메뉴 건너뛰기




Volumn 17, Issue 6, 2016, Pages 1060-1069

Towards improved genome-scale metabolic network reconstructions: Unification, transcript specificity and beyond

Author keywords

Gene protein reaction association; Metabolic network reconstruction; Unification

Indexed keywords

DATA BASE; DNA TRANSCRIPTION; GENE EXPRESSION REGULATION; METABOLITE; MODEL; NEGLECT; NOMENCLATURE; NONHUMAN; PIPELINE; PROKARYOTE; STRESS; BIOLOGICAL MODEL; FACTUAL DATABASE; GENETIC TRANSCRIPTION; GENOME; METABOLISM;

EID: 85009801543     PISSN: 14675463     EISSN: 14774054     Source Type: Journal    
DOI: 10.1093/bib/bbv100     Document Type: Article
Times cited : (18)

References (126)
  • 1
    • 84864795465 scopus 로고    scopus 로고
    • Recent advances in reconstruction and applications of genome-scale metabolic models
    • Kim TY, Sohn SB, Kim YB, et al. Recent advances in reconstruction and applications of genome-scale metabolic models. Curr Opin Biotechnol 2012;23:617-23.
    • (2012) Curr Opin Biotechnol , vol.23 , pp. 617-623
    • Kim, T.Y.1    Sohn, S.B.2    Kim, Y.B.3
  • 2
    • 0344328817 scopus 로고    scopus 로고
    • An expanded genomescale model of Escherichia coli K-12 (JR904 GSM/GPR)
    • Reed JL, Vo TD, Schilling CH, et al. An expanded genomescale model of Escherichia coli K-12 (JR904 GSM/GPR). Genome Biol 2003;4:R54.
    • (2003) Genome Biol , vol.4 , pp. R54
    • Reed, J.L.1    Vo, T.D.2    Schilling, C.H.3
  • 3
    • 80054069179 scopus 로고    scopus 로고
    • A comprehensive genomescale reconstruction of Escherichia coli metabolism-2011
    • Orth JD, Conrad TM, Na J, et al. A comprehensive genomescale reconstruction of Escherichia coli metabolism-2011. Mol Syst Biol 2011;7:535.
    • (2011) Mol Syst Biol , vol.7 , pp. 535
    • Orth, J.D.1    Conrad, T.M.2    Na, J.3
  • 4
    • 84876556918 scopus 로고    scopus 로고
    • EcoCyc: fusing model organism databases with systems biology
    • Keseler IM, Mackie A, Peralta-Gil M, et al. EcoCyc: fusing model organism databases with systems biology. Nucleic Acids Res 2013;41:D605-12.
    • (2013) Nucleic Acids Res , vol.41 , pp. D605-D612
    • Keseler, I.M.1    Mackie, A.2    Peralta-Gil, M.3
  • 5
    • 0037313750 scopus 로고    scopus 로고
    • Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network
    • Förster J, Famili I, Fu P, et al. Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res 2003;13:244-53.
    • (2003) Genome Res , vol.13 , pp. 244-253
    • Förster, J.1    Famili, I.2    Fu, P.3
  • 6
    • 84881540727 scopus 로고    scopus 로고
    • Revising the representation of fatty acid, glycerolipid, and glycerophospholipid metabolism in the consensus model of yeast metabolism
    • Aung HW, Henry SA, Walker LP. Revising the representation of fatty acid, glycerolipid, and glycerophospholipid metabolism in the consensus model of yeast metabolism. Industrial Biotechnol 2013;9:215-28.
    • (2013) Industrial Biotechnol , vol.9 , pp. 215-228
    • Aung, H.W.1    Henry, S.A.2    Walker, L.P.3
  • 7
    • 70350676551 scopus 로고    scopus 로고
    • A genome-scale metabolic model of Arabidopsis and some of its properties
    • Poolman MG, Miguet L, Sweetlove LJ, et al. A genome-scale metabolic model of Arabidopsis and some of its properties. Plant Physiol 2009;151:1570-81.
    • (2009) Plant Physiol , vol.151 , pp. 1570-1581
    • Poolman, M.G.1    Miguet, L.2    Sweetlove, L.J.3
  • 8
    • 75949088191 scopus 로고    scopus 로고
    • AraGEM, a genome-scale reconstruction of the primary metabolic network in Arabidopsis
    • de Oliveira Dal'Molin CG, Quek LE, Palfreyman RW, et al. AraGEM, a genome-scale reconstruction of the primary metabolic network in Arabidopsis. Plant Physiol 2010;152:579-89.
    • (2010) Plant Physiol , vol.152 , pp. 579-589
    • de Oliveira Dal'Molin, C.G.1    Quek, L.E.2    Palfreyman, R.W.3
  • 9
    • 84856015478 scopus 로고    scopus 로고
    • Reconstruction of Arabidopsis metabolic network models accounting for subcellular compartmentalization and tissue-specificity
    • Mintz-Oron S, Meir S, Malitsky S, et al. Reconstruction of Arabidopsis metabolic network models accounting for subcellular compartmentalization and tissue-specificity. Proc Natl Acad Sci USA 2012;109:339-44.
    • (2012) Proc Natl Acad Sci USA , vol.109 , pp. 339-344
    • Mintz-Oron, S.1    Meir, S.2    Malitsky, S.3
  • 10
    • 33846910173 scopus 로고    scopus 로고
    • Global reconstruction of the human metabolic network based on genomic and bibliomic data
    • Duarte NC, Becker SA, Jamshidi N, et al. Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc Natl Acad Sci USA 2007;104:1777-82.
    • (2007) Proc Natl Acad Sci USA , vol.104 , pp. 1777-1782
    • Duarte, N.C.1    Becker, S.A.2    Jamshidi, N.3
  • 11
    • 34548860112 scopus 로고    scopus 로고
    • The Edinburgh human metabolic network reconstruction and its functional analysis
    • Ma H, Sorokin A, Mazein A, et al. The Edinburgh human metabolic network reconstruction and its functional analysis. Mol Syst Biol 2007;3:135.
    • (2007) Mol Syst Biol , vol.3 , pp. 135
    • Ma, H.1    Sorokin, A.2    Mazein, A.3
  • 12
    • 84877315835 scopus 로고    scopus 로고
    • A communitydriven global reconstruction of human metabolism
    • Thiele I, Swainston N, Fleming RMT, et al. A communitydriven global reconstruction of human metabolism. Nat Biotechnol 2013;31:419-25.
    • (2013) Nat Biotechnol , vol.31 , pp. 419-425
    • Thiele, I.1    Swainston, N.2    Fleming, R.M.T.3
  • 13
    • 75149129569 scopus 로고    scopus 로고
    • A protocol for generating a high-quality genome-scale metabolic reconstruction
    • Thiele I, Palsson BØ. A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat Protoc 2010;5:93-121.
    • (2010) Nat Protoc , vol.5 , pp. 93-121
    • Thiele, I.1    Palsson, BØ.2
  • 14
    • 84900303762 scopus 로고    scopus 로고
    • Optimizing genome-scale network reconstructions
    • Monk J, Nogales J, Palsson BØ. Optimizing genome-scale network reconstructions. Nat Biotechnol 2014;32:447-52.
    • (2014) Nat Biotechnol , vol.32 , pp. 447-452
    • Monk, J.1    Nogales, J.2    Palsson, BØ.3
  • 15
    • 84855499408 scopus 로고    scopus 로고
    • MetRxn: a knowledgebase of metabolites and reactions spanning metabolic models and databases
    • Kumar A, Suthers PF, Maranas CD. MetRxn: a knowledgebase of metabolites and reactions spanning metabolic models and databases. BMC Bioinf 2012;13:6.
    • (2012) BMC Bioinf , vol.13 , pp. 6
    • Kumar, A.1    Suthers, P.F.2    Maranas, C.D.3
  • 16
    • 25644458211 scopus 로고    scopus 로고
    • The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes
    • Overbeek R, Begley T, Butler RM, et al. The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res 2005;33:5691-702.
    • (2005) Nucleic Acids Res , vol.33 , pp. 5691-5702
    • Overbeek, R.1    Begley, T.2    Butler, R.M.3
  • 17
    • 84875973063 scopus 로고    scopus 로고
    • The RAVEN toolbox and its use for generating a genome-scale metabolic model for Penicillium chrysogenum
    • Agren R, Liu L, Shoaie S, et al. The RAVEN toolbox and its use for generating a genome-scale metabolic model for Penicillium chrysogenum. PLoS Comput Biol 2013;9:e1002980.
    • (2013) PLoS Comput Biol , vol.9
    • Agren, R.1    Liu, L.2    Shoaie, S.3
  • 18
    • 84870933131 scopus 로고    scopus 로고
    • Reconstruction of genome-scale metabolic models for 126 human tissues using mCADRE
    • Wang Y, Eddy JA, Price ND. Reconstruction of genome-scale metabolic models for 126 human tissues using mCADRE. BMC Sys Biol 2012;6:153.
    • (2012) BMC Sys Biol , vol.6 , pp. 153
    • Wang, Y.1    Eddy, J.A.2    Price, N.D.3
  • 19
    • 84896701551 scopus 로고    scopus 로고
    • Fast reconstruction of compact context-specific metabolic network models
    • Vlassis N, Pacheco MP and Sauter T. Fast reconstruction of compact context-specific metabolic network models. PLoS Comput Biol 2014;10:e1003424.
    • (2014) PLoS Comput Biol , vol.10
    • Vlassis, N.1    Pacheco, M.P.2    Sauter, T.3
  • 20
    • 84875144546 scopus 로고    scopus 로고
    • MetaNetX.org: a website and repository for accessing, analysing and manipulating metabolic networks
    • Ganter M, Bernard T, Moretti S, et al. MetaNetX.org: a website and repository for accessing, analysing and manipulating metabolic networks. Bioinformatics 2013;29:815-16.
    • (2013) Bioinformatics , vol.29 , pp. 815-816
    • Ganter, M.1    Bernard, T.2    Moretti, S.3
  • 21
    • 84883762807 scopus 로고    scopus 로고
    • A method for accounting for maintenance costs in flux balance analysis improves the prediction of plant cell metabolic phenotypes under stress conditions
    • Cheung CYM, Williams TCR, Poolman MG, et al. A method for accounting for maintenance costs in flux balance analysis improves the prediction of plant cell metabolic phenotypes under stress conditions. Plant J 2013;76:1050-61.
    • (2013) Plant J , vol.76 , pp. 1050-1061
    • Cheung, C.Y.M.1    Williams, T.C.R.2    Poolman, M.G.3
  • 22
    • 79551662521 scopus 로고    scopus 로고
    • Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0
    • Schellenberger J, Que R, Fleming RMT, et al. Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0. Nat Protoc 2011;6:1290-307.
    • (2011) Nat Protoc , vol.6 , pp. 1290-1307
    • Schellenberger, J.1    Que, R.2    Fleming, R.M.T.3
  • 23
    • 79551676901 scopus 로고    scopus 로고
    • Elimination of thermodynamically infeasible loops in steady-state metabolic models
    • Schellenberger J, Lewis NE, Palsson BØ. Elimination of thermodynamically infeasible loops in steady-state metabolic models. Biophys J 2011;100:544-53.
    • (2011) Biophys J , vol.100 , pp. 544-553
    • Schellenberger, J.1    Lewis, N.E.2    Palsson, BØ.3
  • 24
    • 84891774001 scopus 로고    scopus 로고
    • The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases
    • Caspi R, Altman T, Billington R, et al. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res 2014;42:D459-71.
    • (2014) Nucleic Acids Res , vol.42 , pp. D459-D471
    • Caspi, R.1    Altman, T.2    Billington, R.3
  • 25
    • 84898011025 scopus 로고    scopus 로고
    • Genome-scale metabolic modelling of hepatocytes reveals serine deficiency in patients with non-alcoholic fatty liver disease
    • Mardinoglu A, Agren R, Kampf C, et al. Genome-scale metabolic modelling of hepatocytes reveals serine deficiency in patients with non-alcoholic fatty liver disease. Nat Commun 2014;5:3083.
    • (2014) Nat Commun , vol.5 , pp. 3083
    • Mardinoglu, A.1    Agren, R.2    Kampf, C.3
  • 26
    • 85009752257 scopus 로고    scopus 로고
    • Version 2 Release 1
    • Olivier BG, Bergmann FT. Flux Balance Constraints. Version 2 Release 1. Available from COMBINE http://identifiers.org/ combine.specifications/sbml.level-3.version-2.fbc.version-1. release-1. 2015.
    • (2015) Flux Balance Constraints
    • Olivier, B.G.1    Bergmann, F.T.2
  • 27
    • 33747193585 scopus 로고    scopus 로고
    • ScrumPy: metabolic modelling with Python
    • Poolman MG. ScrumPy: metabolic modelling with Python. Syst Biol 2006;153:375-8.
    • (2006) Syst Biol , vol.153 , pp. 375-378
    • Poolman, M.G.1
  • 28
    • 77957924740 scopus 로고    scopus 로고
    • A detailed genome-wide reconstruction of mouse metabolism based on human Recon 1
    • Sigurdsson MI, Jamshidi N, Steingrimsson E, et al. A detailed genome-wide reconstruction of mouse metabolism based on human Recon 1. BMC Syst Biol 2010;4:140.
    • (2010) BMC Syst Biol , vol.4 , pp. 140
    • Sigurdsson, M.I.1    Jamshidi, N.2    Steingrimsson, E.3
  • 29
    • 77956407882 scopus 로고    scopus 로고
    • HepatoNet1: a comprehensive metabolic reconstruction of the human hepatocyte for the analysis of liver physiology
    • Gille C, Bölling C, Hoppe A, et al. HepatoNet1: a comprehensive metabolic reconstruction of the human hepatocyte for the analysis of liver physiology. Mol Syst Biol 2010;6:411.
    • (2010) Mol Syst Biol , vol.6 , pp. 411
    • Gille, C.1    Bölling, C.2    Hoppe, A.3
  • 30
    • 35348934254 scopus 로고    scopus 로고
    • Genome-scale reconstruction of metabolic network in Bacillus subtilis based on highthroughput phenotyping and gene essentiality data
    • Oh YK, Palsson BO, Park SM, et al. Genome-scale reconstruction of metabolic network in Bacillus subtilis based on highthroughput phenotyping and gene essentiality data. J Biol Chem 2007;282:28791-9.
    • (2007) J Biol Chem , vol.282 , pp. 28791-28799
    • Oh, Y.K.1    Palsson, B.O.2    Park, S.M.3
  • 31
    • 34447317247 scopus 로고    scopus 로고
    • Investigating the metabolic capabilities of Mycobacterium tuberculosis H37Rv using the in silico strain iNJ661 and proposing alternative drug targets
    • Jamshidi N, Palsson BØ. Investigating the metabolic capabilities of Mycobacterium tuberculosis H37Rv using the in silico strain iNJ661 and proposing alternative drug targets. BMC Syst Biol 2007;1:26.
    • (2007) BMC Syst Biol , vol.1 , pp. 26
    • Jamshidi, N.1    Palsson, BØ.2
  • 32
    • 0037342537 scopus 로고    scopus 로고
    • The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models
    • Hucka M, Finney A, Sauro HM, et al. The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 2003;19:524-31.
    • (2003) Bioinformatics , vol.19 , pp. 524-531
    • Hucka, M.1    Finney, A.2    Sauro, H.M.3
  • 33
    • 84892991094 scopus 로고    scopus 로고
    • Software applications for flux balance analysis
    • Lakshmanan M, Koh G, Chung BKS, et al. Software applications for flux balance analysis. Brief Bioinform 2014;15:108-22.
    • (2014) Brief Bioinform , vol.15 , pp. 108-122
    • Lakshmanan, M.1    Koh, G.2    Chung, B.K.S.3
  • 34
    • 84892965416 scopus 로고    scopus 로고
    • Software applications toward quantitative metabolic flux analysis and modeling
    • Dandekar T, Fieselmann A, Majeed S, et al. Software applications toward quantitative metabolic flux analysis and modeling. Brief Bioinform 2014;15:91-107.
    • (2014) Brief Bioinform , vol.15 , pp. 91-107
    • Dandekar, T.1    Fieselmann, A.2    Majeed, S.3
  • 35
    • 84881029789 scopus 로고    scopus 로고
    • Establishment, in silico analysis, and experimental verification of a largescale metabolic network of the xanthan producing Xanthomonas campestris pv campestris strain B100
    • Schatschneider S, Persicke M, Watt SA, et al. Establishment, in silico analysis, and experimental verification of a largescale metabolic network of the xanthan producing Xanthomonas campestris pv campestris strain B100. J Biotechnol 2013;167:123-34.
    • (2013) J Biotechnol , vol.167 , pp. 123-134
    • Schatschneider, S.1    Persicke, M.2    Watt, S.A.3
  • 36
    • 84901679540 scopus 로고    scopus 로고
    • iOD907, the first genome-scale metabolic model for the milk yeast Kluyveromyces lactis
    • Dias O, Pereira R, Gombert AK, et al. iOD907, the first genome-scale metabolic model for the milk yeast Kluyveromyces lactis. Biotechnol J 2014;9:776-90.
    • (2014) Biotechnol J , vol.9 , pp. 776-790
    • Dias, O.1    Pereira, R.2    Gombert, A.K.3
  • 37
    • 84964315249 scopus 로고    scopus 로고
    • A curated C. difficile strain 630 metabolic network: prediction of essential targets and inhibitors.
    • Larocque M, Chénard T, Najmanovich R. A curated C. difficile strain 630 metabolic network: prediction of essential targets and inhibitors. BMC Syst Biol 2014;8:117.
    • (2014) BMC Syst Biol , vol.8 , pp. 117
    • Larocque, M.1    Chénard, T.2    Najmanovich, R.3
  • 38
    • 75849133666 scopus 로고    scopus 로고
    • Pathway tools version 13.0: integrated software for pathway/genome informatics and systems biology.
    • Karp PD, Paley SM, Krummenacker M, et al. Pathway tools version 13.0: integrated software for pathway/genome informatics and systems biology. Brief Bioinform2010;11:40-79.
    • (2010) Brief Bioinform , vol.11 , pp. 40-79
    • Karp, P.D.1    Paley, S.M.2    Krummenacker, M.3
  • 39
    • 44949225040 scopus 로고    scopus 로고
    • Context-specific metabolic networks are consistent with experiments
    • Becker SA, Palsson BØ. Context-specific metabolic networks are consistent with experiments. PLoS Comput Biol 2008;4:e1000082.
    • (2008) PLoS Comput Biol , vol.4
    • Becker, S.A.1    Palsson, BØ.2
  • 40
    • 77956417789 scopus 로고    scopus 로고
    • Computational reconstruction of tissue-specific metabolic models: application to human liver metabolism
    • Jerby L, Shlomi T, Ruppin E. Computational reconstruction of tissue-specific metabolic models: application to human liver metabolism. Mol Syst Biol 2010;6:401.
    • (2010) Mol Syst Biol , vol.6 , pp. 401
    • Jerby, L.1    Shlomi, T.2    Ruppin, E.3
  • 41
    • 84863662483 scopus 로고    scopus 로고
    • Reconstruction of genome-scale active metabolic networks for 69 human cell types and 16 cancer types using INIT
    • Agren R, Bordel S, Mardinoglu A, et al. Reconstruction of genome-scale active metabolic networks for 69 human cell types and 16 cancer types using INIT. PLoS Comput Biol 2012;8:e1002518.
    • (2012) PLoS Comput Biol , vol.8
    • Agren, R.1    Bordel, S.2    Mardinoglu, A.3
  • 42
    • 84930377006 scopus 로고    scopus 로고
    • Phenotype-based cellspecific metabolic modeling reveals metabolic liabilities of cancer.
    • Yizhak K, Gaude E, Le Dévédec S, et al. Phenotype-based cellspecific metabolic modeling reveals metabolic liabilities of cancer. eLife 2014;3.e03641.
    • (2014) eLife , vol.3
    • Yizhak, K.1    Gaude, E.2    Le Dévédec, S.3
  • 43
    • 77953888300 scopus 로고    scopus 로고
    • BioModels.net Web Services, a free and integrated toolkit for computational modelling software
    • Li C, Courtot M, Le Novère N, et al. BioModels.net Web Services, a free and integrated toolkit for computational modelling software. Brief Bioinform 2010;11:270-7.
    • (2010) Brief Bioinform , vol.11 , pp. 270-277
    • Li, C.1    Courtot, M.2    Le Novère, N.3
  • 44
    • 85009752257 scopus 로고    scopus 로고
    • Version 1 Release 1
    • Olivier BG, Bergmann FT. Flux Balance Constraints. Version 1 Release 1. Available from COMBINE http://identifiers.org/ combine.specifications/sbml.level-3.version-1.fbc.version-1. release-1. 2013.
    • (2013) Flux Balance Constraints
    • Olivier, B.G.1    Bergmann, F.T.2
  • 45
    • 34347332311 scopus 로고    scopus 로고
    • A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information
    • Feist AM, Henry CS, Reed JL, et al. A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol Syst Biol 2007;3:121.
    • (2007) Mol Syst Biol , vol.3 , pp. 121
    • Feist, A.M.1    Henry, C.S.2    Reed, J.L.3
  • 46
    • 84885376218 scopus 로고    scopus 로고
    • Genome-scale metabolic model for Lactococcus lactis MG1363 and its application to the analysis of flavor formation
    • Flahaut NAL, Wiersma A, van de Bunt B, et al. Genome-scale metabolic model for Lactococcus lactis MG1363 and its application to the analysis of flavor formation. Appl Microbiol Biotechnol 2013;97:8729-39.
    • (2013) Appl Microbiol Biotechnol , vol.97 , pp. 8729-8739
    • Flahaut, N.A.L.1    Wiersma, A.2    van de Bunt, B.3
  • 47
    • 28644433993 scopus 로고    scopus 로고
    • Minimuminformation requested in the annotation of biochemical models (MIRIAM)
    • Le Novère N, Finney A, Hucka M, et al. Minimuminformation requested in the annotation of biochemical models (MIRIAM). Nat Biotechnol 2005;23:1509-15.
    • (2005) Nat Biotechnol , vol.23 , pp. 1509-1515
    • Le Novère, N.1    Finney, A.2    Hucka, M.3
  • 48
    • 84876560358 scopus 로고    scopus 로고
    • The ChEBI reference database and ontology for biologically relevant chemistry: enhancements for 2013
    • Hastings J, de Matos P, Dekker A, et al. The ChEBI reference database and ontology for biologically relevant chemistry: enhancements for 2013. Nucleic Acids Res 2013;41:D456-63.
    • (2013) Nucleic Acids Res , vol.41 , pp. D456-D463
    • Hastings, J.1    de Matos, P.2    Dekker, A.3
  • 49
    • 54949108677 scopus 로고    scopus 로고
    • Chapter 12: PubChem: integrated platform of small molecules and biological activities
    • RA Wheeler, DC Spellmeyer (Eds). Elsevier, Oxford, UK
    • Bolton EE, Wang Y, Thiessen PA, et al. Chapter 12: PubChem: integrated platform of small molecules and biological activities. In: RA Wheeler, DC Spellmeyer (Eds). Annual Reports in Computational Chemistry, Vol. 4. Elsevier, Oxford, UK, 2008, 217-41.
    • (2008) Annual Reports in Computational Chemistry , vol.4 , pp. 217-241
    • Bolton, E.E.1    Wang, Y.2    Thiessen, P.A.3
  • 50
    • 84891760956 scopus 로고    scopus 로고
    • Data, information, knowledge and principle: back to metabolism in KEGG
    • Kanehisa M, Goto S, Sato Y, et al. Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res 2014;42:D199-205.
    • (2014) Nucleic Acids Res , vol.42 , pp. D199-D205
    • Kanehisa, M.1    Goto, S.2    Sato, Y.3
  • 51
    • 84876522835 scopus 로고    scopus 로고
    • BRENDA in 2013: integrated reactions, kinetic data, enzyme function data, improved disease classification: new options and contents in BRENDA
    • Schomburg I, Chang A, Placzek S, et al. BRENDA in 2013: integrated reactions, kinetic data, enzyme function data, improved disease classification: new options and contents in BRENDA. Nucleic Acids Res 2013;41:D764-72.
    • (2013) Nucleic Acids Res , vol.41 , pp. D764-D772
    • Schomburg, I.1    Chang, A.2    Placzek, S.3
  • 52
    • 0034069495 scopus 로고    scopus 로고
    • Gene ontology: tool for the unification of biology. The Gene Ontology Consortium.
    • Ashburner M, Ball CA, Blake JA, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 2000;25:25-9.
    • (2000) Nat Genet , vol.25 , pp. 25-29
    • Ashburner, M.1    Ball, C.A.2    Blake, J.A.3
  • 53
    • 84891783174 scopus 로고    scopus 로고
    • Activities at the Universal Protein Resource (UniProt)
    • The UniProt Consortium. Activities at the Universal Protein Resource (UniProt). Nucleic Acids Res 2014;42:D191-8.
    • (2014) Nucleic Acids Res , vol.42 , pp. D191-D198
  • 55
    • 0033963089 scopus 로고    scopus 로고
    • The ENZYME database in 2000
    • Bairoch A. The ENZYME database in 2000. Nucleic Acids Res 2000;28:304-5.
    • (2000) Nucleic Acids Res , vol.28 , pp. 304-305
    • Bairoch, A.1
  • 56
    • 13444272087 scopus 로고    scopus 로고
    • Entrez Gene: genecentered information at NCBI
    • Maglott D, Ostell J, Pruitt KD, et al. Entrez Gene: genecentered information at NCBI. Nucleic Acids Res 2005;33:D54-8.
    • (2005) Nucleic Acids Res , vol.33 , pp. D54-D58
    • Maglott, D.1    Ostell, J.2    Pruitt, K.D.3
  • 58
    • 78049480691 scopus 로고    scopus 로고
    • GeneCards Version 3: the human gene integrator
    • Safran M, Dalah I, Alexander J, et al. GeneCards Version 3: the human gene integrator. Database (Oxford) 2010;2010:baq020.
    • (2010) Database (Oxford) , vol.2010
    • Safran, M.1    Dalah, I.2    Alexander, J.3
  • 59
    • 0036429269 scopus 로고    scopus 로고
    • Finding signals that regulate alternative splicing in the post-genomic era
    • Ladd AN, Cooper TA. Finding signals that regulate alternative splicing in the post-genomic era. Genome Biol 2002;3:1-16.
    • (2002) Genome Biol , vol.3 , pp. 1-16
    • Ladd, A.N.1    Cooper, T.A.2
  • 60
    • 0026571929 scopus 로고
    • Multiple forms of prolactin receptor messenger ribonucleic acid are specifically expressed and regulated in murine tissues and the mammary cell line HC11
    • Buck K, Vanek M, Groner B, et al. Multiple forms of prolactin receptor messenger ribonucleic acid are specifically expressed and regulated in murine tissues and the mammary cell line HC11. Endocrinol 1992;130:1108-14.
    • (1992) Endocrinol , vol.130 , pp. 1108-1114
    • Buck, K.1    Vanek, M.2    Groner, B.3
  • 61
    • 56749098074 scopus 로고    scopus 로고
    • Deep surveying of alternative splicing complexity in the human transcriptome by highthroughput sequencing
    • Pan Q, Shai O, Lee LJ, et al. Deep surveying of alternative splicing complexity in the human transcriptome by highthroughput sequencing. Nat Genet 2008;40:1413-15.
    • (2008) Nat Genet , vol.40 , pp. 1413-1415
    • Pan, Q.1    Shai, O.2    Lee, L.J.3
  • 62
    • 0034959128 scopus 로고    scopus 로고
    • Characterization of the human FLICE-inhibitory protein locus and comparison of the anti-apoptotic activity of four different flip isoforms
    • Djerbi M, Darreh-Shori T, Zhivotovsky B, et al. Characterization of the human FLICE-inhibitory protein locus and comparison of the anti-apoptotic activity of four different flip isoforms. Scand J Immunol 2001;54:180-9.
    • (2001) Scand J Immunol , vol.54 , pp. 180-189
    • Djerbi, M.1    Darreh-Shori, T.2    Zhivotovsky, B.3
  • 63
    • 0242322008 scopus 로고    scopus 로고
    • Only one splice variant of the human TAZ gene encodes a functional protein with a role in cardiolipin metabolism
    • Vaz FM, Houtkooper RH, Valianpour F, et al. Only one splice variant of the human TAZ gene encodes a functional protein with a role in cardiolipin metabolism. J Biol Chem 2003;278:43089-94.
    • (2003) J Biol Chem , vol.278 , pp. 43089-43094
    • Vaz, F.M.1    Houtkooper, R.H.2    Valianpour, F.3
  • 64
    • 38449095074 scopus 로고    scopus 로고
    • Genetic diversity at the UGT1 locus is amplified by a novel 3' alternative splicing mechanism leading to nine additional UGT1A proteins that act as regulators of glucuronidation activity
    • Girard H, Lévesque E, Bellemare J, et al. Genetic diversity at the UGT1 locus is amplified by a novel 3' alternative splicing mechanism leading to nine additional UGT1A proteins that act as regulators of glucuronidation activity. Pharmacogenet Genomics 2007;17:1077-89.
    • (2007) Pharmacogenet Genomics , vol.17 , pp. 1077-1089
    • Girard, H.1    Lévesque, E.2    Bellemare, J.3
  • 65
    • 77950501858 scopus 로고    scopus 로고
    • Modulation of the human glucuronosyltransferase UGT1A pathway by splice isoform polypeptides is mediated through protein-protein interactions
    • Bellemare J, Rouleau M, Harvey M, et al. Modulation of the human glucuronosyltransferase UGT1A pathway by splice isoform polypeptides is mediated through protein-protein interactions. J Biol Chem 2010;285:3600-7.
    • (2010) J Biol Chem , vol.285 , pp. 3600-3607
    • Bellemare, J.1    Rouleau, M.2    Harvey, M.3
  • 66
    • 84876513019 scopus 로고    scopus 로고
    • APPRIS: annotation of principal and alternative splice isoforms
    • Rodriguez JM, Maietta P, Ezkurdia I, et al. APPRIS: annotation of principal and alternative splice isoforms. Nucleic Acids Res 2013;41:D110-17.
    • (2013) Nucleic Acids Res , vol.41 , pp. D110-D117
    • Rodriguez, J.M.1    Maietta, P.2    Ezkurdia, I.3
  • 67
    • 77955141026 scopus 로고    scopus 로고
    • Omic data from evolved E. coli are consistent with computed optimal growth from genome-scale models.
    • Lewis NE, Hixson KK, Conrad TM, et al. Omic data from evolved E. coli are consistent with computed optimal growth from genome-scale models. Mol Syst Biol 2010;6:390.
    • (2010) Mol Syst Biol , vol.6 , pp. 390
    • Lewis, N.E.1    Hixson, K.K.2    Conrad, T.M.3
  • 68
    • 77952123055 scopus 로고    scopus 로고
    • Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation
    • Trapnell C, Williams BA, Pertea G, et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 2010:28:511-15.
    • (2010) Nat Biotechnol , vol.28 , pp. 511-515
    • Trapnell, C.1    Williams, B.A.2    Pertea, G.3
  • 69
    • 84879488128 scopus 로고    scopus 로고
    • Transcriptome analysis of human tissues and cell lines reveals one dominant transcript per gene.
    • Gonzàlez-Porta M, Frankish A, Rung J, et al. Transcriptome analysis of human tissues and cell lines reveals one dominant transcript per gene. Genome Biol 2013:14:R70.
    • (2013) Genome Biol , vol.14 , pp. R70
    • Gonzàlez-Porta, M.1    Frankish, A.2    Rung, J.3
  • 70
    • 84863723421 scopus 로고    scopus 로고
    • Splice variant PRKC-f-PrC is a novel biomarker of human prostate cancer
    • Yao S, Ireland S, Bee A, et al. Splice variant PRKC-f-PrC is a novel biomarker of human prostate cancer. Br J Cancer 2012;107:388-99.
    • (2012) Br J Cancer , vol.107 , pp. 388-399
    • Yao, S.1    Ireland, S.2    Bee, A.3
  • 71
    • 84866513094 scopus 로고    scopus 로고
    • Nek2C functions as a tumor promoter in human breast tumorigenesis
    • Liu Z, Wang Y, Wang S, et al. Nek2C functions as a tumor promoter in human breast tumorigenesis. Int J Mol Med 2012;30:775.
    • (2012) Int J Mol Med , vol.30 , pp. 775
    • Liu, Z.1    Wang, Y.2    Wang, S.3
  • 72
    • 0027517773 scopus 로고
    • Expression of CD44 variant proteins in human colorectal cancer is related to tumor progression
    • Wielenga VJ, Heider KH, Johan G, et al. Expression of CD44 variant proteins in human colorectal cancer is related to tumor progression. Cancer Res 1993;53:4754-6.
    • (1993) Cancer Res , vol.53 , pp. 4754-4756
    • Wielenga, V.J.1    Heider, K.H.2    Johan, G.3
  • 74
    • 0036498543 scopus 로고    scopus 로고
    • Splicing regulation as a potential genetic modifier
    • Nissim-Rafinia M, Kerem B. Splicing regulation as a potential genetic modifier. Trends Genet 2002;18:123-7.
    • (2002) Trends Genet , vol.18 , pp. 123-127
    • Nissim-Rafinia, M.1    Kerem, B.2
  • 75
    • 23044500915 scopus 로고    scopus 로고
    • Pyruvate kinase type M2 and its role in tumor growth and spreading
    • Mazurek S, Boschek CB, Hugo F, et al. Pyruvate kinase type M2 and its role in tumor growth and spreading, Semin Cancer Biol 2005;15(4):300-8.
    • (2005) Semin Cancer Biol , vol.15 , Issue.4 , pp. 300-308
    • Mazurek, S.1    Boschek, C.B.2    Hugo, F.3
  • 76
    • 79955041258 scopus 로고    scopus 로고
    • Networking in a global world: establishing functional connections between neural splicing regulators and their target transcripts
    • Calarco JA, Zhen M, Blencowe BJ. Networking in a global world: establishing functional connections between neural splicing regulators and their target transcripts. RNA 2011;17:775-91.
    • (2011) RNA , vol.17 , pp. 775-791
    • Calarco, J.A.1    Zhen, M.2    Blencowe, B.J.3
  • 77
    • 80053027909 scopus 로고    scopus 로고
    • Functional consequences of developmentally regulated alternative splicing
    • Kalsotra A, Cooper TA. Functional consequences of developmentally regulated alternative splicing. Nat Rev Genet 2011;12:715-29.
    • (2011) Nat Rev Genet , vol.12 , pp. 715-729
    • Kalsotra, A.1    Cooper, T.A.2
  • 78
    • 72849106592 scopus 로고    scopus 로고
    • RNA processing and its regulation: global insights into biological networks
    • Licatalosi DD, Darnell RB. RNA processing and its regulation: global insights into biological networks. Nat Rev Genet 2010;11:75-87.
    • (2010) Nat Rev Genet , vol.11 , pp. 75-87
    • Licatalosi, D.D.1    Darnell, R.B.2
  • 79
    • 84863003268 scopus 로고    scopus 로고
    • Tissue-specific alternative splicing remodels protein-protein interaction networks
    • Ellis JD, Barrios-Rodiles M, Olak R, et al. Tissue-specific alternative splicing remodels protein-protein interaction networks. Mol Cell 2012;46:884-92.
    • (2012) Mol Cell , vol.46 , pp. 884-892
    • Ellis, J.D.1    Barrios-Rodiles, M.2    Olak, R.3
  • 80
    • 0036712421 scopus 로고    scopus 로고
    • Genome-wide detection of tissuespecific alternative splicing in the human transcriptome
    • Xu Q, Modrek B, Lee C. Genome-wide detection of tissuespecific alternative splicing in the human transcriptome. Nucleic Acids Res 2002;30:3754-66.
    • (2002) Nucleic Acids Res , vol.30 , pp. 3754-3766
    • Xu, Q.1    Modrek, B.2    Lee, C.3
  • 81
    • 84867852880 scopus 로고    scopus 로고
    • Alternative transcription and alternative splicing in cancer
    • Pal S, Gupta R, Davuluri RV. Alternative transcription and alternative splicing in cancer. Pharmacol Ther 2012;136:283-94.
    • (2012) Pharmacol Ther , vol.136 , pp. 283-294
    • Pal, S.1    Gupta, R.2    Davuluri, R.V.3
  • 82
    • 84925286546 scopus 로고    scopus 로고
    • Alternative splicing in cancer: implications for biology and therapy
    • Chen J, Weiss W. Alternative splicing in cancer: implications for biology and therapy. Oncogene 2015;34:1-14.
    • (2015) Oncogene , vol.34 , pp. 1-14
    • Chen, J.1    Weiss, W.2
  • 83
    • 84858334551 scopus 로고    scopus 로고
    • Alternative splicing of mRNA in the molecular pathology of neurodegenerative diseases
    • e11-e24.
    • Mills JD, Janitz M. Alternative splicing of mRNA in the molecular pathology of neurodegenerative diseases. Neurobiol Aging 2012;33:1012.e11-24.
    • (2012) Neurobiol Aging , vol.33 , pp. 1012
    • Mills, J.D.1    Janitz, M.2
  • 84
    • 84875271689 scopus 로고    scopus 로고
    • A novel functional lowdensity lipoprotein receptor-related protein 6 gene alternative splice variant is associated with Alzheimer's disease
    • Alarcón MA, Medina MA, Hu Q, et al. A novel functional lowdensity lipoprotein receptor-related protein 6 gene alternative splice variant is associated with Alzheimer's disease. Neurobiol Aging 2013;34:1709-e9.
    • (2013) Neurobiol Aging , vol.34 , pp. 1709
    • Alarcón, M.A.1    Medina, M.A.2    Hu, Q.3
  • 85
    • 84878577036 scopus 로고    scopus 로고
    • Alpha-synuclein posttranslational modification and alternative splicing as a trigger for neurodegeneration
    • Beyer K, Ariza A. Alpha-synuclein posttranslational modification and alternative splicing as a trigger for neurodegeneration. Mol Neurobiol 2013;47:509-24.
    • (2013) Mol Neurobiol , vol.47 , pp. 509-524
    • Beyer, K.1    Ariza, A.2
  • 86
    • 82755179501 scopus 로고    scopus 로고
    • Decreased alternative splicing of estrogen receptor-a mRNA in the Alzheimer's disease brain
    • Ishunina TA, Swaab DF. Decreased alternative splicing of estrogen receptor-a mRNA in the Alzheimer's disease brain. Neurobiol Aging 2012;33:286-96.
    • (2012) Neurobiol Aging , vol.33 , pp. 286-296
    • Ishunina, T.A.1    Swaab, D.F.2
  • 87
    • 33846036722 scopus 로고    scopus 로고
    • The ASAP II database: analysis and comparative genomics of alternative splicing in 15 animal species
    • Kim N, Alekseyenko AV, Roy M, et al. The ASAP II database: analysis and comparative genomics of alternative splicing in 15 animal species. Nucleic Acids Res 2007;35:D93-8.
    • (2007) Nucleic Acids Res , vol.35 , pp. D93-D98
    • Kim, N.1    Alekseyenko, A.V.2    Roy, M.3
  • 88
    • 33846039709 scopus 로고    scopus 로고
    • ECgene: an alternative splicing database update
    • Lee Y, Lee Y, Kim B, et al. ECgene: an alternative splicing database update. Nucleic Acids Res 2007;35:D99-103.
    • (2007) Nucleic Acids Res , vol.35 , pp. D99-103
    • Lee, Y.1    Lee, Y.2    Kim, B.3
  • 89
    • 60049093585 scopus 로고    scopus 로고
    • ASTD: the alternative splicing and transcript diversity database
    • Koscielny G, Le Texier V, Gopalakrishnan C, et al. ASTD: the alternative splicing and transcript diversity database. Genomics 2009;93:213-20.
    • (2009) Genomics , vol.93 , pp. 213-220
    • Koscielny, G.1    Le Texier, V.2    Gopalakrishnan, C.3
  • 90
    • 33644877169 scopus 로고    scopus 로고
    • HOLLYWOOD: a comparative relational database of alternative splicing
    • Holste D, Huo G, Tung V, et al. HOLLYWOOD: a comparative relational database of alternative splicing. Nucleic Acids Res 2006;34:D56-62.
    • (2006) Nucleic Acids Res , vol.34 , pp. D56-D62
    • Holste, D.1    Huo, G.2    Tung, V.3
  • 91
    • 33846075227 scopus 로고    scopus 로고
    • H-DBAS: alternative splicing database of completely sequenced and manually annotated full-length cDNAs based on H-Invitational
    • Takeda JI, Suzuki Y, Nakao M, et al. H-DBAS: alternative splicing database of completely sequenced and manually annotated full-length cDNAs based on H-Invitational. Nucleic Acids Res 2007;35:D104-9.
    • (2007) Nucleic Acids Res , vol.35 , pp. D104-D109
    • Takeda, J.I.1    Suzuki, Y.2    Nakao, M.3
  • 92
    • 23044503321 scopus 로고    scopus 로고
    • FAST DB: a website resource for the study of the expression regulation of human gene products
    • De La Grange P, Dutertre M, Martin N, et al. FAST DB: a website resource for the study of the expression regulation of human gene products. Nucleic Acids Res 2005;33:4276-84.
    • (2005) Nucleic Acids Res , vol.33 , pp. 4276-4284
    • De La Grange, P.1    Dutertre, M.2    Martin, N.3
  • 93
    • 33646490270 scopus 로고    scopus 로고
    • Transcript annotation in FANTOM3: mouse gene catalog based on physical cDNAs
    • Maeda N, Kasukawa T, Oyama R, et al. Transcript annotation in FANTOM3: mouse gene catalog based on physical cDNAs. PLoS Genet 2006;2:e62.
    • (2006) PLoS Genet , vol.2
    • Maeda, N.1    Kasukawa, T.2    Oyama, R.3
  • 97
    • 38549146894 scopus 로고    scopus 로고
    • The Pfam protein families database
    • Finn RD, Tate J, Mistry J, et al. The Pfam protein families database. Nucleic Acids Res 2008;36:D281-8.
    • (2008) Nucleic Acids Res , vol.36 , pp. D281-D288
    • Finn, R.D.1    Tate, J.2    Mistry, J.3
  • 98
    • 13444273448 scopus 로고    scopus 로고
    • The Universal Protein Resource (UniProt)
    • Bairoch A, Apweiler R, Wu CH, et al. The Universal Protein Resource (UniProt). Nucleic Acids Res 2005;33:D154-9.
    • (2005) Nucleic Acids Res , vol.33 , pp. D154-D159
    • Bairoch, A.1    Apweiler, R.2    Wu, C.H.3
  • 99
    • 84871435525 scopus 로고    scopus 로고
    • Function of alternative splicing
    • Kelemen O, Convertini P, Zhang Z, et al. Function of alternative splicing. Gene 2013;514:1-30.
    • (2013) Gene , vol.514 , pp. 1-30
    • Kelemen, O.1    Convertini, P.2    Zhang, Z.3
  • 100
    • 85009753395 scopus 로고    scopus 로고
    • Genome and Transcriptome Sequence Databases for Discovery, Storage, and Representation of Alternative Splicing Events
    • John Wiley & Sons, Hoboken, New Jersey, USA 2013
    • Taneri B, Gaasterland T. Genome and Transcriptome Sequence Databases for Discovery, Storage, and Representation of Alternative Splicing Events. John Wiley & Sons, Hoboken, New Jersey, USA 2013, 1-34.
    • Taneri, B.1    Gaasterland, T.2
  • 101
    • 0024284149 scopus 로고
    • The GenBank genetic sequence data bank
    • Bilofsky HS, Burks C. The GenBank genetic sequence data bank. Nucleic Acids Res 1988;16:1861-3.
    • (1988) Nucleic Acids Res , vol.16 , pp. 1861-1863
    • Bilofsky, H.S.1    Burks, C.2
  • 103
    • 0033982936 scopus 로고    scopus 로고
    • KEGG: kyoto encyclopedia of genes and genomes
    • Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000;28:27-30.
    • (2000) Nucleic Acids Res , vol.28 , pp. 27-30
    • Kanehisa, M.1    Goto, S.2
  • 104
    • 74549221383 scopus 로고    scopus 로고
    • Annotation error in public databases: misannotation of molecular function in enzyme superfamilies.
    • Schnoes AM, Brown SD, Dodevski I, et al. Annotation error in public databases: misannotation of molecular function in enzyme superfamilies. PLoS Comput Biol 2009;5:e1000605
    • (2009) PLoS Comput Biol , vol.5
    • Schnoes, A.M.1    Brown, S.D.2    Dodevski, I.3
  • 105
    • 34147162107 scopus 로고    scopus 로고
    • Genome re-annotation: a wiki solution?
    • Salzberg SL. Genome re-annotation: a wiki solution? Genome Biol 2007;8:102.
    • (2007) Genome Biol , vol.8 , pp. 102
    • Salzberg, S.L.1
  • 106
    • 84865760395 scopus 로고    scopus 로고
    • GENCODE: the reference human genome annotation for The ENCODE Project.
    • Harrow J, Frankish A, Gonzalez JM, et al. GENCODE: the reference human genome annotation for The ENCODE Project. Genome Res 2012;22:1760-74
    • (2012) Genome Res , vol.22 , pp. 1760-1774
    • Harrow, J.1    Frankish, A.2    Gonzalez, J.M.3
  • 107
    • 7444260846 scopus 로고    scopus 로고
    • The ENCODE (ENCyclopedia of DNA elements) project
    • The ENCODE Project Consortium and others. The ENCODE (ENCyclopedia of DNA elements) project. Science 2004;306:636-40.
    • (2004) Science , vol.306 , pp. 636-640
  • 108
    • 38549148703 scopus 로고    scopus 로고
    • The Vertebrate Genome Annotation (Vega) database.
    • Wilming LG, Gilbert JG, Howe K, et al. The Vertebrate Genome Annotation (Vega) database. Nucleic Acids Res 2008;36:D753-D760.
    • (2008) Nucleic Acids Res , vol.36 , pp. D753-D760
    • Wilming, L.G.1    Gilbert, J.G.2    Howe, K.3
  • 109
    • 84975742565 scopus 로고    scopus 로고
    • A map of human genome variation from population-scale sequencing
    • The 1000 Genomes Project Consortium and others. A map of human genome variation from population-scale sequencing. Nature 2010;467:1061-73
    • (2010) Nature , vol.467 , pp. 1061-1073
  • 110
    • 78651298898 scopus 로고    scopus 로고
    • ASPicDB: a database of annotated transcript and protein variants generated by alternative splicing
    • Martelli PL, D'Antonio M, Bonizzoni P, et al. ASPicDB: a database of annotated transcript and protein variants generated by alternative splicing. Nucleic Acids Res 2010;39:D80-5.
    • (2010) Nucleic Acids Res , vol.39 , pp. D80-D85
    • Martelli, P.L.1    D'Antonio, M.2    Bonizzoni, P.3
  • 111
    • 58149216663 scopus 로고    scopus 로고
    • Detecting alternative gene structures from spliced ESTs: a computational approach
    • Bonizzoni P, Mauri G, Pesole G, et al. Detecting alternative gene structures from spliced ESTs: a computational approach. J Comput Biol 2009;16:43-66.
    • (2009) J Comput Biol , vol.16 , pp. 43-66
    • Bonizzoni, P.1    Mauri, G.2    Pesole, G.3
  • 112
    • 75549090156 scopus 로고    scopus 로고
    • H-DBAS: humantranscriptome database for alternative splicing: update 2010.
    • Takeda JI, Suzuki Y, Sakate R, et al. H-DBAS: humantranscriptome database for alternative splicing: update 2010. Nucleic Acids Res 2010;38:D86-90
    • (2010) Nucleic Acids Res , vol.38 , pp. D86-D90
    • Takeda, J.I.1    Suzuki, Y.2    Sakate, R.3
  • 113
    • 84885346177 scopus 로고    scopus 로고
    • SASD: the Synthetic Alternative Splicing Database for identifying novel isoform from proteomics
    • Zhang F, Drabier R. SASD: the Synthetic Alternative Splicing Database for identifying novel isoform from proteomics. BMC Bioinf 2013;14:S13.
    • (2013) BMC Bioinf , vol.14 , pp. S13
    • Zhang, F.1    Drabier, R.2
  • 114
    • 33646484347 scopus 로고    scopus 로고
    • Genomewide comparative analysis of alternative splicing in plants.
    • Wang BB, Brendel V. Genomewide comparative analysis of alternative splicing in plants. Proc Natl Acad Sci USA 2006;103:7175-80
    • (2006) Proc Natl Acad Sci USA , vol.103 , pp. 7175-7180
    • Wang, B.B.1    Brendel, V.2
  • 115
    • 77955534569 scopus 로고    scopus 로고
    • Integration of metabolic databases for the reconstruction of genome-scale metabolic networks
    • Radrich K, Tsuruoka Y, Dobson P, et al. Integration of metabolic databases for the reconstruction of genome-scale metabolic networks. BMC Sys Biol 2010;4:114. 116.Henry CS, DeJongh M, Best AA, et al. High-throughput generation, optimization and analysis of genome-scale metabolic models. Nat Biotechnol 2010;28:977-82. 117.Remize F, Andrieu E, Dequin S. Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae: role of the cytosolic Mg2+ and mitochondrial K+ acetaldehyde dehydrogenases Ald6p and Ald4p in acetate formation during alcoholic fermentation. Appl Environ Microbiol 2000;66:3151-9. 118.De Martino D, Capuani F, Mori M, et al. Counting and correcting thermodynamically infeasible flux cycles in genomescale metabolic networks. Metabolites 2013;3:946-66.
    • (2010) BMC Sys Biol , vol.4 , pp. 114
    • Radrich, K.1    Tsuruoka, Y.2    Dobson, P.3
  • 116
    • 77956696072 scopus 로고    scopus 로고
    • High-throughput generation, optimization and analysis of genome-scale metabolic models.
    • Henry CS, DeJongh M, Best AA, et al. High-throughput generation, optimization and analysis of genome-scale metabolic models. Nat Biotechnol 2010;28:977-82.
    • (2010) Nat Biotechnol , vol.28 , pp. 977-982
    • Henry, C.S.1    DeJongh, M.2    Best, A.A.3
  • 117
    • 0033856517 scopus 로고    scopus 로고
    • Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae: role of the cytosolic Mg2+ and mitochondrial K+ acetaldehyde dehydrogenases Ald6p and Ald4p in acetate formation during alcoholic fermentation.
    • Remize F, Andrieu E, Dequin S. Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae: role of the cytosolic Mg2+ and mitochondrial K+ acetaldehyde dehydrogenases Ald6p and Ald4p in acetate formation during alcoholic fermentation. Appl Environ Microbiol 2000;66:3151-9.
    • (2000) Appl Environ Microbiol , vol.66 , pp. 3151-3159
    • Remize, F.1    Andrieu, E.2    Dequin, S.3
  • 118
    • 84988350465 scopus 로고    scopus 로고
    • Counting and correcting thermodynamically infeasible flux cycles in genomescale metabolic networks
    • De Martino D, Capuani F, Mori M, et al. Counting and correcting thermodynamically infeasible flux cycles in genomescale metabolic networks. Metabolites 2013;3:946-66
    • (2013) Metabolites , vol.3 , pp. 946-966
    • De Martino, D.1    Capuani, F.2    Mori, M.3
  • 119
    • 40549120596 scopus 로고    scopus 로고
    • The RAST Server: rapid annotations using subsystems technology
    • Aziz RK, Bartels D, Best AA, et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008;9:75.
    • (2008) BMC Genomics , vol.9 , pp. 75
    • Aziz, R.K.1    Bartels, D.2    Best, A.A.3
  • 120
    • 84892989181 scopus 로고    scopus 로고
    • Reconciliation of metabolites and biochemical reactions for metabolic networks.
    • Bernard T, Bridge A, Morgat A, et al. Reconciliation of metabolites and biochemical reactions for metabolic networks. Brief Bioinform 2014;15:123-35.
    • (2014) Brief Bioinform , vol.15 , pp. 123-135
    • Bernard, T.1    Bridge, A.2    Morgat, A.3
  • 121
    • 0033856082 scopus 로고    scopus 로고
    • Stereoselective metabolism of omeprazole by human cytochrome P450 enzymes.
    • Abelö A, Andersson TB, Antonsson M, et al. Stereoselective metabolism of omeprazole by human cytochrome P450 enzymes. Drug Metab Dispos 2000;28:966-72.
    • (2000) Drug Metab Dispos , vol.28 , pp. 966-972
    • Abelö, A.1    Andersson, T.B.2    Antonsson, M.3
  • 122
    • 0042816453 scopus 로고    scopus 로고
    • Large-scale evaluation of in silico gene deletions in Saccharomyces cerevisiae.
    • Förster J, Famili I, Palsson BØ, et al. Large-scale evaluation of in silico gene deletions in Saccharomyces cerevisiae. OMICS 2003;7:193-202.
    • (2003) OMICS , vol.7 , pp. 193-202
    • Förster, J.1    Famili, I.2    Palsson, BØ.3
  • 123
    • 3843128481 scopus 로고    scopus 로고
    • Reconstruction and validation of Saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic model.
    • Duarte NC, Herrgård MJ, Palsson BØ. Reconstruction and validation of Saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic model. Genome Res 2004;14:1298-309
    • (2004) Genome Res , vol.14 , pp. 1298-1309
    • Duarte, N.C.1    Herrgård, M.J.2    Palsson, BØ.3
  • 124
    • 25844463806 scopus 로고    scopus 로고
    • Metabolic functions of duplicate genes in Saccharomyces cerevisiae
    • Kuepfer L, Sauer U, Blank LM. Metabolic functions of duplicate genes in Saccharomyces cerevisiae. Genome Res 2005;15:1421-30.
    • (2005) Genome Res , vol.15 , pp. 1421-1430
    • Kuepfer, L.1    Sauer, U.2    Blank, L.M.3
  • 125
    • 53749085229 scopus 로고    scopus 로고
    • A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology
    • Herrgård MJ, Swainston N, Dobson P, et al. A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology. Nat Biotechnol 2008;26:1155-60.
    • (2008) Nat Biotechnol , vol.26 , pp. 1155-1160
    • Herrgård, M.J.1    Swainston, N.2    Dobson, P.3
  • 126
    • 14844326483 scopus 로고    scopus 로고
    • Computational prediction of human metabolic pathways from the complete human genome.
    • Romero P, Wagg J, Green ML, et al. Computational prediction of human metabolic pathways from the complete human genome. Genome Biol 2005;6:R2
    • (2005) Genome Biol , vol.6 , pp. R2
    • Romero, P.1    Wagg, J.2    Green, M.L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.