S.4
Zofall, M.5
Balachandran, V.6
Dhakshnamoorthy, J.7
Taneja, N.8
Yamanaka, S.9
Zhou, M.10
-
53
-
-
33845407784
-
Reconstitution, activities, and structure of the eukaryotic RNA exosome
-
Liu Q, Greimann JC, Lima CD. 2006. Reconstitution, activities, and structure of the eukaryotic RNA exosome. Cell 127: 1223–1237.
-
(2006)
Cell
, vol.127
, pp. 1223-1237
-
-
Liu, Q.1
Greimann, J.C.2
Lima, C.D.3
-
54
-
-
84893752136
-
Visualization of distinct substrate-recruitment pathways in the yeast exosome by EM
-
Liu J-J, Bratkowski MA, Liu X, Niu C-Y, Ke A, Wang H-W. 2014. Visualization of distinct substrate-recruitment pathways in the yeast exosome by EM. Nat Struct Mol Biol 21: 95–102.
-
(2014)
Nat Struct Mol Biol
, vol.21
, pp. 95-102
-
-
Liu, J.-J.1
Bratkowski, M.A.2
Liu, X.3
Niu, C.-Y.4
Ke, A.5
Wang, H.-W.6
-
55
-
-
84968547855
-
CryoEM structure of yeast cytoplasmic exosome complex
-
Liu J-J, Niu C-Y, Wu Y, Tan D, Wang Y, Ye M-D, Liu Y, Zhao W, Zhou K, Liu Q-S, et al. 2016. CryoEM structure of yeast cytoplasmic exosome complex. Cell Res 26: 822–837.
-
(2016)
Cell Res
, vol.26
, pp. 822-837
-
-
Liu, J.-J.1
Niu, C.-Y.2
Wu, Y.3
Tan, D.4
Wang, Y.5
Ye, M.-D.6
Liu, Y.7
Zhao, W.8
Zhou, K.9
Liu, Q.-S.10
-
56
-
-
84892409192
-
Widespread genetic heterogeneity in multiple myeloma: Implications for targeted therapy
-
Lohr JG, Stojanov P, Carter SL, Cruz-Gordillo P, Lawrence MS, Auclair D, Sougnez C, Knoechel B, Gould J, Saksena G, et al. 2014. Widespread genetic heterogeneity in multiple myeloma: implications for targeted therapy. Cancer Cell 25: 91–101.
-
(2014)
Cancer Cell
, vol.25
, pp. 91-101
-
-
Lohr, J.G.1
Stojanov, P.2
Carter, S.L.3
Cruz-Gordillo, P.4
Lawrence, M.S.5
Auclair, D.6
Sougnez, C.7
Knoechel, B.8
Gould, J.9
Saksena, G.10
-
57
-
-
84940388230
-
Gateway arch to the RNA exosome
-
Losh JS, van Hoof A. 2015. Gateway arch to the RNA exosome. Cell 162: 940–941.
-
(2015)
Cell
, vol.162
, pp. 940-941
-
-
Losh, J.S.1
Van Hoof, A.2
-
58
-
-
84936797315
-
Interaction between the RNA-dependent ATPase and poly(A) polymerase subunits of the TRAMP complex is mediated by short peptides and important for snoRNA processing
-
Losh JS, King AK, Bakelar J, Taylor L, Loomis J, Rosenzweig JA, Johnson SJ, van Hoof A. 2015. Interaction between the RNA-dependent ATPase and poly(A) polymerase subunits of the TRAMP complex is mediated by short peptides and important for snoRNA processing. Nucleic Acids Res 43: 1848–1858.
-
(2015)
Nucleic Acids Res
, vol.43
, pp. 1848-1858
-
-
Losh, J.S.1
King, A.K.2
Bakelar, J.3
Taylor, L.4
Loomis, J.5
Rosenzweig, J.A.6
Johnson, S.J.7
Van Hoof, A.8
-
59
-
-
80051730960
-
Interaction profiling identifies the human nuclear exosome targeting complex
-
Lubas M, Christensen MS, Kristiansen MS, Domanski M, Falkenby LG, Lykke-Andersen S, Andersen JS, Dziembowski A, Jensen TH. 2011. Interaction profiling identifies the human nuclear exosome targeting complex. Mol Cell 43: 624–637.
-
(2011)
Mol Cell
, vol.43
, pp. 624-637
-
-
Lubas, M.1
Christensen, M.S.2
Kristiansen, M.S.3
Domanski, M.4
Falkenby, L.G.5
Lykke-Andersen, S.6
Andersen, J.S.7
Dziembowski, A.8
Jensen, T.H.9
-
60
-
-
84880224541
-
Exonuclease hDIS3L2 specifies an exosome-independent 3’ -5’ degradation pathway of human cytoplasmic mRNA
-
Lubas M, Damgaard CK, Tomecki R, Cysewski D, Jensen TH, Dziembowski A. 2013. Exonuclease hDIS3L2 specifies an exosome-independent 3’ -5’ degradation pathway of human cytoplasmic mRNA. EMBO J 32: 1855–1868.
-
(2013)
EMBO J
, vol.32
, pp. 1855-1868
-
-
Lubas, M.1
Damgaard, C.K.2
Tomecki, R.3
Cysewski, D.4
Jensen, T.H.5
Dziembowski, A.6
-
61
-
-
0026565203
-
Cyclic 2’,3’ -phosphates and nontemplated nucleotides at the 3’ end of spliceosomal U6 small nuclear RNAs
-
Lund E, Dahlberg JE. 1992. Cyclic 2’,3’ -phosphates and nontemplated nucleotides at the 3’ end of spliceosomal U6 small nuclear RNAs. Science 255: 327–330.
-
(1992)
Science
, vol.255
, pp. 327-330
-
-
Lund, E.1
Dahlberg, J.E.2
-
63
-
-
84953639031
-
DGCR8 acts as an adaptor for the exosome complex to degrade double-stranded structured RNAs
-
Macias S, Cordiner RA, Gautier P, Plass M, Cáceres JF. 2015. DGCR8 acts as an adaptor for the exosome complex to degrade double-stranded structured RNAs. Mol Cell 60: 873–885.
-
(2015)
Mol Cell
, vol.60
, pp. 873-885
-
-
Macias, S.1
Cordiner, R.A.2
Gautier, P.3
Plass, M.4
Cáceres, J.F.5
-
64
-
-
84874742223
-
Crystal structure of an RNA-bound 11-subunit eukaryotic exosome complex
-
Makino DL, Baumgärtner M, Conti E. 2013. Crystal structure of an RNA-bound 11-subunit eukaryotic exosome complex. Nature 495: 70–75.
-
(2013)
Nature
, vol.495
, pp. 70-75
-
-
Makino, D.L.1
Baumgärtner, M.2
Conti, E.3
-
65
-
-
84938809545
-
RNA degradation paths in a 12-subunit nuclear exosome complex
-
Makino DL, Schuch B, Stegmann E, Baumgärtner M, Basquin C, Conti E. 2015. RNA degradation paths in a 12-subunit nuclear exosome complex. Nature 524: 54–58.
-
(2015)
Nature
, vol.524
, pp. 54-58
-
-
Makino, D.L.1
Schuch, B.2
Stegmann, E.3
Baumgärtner, M.4
Basquin, C.5
Conti, E.6
-
66
-
-
84907687722
-
The exosome complex establishes a barricade to erythroid maturation
-
McIver SC, Kang Y-A, DeVilbiss AW, O’Driscoll CA, Ouellette JN, Pope NJ, Camprecios G, Chang C-J, Yang D, Bouhassira EE, et al. 2014. The exosome complex establishes a barricade to erythroid maturation. Blood 124: 2285–2297.
-
(2014)
Blood
, vol.124
, pp. 2285-2297
-
-
McIver, S.C.1
Kang, Y.-A.2
Devilbiss, A.W.3
O’Driscoll, C.A.4
Ouellette, J.N.5
Pope, N.J.6
Camprecios, G.7
Chang, C.-J.8
Yang, D.9
Bouhassira, E.E.10
-
67
-
-
84989162246
-
Exosome complex orchestrates developmental signaling to balance proliferation and differentiation during erythropoiesis
-
McIver SC, Katsumura KR, Davids E, Liu P, Kang Y-A, Yang D, Bresnick EH. 2016. Exosome complex orchestrates developmental signaling to balance proliferation and differentiation during erythropoiesis. Elife 5: 5399.
-
(2016)
Elife
, vol.5
, pp. 5399
-
-
McIver, S.C.1
Katsumura, K.R.2
Davids, E.3
Liu, P.4
Kang, Y.-A.5
Yang, D.6
Bresnick, E.H.7
-
68
-
-
84995459544
-
Identification of a nuclear exosome decay pathway for processed transcripts
-
Meola N, Domanski M, Karadoulama E, Chen Y, Gentil C, Pultz D, Vitting-Seerup K, Lykke-Andersen S, Andersen JS, Sandelin A, et al. 2016. Identification of a nuclear exosome decay pathway for processed transcripts. Mol Cell 64: 520–533.
-
(2016)
Mol Cell
, vol.64
, pp. 520-533
-
-
Meola, N.1
Domanski, M.2
Karadoulama, E.3
Chen, Y.4
Gentil, C.5
Pultz, D.6
Vitting-Seerup, K.7
Lykke-Andersen, S.8
Andersen, J.S.9
Sandelin, A.10
-
69
-
-
84863613835
-
Progenitor function in self-renewing human epidermis is maintained by the exosome
-
Mistry DS, Chen Y, Sen GL. 2012. Progenitor function in self-renewing human epidermis is maintained by the exosome. Cell Stem Cell 11: 127–135.
-
(2012)
Cell Stem Cell
, vol.11
, pp. 127-135
-
-
Mistry, D.S.1
Chen, Y.2
Sen, G.L.3
-
70
-
-
77955964738
-
Rrp47 and the function of the Sas10/C1D domain
-
Mitchell P. 2010. Rrp47 and the function of the Sas10/C1D domain. Biochem Soc Trans 38: 1088–1092.
-
(2010)
Biochem Soc Trans
, vol.38
, pp. 1088-1092
-
-
Mitchell, P.1
-
71
-
-
0030702085
-
The exosome: A conserved eukaryotic RNA processing complex containing multiple 3’ –5’ exoribonucleases
-
Mitchell P, Petfalski E, Shevchenko A, Mann M, Tollervey D. 1997. The exosome: a conserved eukaryotic RNA processing complex containing multiple 3’ –5’ exoribonucleases. Cell 91: 457–466.
-
(1997)
Cell
, vol.91
, pp. 457-466
-
-
Mitchell, P.1
Petfalski, E.2
Shevchenko, A.3
Mann, M.4
Tollervey, D.5
-
72
-
-
84980010333
-
A conserved virus-induced cytoplasmic TRAMPlike complex recruits the exosome to target viral RNA for degradation
-
Molleston JM, Sabin LR, Moy RH, Menghani SV, Rausch K, Gordesky-Gold B, Hopkins KC, Zhou R, Jensen TH, Wilusz JE, et al. 2016. A conserved virus-induced cytoplasmic TRAMPlike complex recruits the exosome to target viral RNA for degradation. Genes Dev 30: 1658–1670.
-
(2016)
Genes Dev
, vol.30
, pp. 1658-1670
-
-
Molleston, J.M.1
Sabin, L.R.2
Moy, R.H.3
Menghani, S.V.4
Rausch, K.5
Gordesky-Gold, B.6
Hopkins, K.C.7
Zhou, R.8
Jensen, T.H.9
Wilusz, J.E.10
-
73
-
-
84983316613
-
Relative contributions of the structural and catalytic roles of Rrp6 in exosomal degradation of individual mRNAs
-
Mukherjee K, Gardin J, Futcher B, Leatherwood J. 2016. Relative contributions of the structural and catalytic roles of Rrp6 in exosomal degradation of individual mRNAs. RNA 22: 1311–1319.
-
(2016)
RNA
, vol.22
, pp. 1311-1319
-
-
Mukherjee, K.1
Gardin, J.2
Futcher, B.3
Leatherwood, J.4
-
74
-
-
84982954679
-
A polyadenylation-dependent 3’ end maturation pathway is required for the synthesis of the human telomerase RNA
-
Nguyen D, Grenier St-Sauveur V, Bergeron D, Dupuis-Sandoval F, Scott MS, Bachand F. 2015a. A polyadenylation-dependent 3’ end maturation pathway is required for the synthesis of the human telomerase RNA. Cell Rep 13: 2244–2257.
-
(2015)
Cell Rep
, vol.13
, pp. 2244-2257
-
-
Nguyen, D.1
Grenier St-Sauveur, V.2
Bergeron, D.3
Dupuis-Sandoval, F.4
Scott, M.S.5
Bachand, F.6
-
75
-
-
84930478808
-
Functional anatomy of the human microprocessor
-
Nguyen TA, Jo MH, Choi Y-G, Park J, Kwon SC, Hohng S, Kim VN, Woo J-S. 2015b. Functional anatomy of the human microprocessor. Cell 161: 1374–1387.
-
(2015)
Cell
, vol.161
, pp. 1374-1387
-
-
Nguyen, T.A.1
Jo, M.H.2
Choi, Y.-G.3
Park, J.4
Kwon, S.C.5
Hohng, S.6
Kim, V.N.7
Woo, J.-S.8
-
76
-
-
0024007279
-
Cold-sensitive and caffeine-supersensitive mutants of the Schizosaccharomyces pombe dis genes implicated in sister chromatid separation during mitosis
-
Ohkura H, Adachi Y, Kinoshita N, Niwa O, Toda T, Yanagida M. 1988. Cold-sensitive and caffeine-supersensitive mutants of the Schizosaccharomyces pombe dis genes implicated in sister chromatid separation during mitosis. EMBO J 7: 1465–1473.
-
(1988)
EMBO J
, vol.7
, pp. 1465-1473
-
-
Ohkura, H.1
Adachi, Y.2
Kinoshita, N.3
Niwa, O.4
Toda, T.5
Yanagida, M.6
-
77
-
-
84908162142
-
Noncoding RNA transcription targets AID to divergently transcribed loci in B cells
-
Pefanis E, Wang J, Rothschild G, Lim J, Chao J, Rabadan R, Economides AN, Basu U. 2014. Noncoding RNA transcription targets AID to divergently transcribed loci in B cells. Nature 514: 389–393.
-
(2014)
Nature
, vol.514
, pp. 389-393
-
-
Pefanis, E.1
Wang, J.2
Rothschild, G.3
Lim, J.4
Chao, J.5
Rabadan, R.6
Economides, A.N.7
Basu, U.8
-
78
-
-
57849123049
-
RNA exosome depletion reveals transcription upstream of active human promoters
-
Preker P, Nielsen J, Kammler S, Lykke-Andersen S, Christensen MS, Mapendano CK, Schierup MH, Jensen TH. 2008. RNA exosome depletion reveals transcription upstream of active human promoters. Science 322: 1851–1854.
-
(2008)
Science
, vol.322
, pp. 1851-1854
-
-
Preker, P.1
Nielsen, J.2
Kammler, S.3
Lykke-Andersen, S.4
Christensen, M.S.5
Mapendano, C.K.6
Schierup, M.H.7
Jensen, T.H.8
-
79
-
-
0021262150
-
Superkiller mutations in Saccharomyces cerevisiae suppress exclusion of M2 double-stranded RNA by L-A-HN and confer cold sensitivity in the presence of M and L-A-HN
-
Ridley SP, Sommer SS, Wickner RB. 1984. Superkiller mutations in Saccharomyces cerevisiae suppress exclusion of M2 double-stranded RNA by L-A-HN and confer cold sensitivity in the presence of M and L-A-HN. Mol Cell Biol 4: 761–770.
-
(1984)
Mol Cell Biol
, vol.4
, pp. 761-770
-
-
Ridley, S.P.1
Sommer, S.S.2
Wickner, R.B.3
-
80
-
-
85012054078
-
The 3’ to 5’ exoribonuclease DIS3: From structure and mechanisms to biological functions and role in human disease
-
Robinson SR, Oliver AW, Chevassut TJ, Newbury SF. 2015. The 3’ to 5’ exoribonuclease DIS3: from structure and mechanisms to biological functions and role in human disease. Biomolecules 5: 1515–1539.
-
(2015)
Biomolecules
, vol.5
, pp. 1515-1539
-
-
Robinson, S.R.1
Oliver, A.W.2
Chevassut, T.J.3
Newbury, S.F.4
-
81
-
-
58149236691
-
The exosome contains domains with specific endoribonuclease, exoribonuclease and cytoplasmic mRNA decay activities
-
Schaeffer D, Tsanova B, Barbas A, Reis FP, Dastidar EG, SanchezRotunno M, Arraiano CM, van Hoof A. 2009. The exosome contains domains with specific endoribonuclease, exoribonuclease and cytoplasmic mRNA decay activities. Nat Struct Mol Biol 16: 56–62.
-
(2009)
Nat Struct Mol Biol
, vol.16
, pp. 56-62
-
-
Schaeffer, D.1
Tsanova, B.2
Barbas, A.3
Reis, F.P.4
Dastidar, E.G.5
Sanchezrotunno, M.6
Arraiano, C.M.7
Van Hoof, A.8
-
82
-
-
29244475356
-
MPP6 is an exosome-associated RNA-binding protein involved in 5.8S rRNA maturation
-
Schilders G. 2005. MPP6 is an exosome-associated RNA-binding protein involved in 5.8S rRNA maturation. Nucleic Acids Res 33: 6795–6804.
-
(2005)
Nucleic Acids Res
, vol.33
, pp. 6795-6804
-
-
Schilders, G.1
-
83
-
-
85006265895
-
The cryo-EM structure of a ribosome–Ski2–Ski3–Ski8 helicase complex
-
Schmidt C, Kowalinski E, Shanmuganathan V, Defenouillere Q, Braunger K, Heuer A, Pech M, Namane A, Berninghausen, Fromont-Racine M, et al. 2016. The cryo-EM structure of a ribosome–Ski2–Ski3–Ski8 helicase complex. Science 354: 1431–1433.
-
(2016)
Science
, vol.354
, pp. 1431-1433
-
-
Schmidt, C.1
Kowalinski, E.2
Shanmuganathan, V.3
Defenouillere, Q.4
Braunger, K.5
Heuer, A.6
Pech, M.7
Namane, A.8
Berninghausen Fromont-Racine, M.9
-
84
-
-
62049085366
-
The N-terminal PIN domain of the exosome subunit Rrp44 harbors endonuclease activity and tethers Rrp44 to the yeast core exosome
-
Schneider C, Leung E, Brown J, Tollervey D. 2008. The N-terminal PIN domain of the exosome subunit Rrp44 harbors endonuclease activity and tethers Rrp44 to the yeast core exosome. Nucleic Acids Res 37: 1127–1140.
-
(2008)
Nucleic Acids Res
, vol.37
, pp. 1127-1140
-
-
Schneider, C.1
Leung, E.2
Brown, J.3
Tollervey, D.4
-
85
-
-
84869082850
-
Transcriptome-wide analysis of exosome targets
-
Schneider C, Kudla G, Wlotzka W, Tuck A, Tollervey D. 2012. Transcriptome-wide analysis of exosome targets. Mol Cell 48: 422–433.
-
(2012)
Mol Cell
, vol.48
, pp. 422-433
-
-
Schneider, C.1
Kudla, G.2
Wlotzka, W.3
Tuck, A.4
Tollervey, D.5
-
86
-
-
84919337863
-
The exosome-binding factors Rrp6 and Rrp47 form a composite surface for recruiting the Mtr4 helicase
-
Schuch B, Feigenbutz M, Makino DL, Falk S, Basquin C, Mitchell P, Conti E. 2014. The exosome-binding factors Rrp6 and Rrp47 form a composite surface for recruiting the Mtr4 helicase. EMBO J 33: 2829–2846.
-
(2014)
EMBO J
, vol.33
, pp. 2829-2846
-
-
Schuch, B.1
Feigenbutz, M.2
Makino, D.L.3
Falk, S.4
Basquin, C.5
Mitchell, P.6
Conti, E.7
-
87
-
-
77149132138
-
Capture and sequence analysis of RNAs with terminal 2’,3’ -cyclic phosphates
-
Schutz K, Hesselberth JR, Fields S. 2010. Capture and sequence analysis of RNAs with terminal 2’,3’ -cyclic phosphates. RNA 16: 621–631.
-
(2010)
RNA
, vol.16
, pp. 621-631
-
-
Schutz, K.1
Hesselberth, J.R.2
Fields, S.3
-
88
-
-
84931287862
-
The ribonuclease DIS3 promotes let-7 miRNA maturation by degrading the pluripotency factor LIN28B mRNA
-
Segalla S, Pivetti S, Todoerti K, Chudzik MA, Giuliani EC, Laz-zaro F, Volta V, Lazarevic D, Musco G, Muzi-Falconi M, et al. 2015. The ribonuclease DIS3 promotes let-7 miRNA maturation by degrading the pluripotency factor LIN28B mRNA. Nucleic Acids Res 43: 5182–5193.
-
(2015)
Nucleic Acids Res
, vol.43
, pp. 5182-5193
-
-
Segalla, S.1
Pivetti, S.2
Todoerti, K.3
Chudzik, M.A.4
Giuliani, E.C.5
Laz-Zaro, F.6
Volta, V.7
Lazarevic, D.8
Musco, G.9
Muzi-Falconi, M.10
-
89
-
-
84868141731
-
Mpn1, mutated in poikiloderma with neutrope-nia protein 1, is a conserved 3’ -to-5’ RNA exonuclease processing U6 small nuclear RNA
-
Shchepachev V, Wischnewski H, Missiaglia E, Soneson C, Azzalin CM. 2012. Mpn1, mutated in poikiloderma with neutrope-nia protein 1, is a conserved 3’ -to-5’ RNA exonuclease processing U6 small nuclear RNA. Cell Rep 2: 855–865.
-
(2012)
Cell Rep
, vol.2
, pp. 855-865
-
-
Shchepachev, V.1
Wischnewski, H.2
Missiaglia, E.3
Soneson, C.4
Azzalin, C.M.5
-
90
-
-
84938990505
-
Human Mpn1 promotes post-transcriptional processing and stability of U6atac
-
Shchepachev V, Wischnewski H, Soneson C, Arnold AW, Azzalin CM. 2015. Human Mpn1 promotes post-transcriptional processing and stability of U6atac. FEBS Lett 589: 2417–2423.
-
(2015)
FEBS Lett
, vol.589
, pp. 2417-2423
-
-
Shchepachev, V.1
Wischnewski, H.2
Soneson, C.3
Arnold, A.W.4
Azzalin, C.M.5
-
91
-
-
84949099771
-
A strategy for dissecting the architectures of native macromolecular assemblies
-
Shi Y, Pellarin R, Fridy PC, Fernandez-Martinez J, Thompson MK, Li Y, Wang QJ, Sali A, Rout MP, Chait BT. 2015. A strategy for dissecting the architectures of native macromolecular assemblies. Nat Methods 12: 1135–1138.
-
(2015)
Nat Methods
, vol.12
, pp. 1135-1138
-
-
Shi, Y.1
Pellarin, R.2
Fridy, P.C.3
Fernandez-Martinez, J.4
Thompson, M.K.5
Li, Y.6
Wang, Q.J.7
Sali, A.8
Rout, M.P.9
Chait, B.T.10
-
92
-
-
84960172419
-
Inhibition of telomerase RNA decay rescues telomerase deficiency caused by dyskerin or PARN defects
-
Shukla S, Schmidt JC, Goldfarb KC, Cech TR, Parker R. 2016. Inhibition of telomerase RNA decay rescues telomerase deficiency caused by dyskerin or PARN defects. Nat Struct Mol Biol 23: 286–292.
-
(2016)
Nat Struct Mol Biol
, vol.23
, pp. 286-292
-
-
Shukla, S.1
Schmidt, J.C.2
Goldfarb, K.C.3
Cech, T.R.4
Parker, R.5
-
93
-
-
84979895418
-
Collaborative control of cell cycle progression by the RNA exonuclease Dis3 and Ras is conserved across species
-
Snee MJ, Wilson WC, Zhu Y, Chen S-Y, Wilson BA, Kseib C, O’Neal J, Mahajan N, Tomasson MH, Arur S, et al. 2016. Collaborative control of cell cycle progression by the RNA exonuclease Dis3 and Ras is conserved across species. Genetics 203: 749–762.
-
(2016)
Genetics
, vol.203
, pp. 749-762
-
-
Snee, M.J.1
Wilson, W.C.2
Zhu, Y.3
Chen, S.-Y.4
Wilson, B.A.5
Kseib, C.6
O’Neal, J.7
Mahajan, N.8
Tomasson, M.H.9
Arur, S.10
-
95
-
-
77954867631
-
Dis3-like 1: A novel exoribonuclease associated with the human exosome
-
Staals RHJ, Bronkhorst AW, Schilders G, Slomovic S, Schuster G, Heck AJR, Raijmakers R, Pruijn GJM. 2010. Dis3-like 1: a novel exoribonuclease associated with the human exosome. EMBO J 29: 2358–2367.
-
(2010)
EMBO J
, vol.29
, pp. 2358-2367
-
-
Staals, R.H.J.1
Bronkhorst, A.W.2
Schilders, G.3
Slomovic, S.4
Schuster, G.5
Heck, A.J.R.6
Raijmakers, R.7
Pruijn, G.J.M.8
-
96
-
-
0021962536
-
Nucleolar localization of the PM-Scl antigen
-
Targoff IN, Reichlin M. 1985. Nucleolar localization of the PM-Scl antigen. Arthritis Rheum 28: 226–230.
-
(1985)
Arthritis Rheum
, vol.28
, pp. 226-230
-
-
Targoff, I.N.1
Reichlin, M.2
-
97
-
-
84927642789
-
The Mtr4 ratchet helix and arch domain both function to promote RNA unwinding
-
Taylor LL, Jackson RN, Rexhepaj M, King AK, Lott LK, van Hoof A, Johnson SJ. 2014. The Mtr4 ratchet helix and arch domain both function to promote RNA unwinding. Nucleic Acids Res 42: 13861–13872.
-
(2014)
Nucleic Acids Res
, vol.42
, pp. 13861-13872
-
-
Taylor, L.L.1
Jackson, R.N.2
Rexhepaj, M.3
King, A.K.4
Lott, L.K.5
Van Hoof, A.6
Johnson, S.J.7
-
98
-
-
84940378977
-
The exosome is recruited to RNA substrates through specific adaptor proteins
-
Thoms M, Thomson E, Baßler J, Gnädig M, Griesel S, Hurt E. 2015. The exosome is recruited to RNA substrates through specific adaptor proteins. Cell 162: 1029–1038.
-
(2015)
Cell
, vol.162
, pp. 1029-1038
-
-
Thoms, M.1
Thomson, E.2
Baßler, J.3
Gnädig, M.4
Griesel, S.5
Hurt, E.6
-
99
-
-
0018074347
-
Chromosomal superkiller mutants of Saccharomyces cerevisiae
-
Toh-E A, Guerry P, Wickner RB. 1978. Chromosomal superkiller mutants of Saccharomyces cerevisiae. J Bacteriology 136: 1002–1007.
-
(1978)
J Bacteriology
, vol.136
, pp. 1002-1007
-
-
Toh-, E.A.1
Guerry, P.2
Wickner, R.B.3
-
100
-
-
77954877566
-
The human core exosome interacts with differentially localized processive RNases: HDIS3 and hDIS3L
-
Tomecki R, Kristiansen MS, Lykke-Andersen SOR, Chlebowski A, Larsen KM, Szczesny RJ, Drazkowska K, Pastula A, Andersen JS, Stepien PP, et al. 2010. The human core exosome interacts with differentially localized processive RNases: hDIS3 and hDIS3L. EMBO J 29: 2342–2357.
-
(2010)
EMBO J
, vol.29
, pp. 2342-2357
-
-
Tomecki, R.1
Kristiansen, M.S.2
Lykke-Andersen, S.O.R.3
Chlebowski, A.4
Larsen, K.M.5
Szczesny, R.J.6
Drazkowska, K.7
Pastula, A.8
Andersen, J.S.9
Stepien, P.P.10
-
101
-
-
84893317824
-
Multiple myeloma-associated hDIS3 mutations cause perturbations in cellular RNA metabolism and suggest hDIS3 PIN domain as a potential drug target
-
Tomecki R, Drazkowska K, Kucinski I, Stodus K, Szczesny RJ, Gruchota J, Owczarek EP, Kalisiak K, Dziembowski A. 2014. Multiple myeloma-associated hDIS3 mutations cause perturbations in cellular RNA metabolism and suggest hDIS3 PIN domain as a potential drug target. Nucleic Acids Res 42: 1270–1290.
-
(2014)
Nucleic Acids Res
, vol.42
, pp. 1270-1290
-
-
Tomecki, R.1
Drazkowska, K.2
Kucinski, I.3
Stodus, K.4
Szczesny, R.J.5
Gruchota, J.6
Owczarek, E.P.7
Kalisiak, K.8
Dziembowski, A.9
-
102
-
-
84982954674
-
Human telomerase RNA processing and quality control
-
Tseng C-K, Wang H-F, Burns AM, Schroeder MR, Gaspari M, Bau-mann P. 2015. Human telomerase RNA processing and quality control. Cell Rep 13: 2232–2243.
-
(2015)
Cell Rep
, vol.13
, pp. 2232-2243
-
-
Tseng, C.-K.1
Wang, H.-F.2
Burns, A.M.3
Schroeder, M.R.4
Gaspari, M.5
Bau-Mann, P.6
-
103
-
-
22744459614
-
A new yeast poly(A) poly- merase complex involved in RNA quality control
-
Vanacova S, Wolf J, Martin G, Blank D, Dettwiler S, Friedlein A, Langen H, Keith G, Keller W. 2005. A new yeast poly(A) poly- merase complex involved in RNA quality control. PLoS Biol 3: e189.
-
(2005)
Plos Biol
, vol.3
-
-
Vanacova, S.1
Wolf, J.2
Martin, G.3
Blank, D.4
Dettwiler, S.5
Friedlein, A.6
Langen, H.7
Keith, G.8
Keller, W.9
-
104
-
-
0032727868
-
The exosome: A proteasome for RNA?
-
van Hoof A, Parker R. 1999. The exosome: a proteasome for RNA? Cell 99: 347–350.
-
(1999)
Cell
, vol.99
, pp. 347-350
-
-
Van Hoof, A.1
Parker, R.2
-
105
-
-
0033777266
-
Function of the Ski4p (Csl4p) and Ski7p proteins in 3’ -to-5’ degradation of mRNA
-
van Hoof A, Staples RR, Baker RE, Parker R. 2000. Function of the Ski4p (Csl4p) and Ski7p proteins in 3’ -to-5’ degradation of mRNA. Mol Cell Biol 20: 8230–8243.
-
(2000)
Mol Cell Biol
, vol.20
, pp. 8230-8243
-
-
Van Hoof, A.1
Staples, R.R.2
Baker, R.E.3
Parker, R.4
-
106
-
-
0037155584
-
Exosome-mediated recognition and degradation of mRNAs lacking a termination codon
-
van Hoof A, Frischmeyer PA, Dietz HC, Parker R. 2002. Exosome-mediated recognition and degradation of mRNAs lacking a termination codon. Science 295: 2262–2264.
-
(2002)
Science
, vol.295
, pp. 2262-2264
-
-
Van Hoof, A.1
Frischmeyer, P.A.2
Dietz, H.C.3
Parker, R.4
-
107
-
-
84864544413
-
Intraclonal heterogeneity and distinct molecular mechanisms characterize the development of t(4;14) and t(11;14) myeloma
-
Walker BA, Wardell CP, Melchor L, Hulkki S, Potter NE, Johnson DC, Fenwick K, Kozarewa I, Gonzalez D, Lord CJ, et al. 2012. Intraclonal heterogeneity and distinct molecular mechanisms characterize the development of t(4;14) and t(11;14) myeloma. Blood 120: 1077–1086.
-
(2012)
Blood
, vol.120
, pp. 1077-1086
-
-
Walker, B.A.1
Wardell, C.P.2
Melchor, L.3
Hulkki, S.4
Potter, N.E.5
Johnson, D.C.6
Fenwick, K.7
Kozarewa, I.8
Gonzalez, D.9
Lord, C.J.10
-
108
-
-
23644443992
-
Domain interactions within the Ski2/3/8 complex and between the Ski complex and Ski7p
-
Wang L, Lewis MS, Johnson AW. 2005. Domain interactions within the Ski2/3/8 complex and between the Ski complex and Ski7p. RNA 11: 1291–1302.
-
(2005)
RNA
, vol.11
, pp. 1291-1302
-
-
Wang, L.1
Lewis, M.S.2
Johnson, A.W.3
-
109
-
-
84867395423
-
Exo- and endoribonucleolytic activities of yeast cytoplasmic and nuclear RNA exosomes are dependent on the noncatalytic core and central channel
-
Wasmuth EV, Lima CD. 2012. Exo- and endoribonucleolytic activities of yeast cytoplasmic and nuclear RNA exosomes are dependent on the noncatalytic core and central channel. Mol Cell 48: 133–144.
-
(2012)
Mol Cell
, vol.48
, pp. 133-144
-
-
Wasmuth, E.V.1
Lima, C.D.2
-
110
-
-
85013998934
-
The Rrp6 C-terminal domain binds RNA and activates the nuclear RNA exosome
-
Wasmuth EV, Lima CD. 2017. The Rrp6 C-terminal domain binds RNA and activates the nuclear RNA exosome. Nucleic Acids Res 45: 846–860.
-
(2017)
Nucleic Acids Res
, vol.45
, pp. 846-860
-
-
Wasmuth, E.V.1
Lima, C.D.2
-
111
-
-
84904821452
-
Structure of an Rrp6-RNA exosome complex bound to poly(A) RNA
-
Wasmuth EV, Januszyk K, Lima CD. 2014. Structure of an Rrp6-RNA exosome complex bound to poly(A) RNA. Nature 511: 435–439.
-
(2014)
Nature
, vol.511
, pp. 435-439
-
-
Wasmuth, E.V.1
Januszyk, K.2
Lima, C.D.3
-
112
-
-
77955453339
-
Structural analysis reveals the characteristic features of Mtr4, a DExH helicase involved in nuclear RNA processing and surveillance
-
Weir JR, Bonneau F, Hentschel J, Conti E. 2010. Structural analysis reveals the characteristic features of Mtr4, a DExH helicase involved in nuclear RNA processing and surveillance. Proc Natl Acad Sci 107: 12139–12144.
-
(2010)
Proc Natl Acad Sci
, vol.107
, pp. 12139-12144
-
-
Weir, J.R.1
Bonneau, F.2
Hentschel, J.3
Conti, E.4
-
113
-
-
84887113964
-
Ribosome biogenesis in the yeast Saccharomyces cerevisiae
-
Woolford JL, Baserga SJ. 2013. Ribosome biogenesis in the yeast Saccharomyces cerevisiae. Genetics 195: 643–681.
-
(2013)
Genetics
, vol.195
, pp. 643-681
-
-
Woolford, J.L.1
Baserga, S.J.2
-
114
-
-
20444368036
-
Cryptic pol II transcripts are degraded by a nuclear quality control pathway involving a new poly(A) polymerase
-
Wyers F, Rougemaille M, Badis G, Rousselle J-C, Dufour M-E, Boulay J, Régnault B, Devaux F, Namane A, Séraphin B, et al. 2005. Cryptic pol II transcripts are degraded by a nuclear quality control pathway involving a new poly(A) polymerase. Cell 121: 725–737.
-
(2005)
Cell
, vol.121
, pp. 725-737
-
-
Wyers, F.1
Rougemaille, M.2
Badis, G.3
Rousselle, J.-C.4
Dufour, M.-E.5
Boulay, J.6
Régnault, B.7
Devaux, F.8
Namane, A.9
Séraphin, B.10
-
115
-
-
84930227201
-
The fission yeast MTREC complex targets CUTs and unspliced pre-mRNAs to the nuclear exosome
-
Zhou Y, Zhu J, Schermann GEZ, Ohle C, Bendrin K, Sugioka-Su-giyama R, Sugiyama T, Fischer TAS. 2015. The fission yeast MTREC complex targets CUTs and unspliced pre-mRNAs to the nuclear exosome. Nat Commun 6: 1–11.
-
(2015)
Nat Commun
, vol.6
, pp. 1-11
-
-
Zhou, Y.1
Zhu, J.2
Schermann, G.E.Z.3
Ohle, C.4
Bendrin, K.5
Sugioka-Su-giyama, R.6
Sugiyama, T.7
Fischer, T.A.S.8
-
116
-
-
84995545531
-
Nuclear RNA exosome at 3.1 Å reveals substrate specificities, RNA paths, and allosteric inhibition of Rrp44/Dis3
-
Zinder JC, Wasmuth EV, Lima CD. 2016. Nuclear RNA exosome at 3.1 Å reveals substrate specificities, RNA paths, and allosteric inhibition of Rrp44/Dis3. Mol Cell 64: 734–745.
-
(2016)
Mol Cell
, vol.64
, pp. 734-745
-
-
Zinder, J.C.1
Wasmuth, E.V.2
Lima, C.D.3
|