-
1
-
-
0015450416
-
Introduction to intestinal microecology
-
COI: 1:STN:280:DyaE3s%2Fls1Cqsw%3D%3D, PID: 4639749
-
Luckey T. Introduction to intestinal microecology. Am J Clin Nutr. 1972;25:1292–4.
-
(1972)
Am J Clin Nutr
, vol.25
, pp. 1292-1294
-
-
Luckey, T.1
-
2
-
-
84988864262
-
Revised estimates for the number of human and bacterial cells in the body
-
PID: 27541692, This paper questions one of the most commonly cited value for the ratio of bacterial cells to human cells and provides a revised estimate of this ratio as ∼1:1 instead of the previous assumed ∼10:1
-
•• Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacterial cells in the body. PLoS Biol. 2016;14:e1002533. This paper questions one of the most commonly cited value for the ratio of bacterial cells to human cells and provides a revised estimate of this ratio as ∼1:1 instead of the previous assumed ∼10:1.
-
(2016)
PLoS Biol
, vol.14
-
-
Sender, R.1
Fuchs, S.2
Milo, R.3
-
3
-
-
80053026224
-
Intestinal health functions of colonic microbial metabolites: a review
-
COI: 1:CAS:528:DC%2BC3MXhsFGru7bN
-
Havenaar R. Intestinal health functions of colonic microbial metabolites: a review. Benefic Microbes. 2011;2:103–14.
-
(2011)
Benefic Microbes
, vol.2
, pp. 103-114
-
-
Havenaar, R.1
-
4
-
-
85047689124
-
Bacteria, colonic fermentation, and gastrointestinal health
-
COI: 1:CAS:528:DC%2BC38XjsFSisr8%3D, PID: 22468341
-
Macfarlane GT, Macfarlane S. Bacteria, colonic fermentation, and gastrointestinal health. J AOAC Int. 2012;95:50–60.
-
(2012)
J AOAC Int
, vol.95
, pp. 50-60
-
-
Macfarlane, G.T.1
Macfarlane, S.2
-
5
-
-
84897628732
-
Role of the gut microbiota in human nutrition and metabolism
-
COI: 1:CAS:528:DC%2BC3sXhvVamsbrO, PID: 24251697
-
Ramakrishna BS. Role of the gut microbiota in human nutrition and metabolism. J Gastroenterol Hepatol. 2013;28 Suppl 4:9–17.
-
(2013)
J Gastroenterol Hepatol
, vol.28
, pp. 9-17
-
-
Ramakrishna, B.S.1
-
6
-
-
84919634599
-
Metabolic control of regulatory T cell development and function
-
COI: 1:CAS:528:DC%2BC2cXhsV2lu73N, PID: 25248463
-
Zeng H, Chi H. Metabolic control of regulatory T cell development and function. Trends Immunol. 2015;36:3–12.
-
(2015)
Trends Immunol
, vol.36
, pp. 3-12
-
-
Zeng, H.1
Chi, H.2
-
7
-
-
84872677660
-
The microbiota and its metabolites in colonic mucosal health and cancer risk
-
PID: 22868282
-
Vipperla K, O’Keefe SJ. The microbiota and its metabolites in colonic mucosal health and cancer risk. Nutr Clin Pract. 2012;27:624–35.
-
(2012)
Nutr Clin Pract
, vol.27
, pp. 624-635
-
-
Vipperla, K.1
O’Keefe, S.J.2
-
8
-
-
84871633923
-
The colonic microbiota in health and disease
-
COI: 1:CAS:528:DC%2BC38Xhsl2jtbnJ, PID: 23041677
-
Shanahan F. The colonic microbiota in health and disease. Curr Opin Gastroenterol. 2013;29:49–54.
-
(2013)
Curr Opin Gastroenterol
, vol.29
, pp. 49-54
-
-
Shanahan, F.1
-
9
-
-
84879090469
-
Nutrition, the gut microbiome and the metabolic syndrome
-
COI: 1:CAS:528:DC%2BC3sXntVarsbs%3D, PID: 23768553
-
Kovatcheva-Datchary P, Arora T. Nutrition, the gut microbiome and the metabolic syndrome. Best Pract Res Clin Gastroenterol. 2013;27:59–72.
-
(2013)
Best Pract Res Clin Gastroenterol
, vol.27
, pp. 59-72
-
-
Kovatcheva-Datchary, P.1
Arora, T.2
-
10
-
-
84895864379
-
Gut microbiome and metabolic diseases
-
COI: 1:CAS:528:DC%2BC2cXitFequr0%3D, PID: 24196453
-
Fukuda S, Ohno H. Gut microbiome and metabolic diseases. Semin Immunopathol. 2014;36:103–14.
-
(2014)
Semin Immunopathol
, vol.36
, pp. 103-114
-
-
Fukuda, S.1
Ohno, H.2
-
11
-
-
84990234576
-
Signals from the gut microbiota to distant organs in physiology and disease
-
COI: 1:CAS:528:DC%2BC28Xhs1ehsrfO, PID: 27711063, This is an outstanding review of the literature summarizing the signals from the gut bacteria that travel to distant organs and influence their function in health and disease
-
• Schroeder BO, Backhed F. Signals from the gut microbiota to distant organs in physiology and disease. Nat Med. 2016;22:1079–89. This is an outstanding review of the literature summarizing the signals from the gut bacteria that travel to distant organs and influence their function in health and disease.
-
(2016)
Nat Med
, vol.22
, pp. 1079-1089
-
-
Schroeder, B.O.1
Backhed, F.2
-
12
-
-
84944675457
-
Short, but smart: SCFAs train T cells in the gut to fight autoimmunity in the brain
-
COI: 1:CAS:528:DC%2BC2MXhs12ju77M, PID: 26488813
-
Bhutia YD, Ganapathy V. Short, but smart: SCFAs train T cells in the gut to fight autoimmunity in the brain. Immunity. 2015;43:629–31.
-
(2015)
Immunity
, vol.43
, pp. 629-631
-
-
Bhutia, Y.D.1
Ganapathy, V.2
-
13
-
-
84944682179
-
Dietary fatty acids directly impact central nervous system autoimmunity via the small intestine
-
COI: 1:CAS:528:DC%2BC2MXhs12jurfF, PID: 26488817, This study demonstrates that dietary fatty acids, by modulating gut microbiota and their metabolism, regulate immune cells in the gut, which then travel to the periphery to impact systemic immunity
-
•• Haghikia A, Jorg S, Duscha A, et al. Dietary fatty acids directly impact central nervous system autoimmunity via the small intestine. Immunity. 2015;43:817–29. This study demonstrates that dietary fatty acids, by modulating gut microbiota and their metabolism, regulate immune cells in the gut, which then travel to the periphery to impact systemic immunity.
-
(2015)
Immunity
, vol.43
, pp. 817-829
-
-
Haghikia, A.1
Jorg, S.2
Duscha, A.3
-
14
-
-
84888867446
-
Peripheral education of the immune system by the colonic microbiota
-
COI: 1:CAS:528:DC%2BC3sXhslehsr3F, PID: 24169518
-
Kuhn KA, Stappenbeck TS. Peripheral education of the immune system by the colonic microbiota. Semin Immunol. 2013;25:364–9.
-
(2013)
Semin Immunol
, vol.25
, pp. 364-369
-
-
Kuhn, K.A.1
Stappenbeck, T.S.2
-
15
-
-
84901392235
-
Metabolic tinkering by the gut microbiome: implications for brain development and function
-
PID: 24685620
-
Selkrig J, Wong P, Zhang X, Pettersson S. Metabolic tinkering by the gut microbiome: implications for brain development and function. Gut Microbes. 2014;5:369–80.
-
(2014)
Gut Microbes
, vol.5
, pp. 369-380
-
-
Selkrig, J.1
Wong, P.2
Zhang, X.3
Pettersson, S.4
-
16
-
-
84907486084
-
The contributory role of gut microbiota in cardiovascular disease
-
COI: 1:CAS:528:DC%2BC2cXhslGgtr%2FF, PID: 25271725
-
Tang WH, Hazen SL. The contributory role of gut microbiota in cardiovascular disease. J Clin Invest. 2014;124:4204–11.
-
(2014)
J Clin Invest
, vol.124
, pp. 4204-4211
-
-
Tang, W.H.1
Hazen, S.L.2
-
17
-
-
85006699383
-
Compartive fingerprinting of the human microbiota in diabetes and cardiovascular disease
-
PID: 27898282
-
Vamanu E, Pelinescu D, Sarbu I. Compartive fingerprinting of the human microbiota in diabetes and cardiovascular disease. J Med Food. 2016. doi:10.1089/jmf.2016.0085.
-
(2016)
J Med Food
-
-
Vamanu, E.1
Pelinescu, D.2
Sarbu, I.3
-
18
-
-
84969940834
-
Impact of gut microbiota on diabetes mellitus
-
PID: 27179626
-
Blandino G, Inturri R, Lazzara F, et al. Impact of gut microbiota on diabetes mellitus. Diabetes Metab. 2016. doi:10.1016/j.diabet.2016.04.004.
-
(2016)
Diabetes Metab
-
-
Blandino, G.1
Inturri, R.2
Lazzara, F.3
-
19
-
-
84997199518
-
Gut-to-brain axis in autism spectrum disorders: central role for the microbiome
-
COI: 1:STN:280:DC%2BC2sngvVOmuw%3D%3D, PID: 27793223
-
Kraneveld AD, Szklany K, de Theije CG, Garssen J. Gut-to-brain axis in autism spectrum disorders: central role for the microbiome. Int Rev Neurobiol. 2016;131:263–87.
-
(2016)
Int Rev Neurobiol
, vol.131
, pp. 263-287
-
-
Kraneveld, A.D.1
Szklany, K.2
de Theije, C.G.3
Garssen, J.4
-
20
-
-
80054980812
-
Regulation of inflammation by short-chain fatty acids
-
COI: 1:CAS:528:DC%2BC3MXhsVKju7nJ, PID: 22254083
-
Vinolo MA, Rodrigues HG, Nachbar RT, Curi R. Regulation of inflammation by short-chain fatty acids. Nutrients. 2011;3:858–76.
-
(2011)
Nutrients
, vol.3
, pp. 858-876
-
-
Vinolo, M.A.1
Rodrigues, H.G.2
Nachbar, R.T.3
Curi, R.4
-
21
-
-
84915745302
-
Review article: selective histone deacetylase isoforms as potential therapeutic targets in inflammatory bowel diseases
-
COI: 1:CAS:528:DC%2BC2cXitVCisr3M, PID: 25367825
-
Felice C, Lewis A, Armuzzi A, Lindsay JO, Silver A. Review article: selective histone deacetylase isoforms as potential therapeutic targets in inflammatory bowel diseases. Aliment Pharmacol Ther. 2015;41:26–38.
-
(2015)
Aliment Pharmacol Ther
, vol.41
, pp. 26-38
-
-
Felice, C.1
Lewis, A.2
Armuzzi, A.3
Lindsay, J.O.4
Silver, A.5
-
22
-
-
33846232686
-
SLC5A8 triggers tumor cell apoptosis through pyruvate-dependent inhibition of histone deacetylases
-
COI: 1:CAS:528:DC%2BD28XhtlagurvP, PID: 17178845
-
Thangaraju M, Gopal E, Martin PM, et al. SLC5A8 triggers tumor cell apoptosis through pyruvate-dependent inhibition of histone deacetylases. Cancer Res. 2006;66:11560–4.
-
(2006)
Cancer Res
, vol.66
, pp. 11560-11564
-
-
Thangaraju, M.1
Gopal, E.2
Martin, P.M.3
-
23
-
-
77956237892
-
Blockade of dendritic cell development by bacterial fermentation products butyrate and propionate through a transporter (Slc5a8)-dependent inhibition of histone deacetylases
-
COI: 1:CAS:528:DC%2BC3cXhtVOnsL7F, PID: 20601425
-
Singh N, Thangaraju M, Prasad PD, et al. Blockade of dendritic cell development by bacterial fermentation products butyrate and propionate through a transporter (Slc5a8)-dependent inhibition of histone deacetylases. J Biol Chem. 2010;285:27601–8.
-
(2010)
J Biol Chem
, vol.285
, pp. 27601-27608
-
-
Singh, N.1
Thangaraju, M.2
Prasad, P.D.3
-
24
-
-
66149084058
-
GPR109A is a G-protein-coupled receptor for the bacterial fermentation product butyrate and functions as a tumor suppressor in colon
-
COI: 1:CAS:528:DC%2BD1MXjvVWisrc%3D, PID: 19276343
-
Thangaraju M, Cresci GA, Liu K, et al. GPR109A is a G-protein-coupled receptor for the bacterial fermentation product butyrate and functions as a tumor suppressor in colon. Cancer Res. 2009;69:2826–32.
-
(2009)
Cancer Res
, vol.69
, pp. 2826-2832
-
-
Thangaraju, M.1
Cresci, G.A.2
Liu, K.3
-
25
-
-
51449119654
-
Roles of short-chain fatty acids receptors, GPR41 and GPR43 on colonic functions
-
Tazoe H, Otomo Y, Kaji I, et al. Roles of short-chain fatty acids receptors, GPR41 and GPR43 on colonic functions. J Physiol Pharmacol. 2008;59 Suppl 2:252–62.
-
(2008)
J Physiol Pharmacol
, vol.59
, pp. 252-262
-
-
Tazoe, H.1
Otomo, Y.2
Kaji, I.3
-
26
-
-
84888167311
-
Transporters and receptors for short-chain fatty acids as the molecular link between colonic bacteria and the host
-
COI: 1:CAS:528:DC%2BC3sXhtlCgtrfK, PID: 23978504
-
Ganapathy V, Thangaraju M, Prasad PD, Martin PM, Singh N. Transporters and receptors for short-chain fatty acids as the molecular link between colonic bacteria and the host. Curr Opin Pharmacol. 2013;13:869–74.
-
(2013)
Curr Opin Pharmacol
, vol.13
, pp. 869-874
-
-
Ganapathy, V.1
Thangaraju, M.2
Prasad, P.D.3
Martin, P.M.4
Singh, N.5
-
27
-
-
84891363464
-
The role of short-chain fatty acids in health and disease
-
COI: 1:CAS:528:DC%2BC2cXmslyitbc%3D, PID: 24388214
-
Tan J, McKenzie C, Potamitis M, Thorburn AN, Mackay CR, Macia L. The role of short-chain fatty acids in health and disease. Adv Immunol. 2014;121:91–119.
-
(2014)
Adv Immunol
, vol.121
, pp. 91-119
-
-
Tan, J.1
McKenzie, C.2
Potamitis, M.3
Thorburn, A.N.4
Mackay, C.R.5
Macia, L.6
-
28
-
-
51249118120
-
Sodium-coupled monocarboxylate transporters in normal tissues and in cancer
-
COI: 1:CAS:528:DC%2BD1cXhtVWrsLvP, PID: 18446519
-
Ganapathy V, Thangaraju M, Gopal E, et al. Sodium-coupled monocarboxylate transporters in normal tissues and in cancer. AAPS J. 2008;10:193–9.
-
(2008)
AAPS J
, vol.10
, pp. 193-199
-
-
Ganapathy, V.1
Thangaraju, M.2
Gopal, E.3
-
29
-
-
84959164423
-
+ symporters
-
COI: 1:CAS:528:DC%2BC2MXhtVKhs7rF, PID: 26099350
-
+ symporters. J Mol Med. 2016;94:155–71.
-
(2016)
J Mol Med
, vol.94
, pp. 155-171
-
-
Marchiq, I.1
Pouyssegur, J.2
-
30
-
-
57749111596
-
Nutrient transporters in cancer: relevance to Warburg hypothesis and beyond
-
COI: 1:CAS:528:DC%2BD1cXhsFagtrrP, PID: 18992769
-
Ganapathy V, Thangaraju M, Prasad PD. Nutrient transporters in cancer: relevance to Warburg hypothesis and beyond. Pharmacol Ther. 2009;121:29–40.
-
(2009)
Pharmacol Ther
, vol.121
, pp. 29-40
-
-
Ganapathy, V.1
Thangaraju, M.2
Prasad, P.D.3
-
31
-
-
84975261120
-
SLC transporters as a novel class of tumour suppressors: identity, function and molecular mechanisms
-
COI: 1:CAS:528:DC%2BC28XmslGqtb4%3D, PID: 27118869
-
Bhutia YD, Babu E, Ramachandran S, Yang S, Thangaraju M, Ganapathy V. SLC transporters as a novel class of tumour suppressors: identity, function and molecular mechanisms. Biochem J. 2016;473:1113–24.
-
(2016)
Biochem J
, vol.473
, pp. 1113-1124
-
-
Bhutia, Y.D.1
Babu, E.2
Ramachandran, S.3
Yang, S.4
Thangaraju, M.5
Ganapathy, V.6
-
32
-
-
0038153876
-
SLC5A8, a sodium transporter, is a tumor suppressor gene silenced by methylation in human colon aberrant crypt foci and cancers
-
COI: 1:CAS:528:DC%2BD3sXlsFGntLg%3D, PID: 12829793
-
Li H, Myeroff L, Smiraglia D, et al. SLC5A8, a sodium transporter, is a tumor suppressor gene silenced by methylation in human colon aberrant crypt foci and cancers. Proc Natl Acad Sci U S A. 2003;100:8412–7.
-
(2003)
Proc Natl Acad Sci U S A
, vol.100
, pp. 8412-8417
-
-
Li, H.1
Myeroff, L.2
Smiraglia, D.3
-
33
-
-
1842778906
-
+-coupled transporter for short-chain fatty acids
-
COI: 1:CAS:528:DC%2BD2cXis1emtLo%3D, PID: 14966140
-
+-coupled transporter for short-chain fatty acids. J Biol Chem. 2004;279:13293–6.
-
(2004)
J Biol Chem
, vol.279
, pp. 13293-13296
-
-
Miyauchi, S.1
Gopal, E.2
Fei, Y.J.3
Ganapathy, V.4
-
34
-
-
54049157907
-
Lactaturia and loss of sodium-dependent lactate uptake in the colon of SLC5A8-deficient mice
-
COI: 1:CAS:528:DC%2BD1cXhtVGktbvJ, PID: 18562324
-
Frank H, Groger N, Diener M, Becker C, Braun T, Boettger T. Lactaturia and loss of sodium-dependent lactate uptake in the colon of SLC5A8-deficient mice. J Biol Chem. 2008;283:24729–37.
-
(2008)
J Biol Chem
, vol.283
, pp. 24729-24737
-
-
Frank, H.1
Groger, N.2
Diener, M.3
Becker, C.4
Braun, T.5
Boettger, T.6
-
35
-
-
84937139909
-
+-coupled high-affinity transporter for short-chain fatty acids, is a conditional tumour suppressor in colon that protects against colitis and colon cancer under low-fibre dietary conditions
-
COI: 1:CAS:528:DC%2BC2MXhtlSrsL7L, PID: 25984582, This study demonstrated a link between the tumor-suppressive function of the short-chain fatty acid transporter SLC5A8 and the dietary fiber content and provided a reasonable explanation as to why Slc5a8-null mice do not show increased risk for colitis and colon cancer under normal dietary conditions
-
+-coupled high-affinity transporter for short-chain fatty acids, is a conditional tumour suppressor in colon that protects against colitis and colon cancer under low-fibre dietary conditions. Biochem J. 2015;469:267–78. This study demonstrated a link between the tumor-suppressive function of the short-chain fatty acid transporter SLC5A8 and the dietary fiber content and provided a reasonable explanation as to why Slc5a8-null mice do not show increased risk for colitis and colon cancer under normal dietary conditions.
-
(2015)
Biochem J
, vol.469
, pp. 267-278
-
-
Gurav, A.1
Sivaprakasam, S.2
Bhutia, Y.D.3
Boettger, T.4
Singh, N.5
Ganapathy, V.6
-
36
-
-
77950516928
-
Colonic gene expression in conventional and germ-free ice with a focus on the butyrate receptor GPR109A and the butyrate transporter SLC5A8
-
Cresci GA, Thangaraju M, Mellinger JD, Liu K, Ganapathy V. Colonic gene expression in conventional and germ-free ice with a focus on the butyrate receptor GPR109A and the butyrate transporter SLC5A8. J Gastrointest Sug. 2010;14:449–61.
-
(2010)
J Gastrointest Sug
, vol.14
, pp. 449-461
-
-
Cresci, G.A.1
Thangaraju, M.2
Mellinger, J.D.3
Liu, K.4
Ganapathy, V.5
-
37
-
-
84892449521
-
Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis
-
COI: 1:CAS:528:DC%2BC2cXnt1OktQ%3D%3D, PID: 24412617, This study demonstrated unequivocally the anti-inflammatory and tumor-suppressive function of the butyrate receptor GPR109A in vivo using Gpr109a-null mice
-
•• Singh N, Gurav A, Sivaprakasam S, et al. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity. 2014;40:128–39. This study demonstrated unequivocally the anti-inflammatory and tumor-suppressive function of the butyrate receptor GPR109A in vivo using Gpr109a-null mice.
-
(2014)
Immunity
, vol.40
, pp. 128-139
-
-
Singh, N.1
Gurav, A.2
Sivaprakasam, S.3
-
38
-
-
22844439234
-
(D)-β-hydroxybutyrate inhibits adipocyte lipolysis via the nicotinic acid receptor PUMA-G
-
COI: 1:CAS:528:DC%2BD2MXmt1Ggsr0%3D, PID: 15929991
-
Taggart AK, Kero J, Gan X, et al. (D)-β-hydroxybutyrate inhibits adipocyte lipolysis via the nicotinic acid receptor PUMA-G. J Biol Chem. 2005;280:26649–52.
-
(2005)
J Biol Chem
, vol.280
, pp. 26649-26652
-
-
Taggart, A.K.1
Kero, J.2
Gan, X.3
-
39
-
-
84975168249
-
Dietary fiber and bacterial SCFA enhance oral tolerance and protect against food allergy through diverse cellular pathways
-
COI: 1:CAS:528:DC%2BC28XptVSrsbs%3D, PID: 27332875, Here, the authors showed that a high-fiber content in the diet improved oral tolerance and offered protection against food allergy and that deletion of Gpr43 or Gpr109a in mice exacerbated food allergy
-
•• Tan J, KcKenzie C, Vuillermin PJ, et al. Dietary fiber and bacterial SCFA enhance oral tolerance and protect against food allergy through diverse cellular pathways. Cell Rep. 2016;15:2809–24. Here, the authors showed that a high-fiber content in the diet improved oral tolerance and offered protection against food allergy and that deletion of Gpr43 or Gpr109a in mice exacerbated food allergy.
-
(2016)
Cell Rep
, vol.15
, pp. 2809-2824
-
-
Tan, J.1
KcKenzie, C.2
Vuillermin, P.J.3
-
40
-
-
84975230323
-
GPR41 and GPR43 in obesity and inflammation—protective or causative?
-
PID: 26870043
-
Ang Z, Ding JL. GPR41 and GPR43 in obesity and inflammation—protective or causative? Front Immunol. 2016;7:28.
-
(2016)
Front Immunol
, vol.7
, pp. 28
-
-
Ang, Z.1
Ding, J.L.2
-
41
-
-
70149102106
-
Expression of short-chain fatty acid receptor GPR41 in the human colon
-
COI: 1:CAS:528:DC%2BD1MXotlGjtb8%3D, PID: 19574715
-
Tazoe H, Otomo Y, Karaki S, et al. Expression of short-chain fatty acid receptor GPR41 in the human colon. Biomed Res. 2009;30:149–56.
-
(2009)
Biomed Res
, vol.30
, pp. 149-156
-
-
Tazoe, H.1
Otomo, Y.2
Karaki, S.3
-
42
-
-
33646376658
-
Short-chain fatty acid receptor, Gpr43, is expressed by enteroendocrine cells and mucosal mast cells in rat intestine
-
COI: 1:CAS:528:DC%2BD28XjvFSgu7k%3D, PID: 16453106
-
Karaki S, Mitsui R, Hayashi H, et al. Short-chain fatty acid receptor, Gpr43, is expressed by enteroendocrine cells and mucosal mast cells in rat intestine. Cell Tissue Res. 2006;324:353–60.
-
(2006)
Cell Tissue Res
, vol.324
, pp. 353-360
-
-
Karaki, S.1
Mitsui, R.2
Hayashi, H.3
-
43
-
-
41049090425
-
Expression of the short-chain fatty acid receptor, GPR43, in the human colon
-
COI: 1:CAS:528:DC%2BD1cXjsFWrsbc%3D, PID: 17899402
-
Karaki S, Tazoe H, Hayashi H, et al. Expression of the short-chain fatty acid receptor, GPR43, in the human colon. J Mol Histol. 2008;39:135–42.
-
(2008)
J Mol Histol
, vol.39
, pp. 135-142
-
-
Karaki, S.1
Tazoe, H.2
Hayashi, H.3
-
44
-
-
84893704050
-
Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis
-
COI: 1:CAS:528:DC%2BC2cXis12gsA%3D%3D, PID: 24390308
-
Trompette A, Gollwitzer ES, Yadava K, et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat Med. 2014;20:159–66.
-
(2014)
Nat Med
, vol.20
, pp. 159-166
-
-
Trompette, A.1
Gollwitzer, E.S.2
Yadava, K.3
-
45
-
-
84880620577
-
Short-chain fatty acids activate GPR41 and GPR43 on intestinal epithelial cells to promote inflammatory responses in mice
-
Kime MH, Kang SG, Park JH, Yanagisawa M, Kim CH. Short-chain fatty acids activate GPR41 and GPR43 on intestinal epithelial cells to promote inflammatory responses in mice. Gastroenterology. 2013;145:396–406.
-
(2013)
Gastroenterology
, vol.145
, pp. 396-406
-
-
Kime, M.H.1
Kang, S.G.2
Park, J.H.3
Yanagisawa, M.4
Kim, C.H.5
-
46
-
-
70350666634
-
Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43
-
COI: 1:CAS:528:DC%2BD1MXhtlOjt7vI, PID: 19865172
-
Maslowski KM, Vieira AT, Ng A, et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature. 2009;461:1282–6.
-
(2009)
Nature
, vol.461
, pp. 1282-1286
-
-
Maslowski, K.M.1
Vieira, A.T.2
Ng, A.3
-
47
-
-
84881068658
-
The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis
-
COI: 1:CAS:528:DC%2BC3sXhtFyjsr3P, PID: 23828891
-
Smith PM, Howitt MR, Panikov N, et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science. 2013;341:569–73.
-
(2013)
Science
, vol.341
, pp. 569-573
-
-
Smith, P.M.1
Howitt, M.R.2
Panikov, N.3
-
48
-
-
84893794477
-
G protein-coupled receptor 43 moderates gut inflammation through cytokine regulation from mononuclear cells
-
PID: 24141712
-
Masui R, Sasaki M, Funaki Y, et al. G protein-coupled receptor 43 moderates gut inflammation through cytokine regulation from mononuclear cells. Inflamm Bowel Dis. 2013;19:2848–56.
-
(2013)
Inflamm Bowel Dis
, vol.19
, pp. 2848-2856
-
-
Masui, R.1
Sasaki, M.2
Funaki, Y.3
-
49
-
-
84926367699
-
Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome
-
COI: 1:CAS:528:DC%2BC2MXosFemtrs%3D, PID: 25828455
-
Macia L, Tan J, Vieira AT, et al. Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. Nat Commun. 2015;6:6734.
-
(2015)
Nat Commun
, vol.6
, pp. 6734
-
-
Macia, L.1
Tan, J.2
Vieira, A.T.3
-
50
-
-
84997629668
-
An essential role of Ffar2 (Gpr43) in dietary fibre-mediated promotion of healthy composition of gut microbiota and suppression of intestinal carcinogenesis
-
COI: 1:CAS:528:DC%2BC28XhtVSjsrfL, PID: 27348268
-
Sivaprakasam S, Gurav V, Paschall AV, et al. An essential role of Ffar2 (Gpr43) in dietary fibre-mediated promotion of healthy composition of gut microbiota and suppression of intestinal carcinogenesis. Oncogenesis. 2016;5:e238.
-
(2016)
Oncogenesis
, vol.5
-
-
Sivaprakasam, S.1
Gurav, V.2
Paschall, A.V.3
-
51
-
-
73349123182
-
G protein-coupled receptor 43 is essential for neutrophil recruitment during intestinal inflammation
-
COI: 1:CAS:528:DC%2BD1MXhsVehtrrN, PID: 19917676
-
Sina C, Gavrilova O, Forster M, et al. G protein-coupled receptor 43 is essential for neutrophil recruitment during intestinal inflammation. J Immunol. 2009;183:7514–22.
-
(2009)
J Immunol
, vol.183
, pp. 7514-7522
-
-
Sina, C.1
Gavrilova, O.2
Forster, M.3
-
52
-
-
84880120014
-
Cancer-generated lactic acid: a regulatory, immunosuppressive metabolite?
-
COI: 1:CAS:528:DC%2BC3sXhtFSit7vN, PID: 23729358
-
Choi SY, Collins CC, Gout PW, Wang Y. Cancer-generated lactic acid: a regulatory, immunosuppressive metabolite? J Pathol. 2013;230:350–5.
-
(2013)
J Pathol
, vol.230
, pp. 350-355
-
-
Choi, S.Y.1
Collins, C.C.2
Gout, P.W.3
Wang, Y.4
-
53
-
-
59149094602
-
Lactate inhibits lipolysis in fat cells through activation of an orphan G-protein-coupled receptor
-
COI: 1:CAS:528:DC%2BD1MXpsV2hsg%3D%3D, PID: 19047060
-
Liu C, Wu J, Zhu J, et al. Lactate inhibits lipolysis in fat cells through activation of an orphan G-protein-coupled receptor. J Biol Chem. 2009;284:2811–22.
-
(2009)
J Biol Chem
, vol.284
, pp. 2811-2822
-
-
Liu, C.1
Wu, J.2
Zhu, J.3
-
54
-
-
84929080660
-
A lactate-induced response to hypoxia
-
COI: 1:CAS:528:DC%2BC2MXms1yns7o%3D, PID: 25892225
-
Lee DC, Sohn HA, Park ZY, et al. A lactate-induced response to hypoxia. Cell. 2015;161:595–609.
-
(2015)
Cell
, vol.161
, pp. 595-609
-
-
Lee, D.C.1
Sohn, H.A.2
Park, Z.Y.3
-
55
-
-
84893403953
-
High-fat diet reduces the formation of butyrate, but increases succinate, inflammation, liver fat and cholesterol in rats, while dietary fibre counteracts these effects
-
PID: 24236183
-
Jakobsdottir G, Xu J, Molin G, Ahme S, Nyman M. High-fat diet reduces the formation of butyrate, but increases succinate, inflammation, liver fat and cholesterol in rats, while dietary fibre counteracts these effects. PLoS One. 2013;8:e80476.
-
(2013)
PLoS One
, vol.8
-
-
Jakobsdottir, G.1
Xu, J.2
Molin, G.3
Ahme, S.4
Nyman, M.5
-
56
-
-
84878996227
-
Succinate: a new epigenetic hacker
-
COI: 1:CAS:528:DC%2BC3sXptFOksrg%3D, PID: 23763995
-
Yang M, Pollard PJ. Succinate: a new epigenetic hacker. Cancer Cell. 2013;23:709–11.
-
(2013)
Cancer Cell
, vol.23
, pp. 709-711
-
-
Yang, M.1
Pollard, P.J.2
-
57
-
-
59749096845
-
Prolyl hydroxylases as regulators of cell metabolism
-
COI: 1:CAS:528:DC%2BD1MXotVWktg%3D%3D, PID: 19143649
-
Boulahbel H, Duran RV, Gottlieb E. Prolyl hydroxylases as regulators of cell metabolism. Biochem Soc Trans. 2009;37:291–4.
-
(2009)
Biochem Soc Trans
, vol.37
, pp. 291-294
-
-
Boulahbel, H.1
Duran, R.V.2
Gottlieb, E.3
-
58
-
-
2442649129
-
Citric acid cycle intermediates as ligands for orphan G-protein-coupled receptors
-
COI: 1:CAS:528:DC%2BD2cXjvVKgsLs%3D, PID: 15141213
-
He W, Miao FJ, Lin DC, et al. Citric acid cycle intermediates as ligands for orphan G-protein-coupled receptors. Nature. 2004;429:188–93.
-
(2004)
Nature
, vol.429
, pp. 188-193
-
-
He, W.1
Miao, F.J.2
Lin, D.C.3
-
59
-
-
84946223051
-
Indole and tryptophan metabolism: endogenous and dietary routes to Ah receptor activation
-
PID: 26041783
-
Hubbard TD, Murray IA, Perdew GH. Indole and tryptophan metabolism: endogenous and dietary routes to Ah receptor activation. Drug Metab Dispos. 2015;43:1522–35.
-
(2015)
Drug Metab Dispos
, vol.43
, pp. 1522-1535
-
-
Hubbard, T.D.1
Murray, I.A.2
Perdew, G.H.3
-
60
-
-
84897374287
-
Microbiome-derived tryptophan metabolites and their aryl hydrocarbon receptor-dependent agonist and antagonist activities
-
PID: 24563545
-
Jin UH, Lee SO, Sridharan G, et al. Microbiome-derived tryptophan metabolites and their aryl hydrocarbon receptor-dependent agonist and antagonist activities. Mol Pharmacol. 2014;85:777–88.
-
(2014)
Mol Pharmacol
, vol.85
, pp. 777-788
-
-
Jin, U.H.1
Lee, S.O.2
Sridharan, G.3
-
61
-
-
62649151803
-
Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites
-
COI: 1:CAS:528:DC%2BD1MXjt1Gksrk%3D, PID: 19234110
-
Wikoff WR, Anfora AT, Liu J, et al. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci U S A. 2009;106:3698–703.
-
(2009)
Proc Natl Acad Sci U S A
, vol.106
, pp. 3698-3703
-
-
Wikoff, W.R.1
Anfora, A.T.2
Liu, J.3
-
62
-
-
84907597269
-
Symbiotic bacterial metabolites regulate gastrointestinal barrier function via the xenobiotic sensor PXR and Toll-like receptor 4
-
COI: 1:CAS:528:DC%2BC2cXht1aiur3N, PID: 25065623
-
Venkatesh M, Mukherjee S, Wang H, et al. Symbiotic bacterial metabolites regulate gastrointestinal barrier function via the xenobiotic sensor PXR and Toll-like receptor 4. Immunity. 2014;41:296–310.
-
(2014)
Immunity
, vol.41
, pp. 296-310
-
-
Venkatesh, M.1
Mukherjee, S.2
Wang, H.3
-
63
-
-
84896935541
-
The aryl hydrocarbon receptor: multitasking in the immune system
-
COI: 1:CAS:528:DC%2BC2cXovVemt7s%3D, PID: 24655296
-
Stockinger B, Di Meglio P, Gialitakis M, Duarte JH. The aryl hydrocarbon receptor: multitasking in the immune system. Annu Rev Immunol. 2014;32:403–32.
-
(2014)
Annu Rev Immunol
, vol.32
, pp. 403-432
-
-
Stockinger, B.1
Di Meglio, P.2
Gialitakis, M.3
Duarte, J.H.4
-
64
-
-
84938538411
-
Role of the aryl hydrocarbon receptor in colon neoplasia
-
PID: 26264025
-
Xie G, Raufman JP. Role of the aryl hydrocarbon receptor in colon neoplasia. Cancers. 2015;7:1436–46.
-
(2015)
Cancers
, vol.7
, pp. 1436-1446
-
-
Xie, G.1
Raufman, J.P.2
-
65
-
-
84994713281
-
AHR activation is protective against colitis driven by T cells in humanized mice
-
COI: 1:CAS:528:DC%2BC28XhslSitL%2FE, PID: 27783946
-
Goettel JA, Gandhi R, Kenison JE, et al. AHR activation is protective against colitis driven by T cells in humanized mice. Cell Rep. 2016;17:1318–29.
-
(2016)
Cell Rep
, vol.17
, pp. 1318-1329
-
-
Goettel, J.A.1
Gandhi, R.2
Kenison, J.E.3
-
66
-
-
84978770558
-
The aryl hydrocarbon receptor is a repressor of inflammation-associated colorectal tumorigenesis in mouse
-
PID: 27433903
-
Diaz-Diaz CJ, Ronnekleiv-Kelly SM, Nukaya M, Geiger PG, et al. The aryl hydrocarbon receptor is a repressor of inflammation-associated colorectal tumorigenesis in mouse. Ann Surg. 2016;264:429–36.
-
(2016)
Ann Surg
, vol.264
, pp. 429-436
-
-
Diaz-Diaz, C.J.1
Ronnekleiv-Kelly, S.M.2
Nukaya, M.3
Geiger, P.G.4
-
68
-
-
84861198882
-
FXR and PXR: potential therapeutic targets in cholestasis
-
COI: 1:CAS:528:DC%2BC38XntFahurw%3D, PID: 21801835
-
Jonker JW, Liddle C, Downes M. FXR and PXR: potential therapeutic targets in cholestasis. J Steroid Biochem Mol Biol. 2012;130:147–58.
-
(2012)
J Steroid Biochem Mol Biol
, vol.130
, pp. 147-158
-
-
Jonker, J.W.1
Liddle, C.2
Downes, M.3
-
69
-
-
84877331372
-
Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis
-
COI: 1:CAS:528:DC%2BC3sXlsVCqu7w%3D, PID: 23563705, This was the first report on the generation of trimethylamine (TMA) in the colon by bacterial metabolism of diet-derived carnitine and the subsequent hepatic conversion of TMA into the cardiovascular toxin TMA oxide, thus providing a mechanistic link between high dietary intake of carnitine-rich red meat and risk for cardiovascular disease
-
•• Koeth RA, Wang Z, Levison BS, et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. 2013;19:576–85. This was the first report on the generation of trimethylamine (TMA) in the colon by bacterial metabolism of diet-derived carnitine and the subsequent hepatic conversion of TMA into the cardiovascular toxin TMA oxide, thus providing a mechanistic link between high dietary intake of carnitine-rich red meat and risk for cardiovascular disease.
-
(2013)
Nat Med
, vol.19
, pp. 576-585
-
-
Koeth, R.A.1
Wang, Z.2
Levison, B.S.3
-
70
-
-
84876563088
-
Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk
-
COI: 1:CAS:528:DC%2BC3sXntVCmsrc%3D, PID: 23614584, This study provides evidence for the association between increased plasma levels of TMAO and risk for cardiovascular disease and also for dietary lipid phosphatidylcholine as the source for colonic bacterial metabolism to generate TMA, the precursor for TMAO
-
• Tang WH, Wang Z, Levison BS, et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med. 2013;368:1575–84. This study provides evidence for the association between increased plasma levels of TMAO and risk for cardiovascular disease and also for dietary lipid phosphatidylcholine as the source for colonic bacterial metabolism to generate TMA, the precursor for TMAO.
-
(2013)
N Engl J Med
, vol.368
, pp. 1575-1584
-
-
Tang, W.H.1
Wang, Z.2
Levison, B.S.3
-
71
-
-
84923913674
-
Transmission of atherosclerosis susceptibility with gut microbial transplantation
-
COI: 1:CAS:528:DC%2BC2MXjsF2ntbY%3D, PID: 25550161
-
Gregory JC, Buffa JA, Org E, et al. Transmission of atherosclerosis susceptibility with gut microbial transplantation. J Biol Chem. 2015;290:5647–60.
-
(2015)
J Biol Chem
, vol.290
, pp. 5647-5660
-
-
Gregory, J.C.1
Buffa, J.A.2
Org, E.3
-
72
-
-
84921417572
-
The gut microbial endocrine organ: bacterially derived signals driving cardiometabolic diseases
-
COI: 1:CAS:528:DC%2BC2MXjvFyhsb4%3D, PID: 25587655
-
Brown JM, Hazen SL. The gut microbial endocrine organ: bacterially derived signals driving cardiometabolic diseases. Annu Rev Med. 2015;66:343–59.
-
(2015)
Annu Rev Med
, vol.66
, pp. 343-359
-
-
Brown, J.M.1
Hazen, S.L.2
-
73
-
-
84960334018
-
Trimethylamine-N-oxide: a link between the gut microbiome, bile acid metabolism, and atherosclerosis
-
COI: 1:CAS:528:DC%2BC28XktVeksL8%3D, PID: 26959704
-
Wilson A, McLean C, Kim RB. Trimethylamine-N-oxide: a link between the gut microbiome, bile acid metabolism, and atherosclerosis. Curr Opin Lipidol. 2016;27:148–54.
-
(2016)
Curr Opin Lipidol
, vol.27
, pp. 148-154
-
-
Wilson, A.1
McLean, C.2
Kim, R.B.3
-
74
-
-
84873497634
-
Human trace amine-associated receptor TAAR5 can be activated by trimethylamine
-
Wallrabenstein I, Kuklan J, Weber L, et al. Human trace amine-associated receptor TAAR5 can be activated by trimethylamine. PLoS One. 2013;8. e54950.
-
(2013)
PLoS One
, vol.e54950
, pp. 8
-
-
Wallrabenstein, I.1
Kuklan, J.2
Weber, L.3
-
75
-
-
85017151037
-
Lipopolysaccharide inhibits colonic biotin uptake via interference with membrane expression of its transporter: a role for casein kinase 2-mediated pathway
-
PID: 28052864
-
Lakhan R, Said M. Lipopolysaccharide inhibits colonic biotin uptake via interference with membrane expression of its transporter: a role for casein kinase 2-mediated pathway. Am J Physiol Cell Physiol. 2017. doi:10.1152/ajpcell.00300.2016.
-
(2017)
Am J Physiol Cell Physiol
-
-
Lakhan, R.1
Said, M.2
-
76
-
-
84866677472
-
Gut microbial products regulate murine gastrointestinal motility via Toll-like receptor 4 signaling
-
COI: 1:CAS:528:DC%2BC38XhsVSlt73J, PID: 22732731
-
Anitha M, Vijay-Kumar M, Sitaraman SV, Gewirtz AT, Srinivasan S. Gut microbial products regulate murine gastrointestinal motility via Toll-like receptor 4 signaling. Gastroenterology. 2012;143:1006–16.
-
(2012)
Gastroenterology
, vol.143
, pp. 1006-1016
-
-
Anitha, M.1
Vijay-Kumar, M.2
Sitaraman, S.V.3
Gewirtz, A.T.4
Srinivasan, S.5
-
77
-
-
85013123686
-
Western diet induces colonic nitrergic myenteric neuropathy and dysmotility in mice via saturated fatty acid- and LPS-induced TLR4 signaling
-
Reichardt F, Chassaing B, Nezami BG, et al. Western diet induces colonic nitrergic myenteric neuropathy and dysmotility in mice via saturated fatty acid- and LPS-induced TLR4 signaling. J Physiol. 2016. doi:10.1113/JP273269.
-
(2016)
J Physiol
-
-
Reichardt, F.1
Chassaing, B.2
Nezami, B.G.3
-
78
-
-
84871634362
-
Microbiota and innate immunity in intestinal inflammation and neoplasia
-
COI: 1:CAS:528:DC%2BC38Xhsl2jtbnF, PID: 23207600
-
Cario E. Microbiota and innate immunity in intestinal inflammation and neoplasia. Curr Opin Gastroenterol. 2013;29:85–91.
-
(2013)
Curr Opin Gastroenterol
, vol.29
, pp. 85-91
-
-
Cario, E.1
-
79
-
-
84881353643
-
Potential association between TLR4 and chitinase 3-like 1 (CHI3L1/YKL40) signaling on colonic epithelial cells in inflammatory bowel disease and colitis-associated cancer
-
COI: 1:CAS:528:DC%2BC3sXht1Whsr%2FM, PID: 23170831
-
Kamba A, Lee IA, Mizoguchi E. Potential association between TLR4 and chitinase 3-like 1 (CHI3L1/YKL40) signaling on colonic epithelial cells in inflammatory bowel disease and colitis-associated cancer. Curr Mol Med. 2013;13:1110–21.
-
(2013)
Curr Mol Med
, vol.13
, pp. 1110-1121
-
-
Kamba, A.1
Lee, I.A.2
Mizoguchi, E.3
-
80
-
-
0034292364
-
Lipopolysaccharide induces physical proximity between CD14 and Toll-like receptor 4 (TLR4) prior to nuclear translocation of NF-κB
-
COI: 1:CAS:528:DC%2BD3cXntVyjur8%3D, PID: 11034352
-
Jiang Q, Akashi S, Miake K, Petty HR. Lipopolysaccharide induces physical proximity between CD14 and Toll-like receptor 4 (TLR4) prior to nuclear translocation of NF-κB. J Immunol. 2000;165:3541–4.
-
(2000)
J Immunol
, vol.165
, pp. 3541-3544
-
-
Jiang, Q.1
Akashi, S.2
Miake, K.3
Petty, H.R.4
-
81
-
-
0035877718
-
Lipopolysaccharide is close proximity to each of the proteins in its membrane receptor complex; transfer from CD14 to TLR4 and MD2
-
de Silva Correia J, Soldau K, Christen U, Tobias PS, Ulevitch RJ. Lipopolysaccharide is close proximity to each of the proteins in its membrane receptor complex; transfer from CD14 to TLR4 and MD2. J Biol Chem. 2001;276:21129–35.
-
(2001)
J Biol Chem
, vol.276
, pp. 21129-21135
-
-
de Silva Correia, J.1
Soldau, K.2
Christen, U.3
Tobias, P.S.4
Ulevitch, R.J.5
-
82
-
-
84941173166
-
LPS receptor subunits have antagonistic roles in epithelial apoptosis and colonic carcinogenesis
-
COI: 1:CAS:528:DC%2BC2MXitlOmsbg%3D, This study provided the molecular rationale for the antagonistic actions of LPS in colonic epithelium via the presence or absence of the co-expression of CD14 with TLR4
-
•• Kuo WT, Lee TC, Yang HY, et al. LPS receptor subunits have antagonistic roles in epithelial apoptosis and colonic carcinogenesis. Cell Death Diff. 2015;22:1590–604. This study provided the molecular rationale for the antagonistic actions of LPS in colonic epithelium via the presence or absence of the co-expression of CD14 with TLR4.
-
(2015)
Cell Death Diff
, vol.22
, pp. 1590-1604
-
-
Kuo, W.T.1
Lee, T.C.2
Yang, H.Y.3
-
83
-
-
84906968841
-
Negative regulation of Toll-like receptor-4 signaling through the binding of glycosylphosphatidylinositol-anchored glycoprotein, CD14, with the sialic acid-binding lectin, CD33
-
COI: 1:CAS:528:DC%2BC2cXhsVyrtbjE, PID: 25059667
-
Ishida A, Akita K, Mori Y, et al. Negative regulation of Toll-like receptor-4 signaling through the binding of glycosylphosphatidylinositol-anchored glycoprotein, CD14, with the sialic acid-binding lectin, CD33. J Biol Chem. 2014;289:25341–50.
-
(2014)
J Biol Chem
, vol.289
, pp. 25341-25350
-
-
Ishida, A.1
Akita, K.2
Mori, Y.3
-
84
-
-
84877753124
-
TLR4 activates the β-catenin pathway to cause intestinal neoplasia
-
COI: 1:CAS:528:DC%2BC3sXot1yns74%3D, PID: 23691015
-
Santaolalla R, Sussman DA, Ruiz JR, et al. TLR4 activates the β-catenin pathway to cause intestinal neoplasia. PLoS One. 2013;8:e63298.
-
(2013)
PLoS One
, vol.8
-
-
Santaolalla, R.1
Sussman, D.A.2
Ruiz, J.R.3
-
85
-
-
0022979638
-
Detoxification of bacterial lipopolysaccharide (endotoxins) by a human neutrophil enzyme
-
COI: 1:CAS:528:DyaL2sXltlansrs%3D, PID: 3529396
-
Munford RS, Hall CL. Detoxification of bacterial lipopolysaccharide (endotoxins) by a human neutrophil enzyme. Science. 1986;234:203–5.
-
(1986)
Science
, vol.234
, pp. 203-205
-
-
Munford, R.S.1
Hall, C.L.2
-
86
-
-
84891917667
-
Altered inactivation of commensal LPS due to acyloxyacyl hydrolase deficiency in colonic dendritic cells impairs mucosal Th17 immunity
-
COI: 1:CAS:528:DC%2BC2cXps1Ogsw%3D%3D, PID: 24344308, This study describes the role of chronic exposure of the colon to LPS in the polarization of naïve T cells towards pro-inflammatory Th17-positive T cells or immunosuppressive regulatory T cells (Tregs)
-
• Janelsins BM, Lu M, Datta SK. Altered inactivation of commensal LPS due to acyloxyacyl hydrolase deficiency in colonic dendritic cells impairs mucosal Th17 immunity. Proc Natl Acad Sci U S A. 2014;111:373–8. This study describes the role of chronic exposure of the colon to LPS in the polarization of naïve T cells towards pro-inflammatory Th17-positive T cells or immunosuppressive regulatory T cells (Tregs).
-
(2014)
Proc Natl Acad Sci U S A
, vol.111
, pp. 373-378
-
-
Janelsins, B.M.1
Lu, M.2
Datta, S.K.3
|