-
1
-
-
34047118522
-
CRISPR provides acquired resistance against viruses in prokaryotes
-
[1] Barrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., Romero, D.A., Horvath, P., CRISPR provides acquired resistance against viruses in prokaryotes. Science 315 (2007), 1709–1712, 10.1126/science.1138140.
-
(2007)
Science
, vol.315
, pp. 1709-1712
-
-
Barrangou, R.1
Fremaux, C.2
Deveau, H.3
Richards, M.4
Boyaval, P.5
Moineau, S.6
Romero, D.A.7
Horvath, P.8
-
2
-
-
84913594397
-
The new frontier of genome engineering with CRISPR–Cas9
-
[2] Doudna, J.A., Charpentier, E., The new frontier of genome engineering with CRISPR–Cas9. Science, 346, 2014, 1258096, 10.1126/science.1258096.
-
(2014)
Science
, vol.346
, pp. 1258096
-
-
Doudna, J.A.1
Charpentier, E.2
-
3
-
-
84902096048
-
Development and applications of CRISPR–Cas9 for genome engineering
-
[3] Hsu, P.D., Lander, E.S., Zhang, F., Development and applications of CRISPR–Cas9 for genome engineering. Cell 157 (2014), 1262–1278, 10.1016/j.cell.2014.05.010.
-
(2014)
Cell
, vol.157
, pp. 1262-1278
-
-
Hsu, P.D.1
Lander, E.S.2
Zhang, F.3
-
4
-
-
84902533278
-
Unravelling the structural and mechanistic basis of CRISPR–Cas systems
-
[4] van der Oost, J., Westra, E.R., Jackson, R.N., Wiedenheft, B., Unravelling the structural and mechanistic basis of CRISPR–Cas systems. Nat. Rev. Microbiol. 12 (2014), 479–492, 10.1038/nrmicro3279.
-
(2014)
Nat. Rev. Microbiol.
, vol.12
, pp. 479-492
-
-
van der Oost, J.1
Westra, E.R.2
Jackson, R.N.3
Wiedenheft, B.4
-
5
-
-
84986898390
-
Applications of CRISPR technologies in research and beyond
-
[5] Barrangou, R., Doudna, J.A., Applications of CRISPR technologies in research and beyond. Nat. Biotechnol. 34 (2016), 933–941, 10.1038/nbt.3659.
-
(2016)
Nat. Biotechnol.
, vol.34
, pp. 933-941
-
-
Barrangou, R.1
Doudna, J.A.2
-
6
-
-
84873734105
-
RNA-guided human genome engineering via Cas9
-
[6] Mali, P., Yang, L., Esvelt, K.M., Aach, J., Guell, M., DiCarlo, J.E., Norville, J.E., Church, G.M., RNA-guided human genome engineering via Cas9. Science 339 (2013), 823–826, 10.1126/science.1232033.RNA-Guided.
-
(2013)
Science
, vol.339
, pp. 823-826
-
-
Mali, P.1
Yang, L.2
Esvelt, K.M.3
Aach, J.4
Guell, M.5
DiCarlo, J.E.6
Norville, J.E.7
Church, G.M.8
-
7
-
-
84873729095
-
Multiplex genome engineering using CRISPR/Cas systems
-
[7] Cong, L., Ran, F.A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P.D., Wu, X., Jiang, W., Marraffini, L.A., Zhang, F., Multiplex genome engineering using CRISPR/Cas systems. Science 339 (2013), 819–823, 10.1126/science.1231143.
-
(2013)
Science
, vol.339
, pp. 819-823
-
-
Cong, L.1
Ran, F.A.2
Cox, D.3
Lin, S.4
Barretto, R.5
Habib, N.6
Hsu, P.D.7
Wu, X.8
Jiang, W.9
Marraffini, L.A.10
Zhang, F.11
-
8
-
-
84887830251
-
Control of gene expression by CRISPR–Cas systems
-
[8] Bikard, D., Marraffini, L.A., Control of gene expression by CRISPR–Cas systems. F1000Prime Rep., 5(47), 2013, 10.12703/p5–47.
-
(2013)
F1000Prime Rep.
, vol.5
, Issue.47
-
-
Bikard, D.1
Marraffini, L.A.2
-
9
-
-
84865070369
-
A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
-
[9] Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A., Charpentier, E., A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337 (2012), 816–822, 10.1126/science.1225829.
-
(2012)
Science
, vol.337
, pp. 816-822
-
-
Jinek, M.1
Chylinski, K.2
Fonfara, I.3
Hauer, M.4
Doudna, J.A.5
Charpentier, E.6
-
10
-
-
84941084492
-
Repurposing endogenous type I CRISPR–Cas systems for programmable gene repression
-
[10] Luo, M.L., Mullis, A.S., Leenay, R.T., Beisel, C.L., Repurposing endogenous type I CRISPR–Cas systems for programmable gene repression. Nucleic Acids Res. 43 (2014), 674–681, 10.1093/nar/gku971.
-
(2014)
Nucleic Acids Res.
, vol.43
, pp. 674-681
-
-
Luo, M.L.1
Mullis, A.S.2
Leenay, R.T.3
Beisel, C.L.4
-
11
-
-
84924410016
-
Concerning RNA-guided gene drives for the alteration of wild populations
-
[11] Esvelt, K.M., Smidler, A.L., Catteruccia, F., Church, G.M., Concerning RNA-guided gene drives for the alteration of wild populations. Elife, 2014, e03401, 10.7554/eLife.03401.
-
(2014)
Elife
, pp. e03401
-
-
Esvelt, K.M.1
Smidler, A.L.2
Catteruccia, F.3
Church, G.M.4
-
12
-
-
84953730637
-
A CRISPR–Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae
-
[12] Hammond, A., Galizi, R., Kyrou, K., Simoni, A., Siniscalchi, C., Katsanos, D., Gribble, M., Baker, D., Marois, E., Russell, S., Burt, A., Windbichler, N., Crisanti, A., Nolan, T., A CRISPR–Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae. Nat. Biotechnol. 34 (2016), 78–83, 10.1038/nbt.3439.
-
(2016)
Nat. Biotechnol.
, vol.34
, pp. 78-83
-
-
Hammond, A.1
Galizi, R.2
Kyrou, K.3
Simoni, A.4
Siniscalchi, C.5
Katsanos, D.6
Gribble, M.7
Baker, D.8
Marois, E.9
Russell, S.10
Burt, A.11
Windbichler, N.12
Crisanti, A.13
Nolan, T.14
-
13
-
-
84983142945
-
Exploiting CRISPR–Cas nucleases to produce sequence-specific antimicrobials
-
[13] Bikard, D., Euler, C.W., Jiang, W., Nussenzweig, P.M., Goldberg, G.W., Duportet, X., Fischetti, V.A., Marraffini, L.A., Exploiting CRISPR–Cas nucleases to produce sequence-specific antimicrobials. Nat. Biotechnol. 32 (2014), 1146–1150, 10.1038/nbt.3043.
-
(2014)
Nat. Biotechnol.
, vol.32
, pp. 1146-1150
-
-
Bikard, D.1
Euler, C.W.2
Jiang, W.3
Nussenzweig, P.M.4
Goldberg, G.W.5
Duportet, X.6
Fischetti, V.A.7
Marraffini, L.A.8
-
14
-
-
84903362877
-
Programmable removal of bacterial strains by use of genome-targeting CRISPR–Cas systems
-
[14] Gomaa, A.A., Klumpe, H.E., Luo, M.L., Selle, K., Barrangou, R., Beisel, C., Programmable removal of bacterial strains by use of genome-targeting CRISPR–Cas systems. MBio, 5, 2014, e00928-13, 10.1128/mBio.00928–13.
-
(2014)
MBio
, vol.5
, pp. e00928-13
-
-
Gomaa, A.A.1
Klumpe, H.E.2
Luo, M.L.3
Selle, K.4
Barrangou, R.5
Beisel, C.6
-
15
-
-
84920389030
-
Visualization of specific DNA sequences in living mouse embryonic stem cells with a programmable fluorescent CRISPR/Cas system
-
[15] Anton, T., Bultmann, S., Leonhardt, H., Markaki, Y., Visualization of specific DNA sequences in living mouse embryonic stem cells with a programmable fluorescent CRISPR/Cas system. Nucleus 5 (2014), 163–172, 10.4161/nucl.28488.
-
(2014)
Nucleus
, vol.5
, pp. 163-172
-
-
Anton, T.1
Bultmann, S.2
Leonhardt, H.3
Markaki, Y.4
-
16
-
-
84894063115
-
Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system
-
[16] Chen, B., Gilbert, L.A., Cimini, B.A., Schnitzbauer, J., Zhang, W., Li, G., Park, J., Blackburn, E.H., Weissman, J.S., Lei, S., Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155 (2013), 1479–1491, 10.1016/j.cell.2013.12.001.Dynamic.
-
(2013)
Cell
, vol.155
, pp. 1479-1491
-
-
Chen, B.1
Gilbert, L.A.2
Cimini, B.A.3
Schnitzbauer, J.4
Zhang, W.5
Li, G.6
Park, J.7
Blackburn, E.H.8
Weissman, J.S.9
Lei, S.10
-
17
-
-
84982855973
-
Diverse evolutionary roots and mechanistic variations of the CRISPR–Cas systems
-
[17] Mohanraju, P., Makarova, K.S., Zetsche, B., Zhang, F., Koonin, E.V., Van der Oost, J., Diverse evolutionary roots and mechanistic variations of the CRISPR–Cas systems. Science, 353, 2016, aad5147, 10.1126/science.aad5147.
-
(2016)
Science
, vol.353
, pp. aad5147
-
-
Mohanraju, P.1
Makarova, K.S.2
Zetsche, B.3
Zhang, F.4
Koonin, E.V.5
Van der Oost, J.6
-
18
-
-
84944449180
-
An updated evolutionary classification of CRISPR–Cas systems
-
[18] Makarova, K.S., Wolf, Y.I., Alkhnbashi, O.S., Costa, F., Shah, S.A., Saunders, S.J., Barrangou, R., Brouns, S.J.J., Charpentier, E., Haft, D.H., Horvath, P., Moineau, S., Mojica, F.J.M., Terns, R.M., Terns, M.P., White, M.F., Yakunin, A.F., Garrett, R.A., van der Oost, J., Backofen, R., Koonin, E.V., An updated evolutionary classification of CRISPR–Cas systems. Nat. Rev. Microbiol. 13 (2015), 722–736, 10.1038/nrmicro3569.
-
(2015)
Nat. Rev. Microbiol.
, vol.13
, pp. 722-736
-
-
Makarova, K.S.1
Wolf, Y.I.2
Alkhnbashi, O.S.3
Costa, F.4
Shah, S.A.5
Saunders, S.J.6
Barrangou, R.7
Brouns, S.J.J.8
Charpentier, E.9
Haft, D.H.10
Horvath, P.11
Moineau, S.12
Mojica, F.J.M.13
Terns, R.M.14
Terns, M.P.15
White, M.F.16
Yakunin, A.F.17
Garrett, R.A.18
van der Oost, J.19
Backofen, R.20
Koonin, E.V.21
more..
-
19
-
-
84947736727
-
Discovery and functional characterization of diverse class 2 CRISPR–Cas systems
-
[19] Shmakov, S., Abudayyeh, O.O., Makarova, K.S., Wolf, Y.I., Gootenberg, J.S., Semenova, E., Minakhin, L., Joung, J., Konermann, S., Severinov, K., Zhang, F., Koonin, E.V., Discovery and functional characterization of diverse class 2 CRISPR–Cas systems. Mol. Cell 60 (2015), 385–397, 10.1016/j.molcel.2015.10.008.
-
(2015)
Mol. Cell
, vol.60
, pp. 385-397
-
-
Shmakov, S.1
Abudayyeh, O.O.2
Makarova, K.S.3
Wolf, Y.I.4
Gootenberg, J.S.5
Semenova, E.6
Minakhin, L.7
Joung, J.8
Konermann, S.9
Severinov, K.10
Zhang, F.11
Koonin, E.V.12
-
20
-
-
84949641392
-
Current and future prospects for CRISPR-based tools in bacteria
-
[20] Luo, M.L., Leenay, R.T., Beisel, C.L., Current and future prospects for CRISPR-based tools in bacteria. Biotechnol. Bioeng. 113 (2016), 930–943, 10.1002/bit.25851.
-
(2016)
Biotechnol. Bioeng.
, vol.113
, pp. 930-943
-
-
Luo, M.L.1
Leenay, R.T.2
Beisel, C.L.3
-
21
-
-
38949214103
-
Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus
-
[21] Horvath, P., Romero, D.A., Coute-Monvoisin, A.-C., Richards, M., Deveau, H., Moineau, S., Boyaval, P., Fremaux, C., Barrangou, R., Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus. J. Bacteriol. 190 (2008), 1401–1412, 10.1128/JB.01415-07.
-
(2008)
J. Bacteriol.
, vol.190
, pp. 1401-1412
-
-
Horvath, P.1
Romero, D.A.2
Coute-Monvoisin, A.-C.3
Richards, M.4
Deveau, H.5
Moineau, S.6
Boyaval, P.7
Fremaux, C.8
Barrangou, R.9
-
22
-
-
38949123143
-
Phage response to CRISPR-encoded resistance in Streptococcus thermophilus
-
[22] Deveau, H., Barrangou, R., Garneau, J.E., Labonte, J., Fremaux, C., Boyaval, P., Romero, D.A., Horvath, P., Moineau, S., Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J. Bacteriol. 190 (2008), 1390–1400, 10.1128/JB.01412-07.
-
(2008)
J. Bacteriol.
, vol.190
, pp. 1390-1400
-
-
Deveau, H.1
Barrangou, R.2
Garneau, J.E.3
Labonte, J.4
Fremaux, C.5
Boyaval, P.6
Romero, D.A.7
Horvath, P.8
Moineau, S.9
-
23
-
-
64049118040
-
Short motif sequences determine the targets of the prokaryotic CRISPR defence system
-
[23] Mojica, F.J.M., Diez-Villasenor, C., Garcia-Martinez, J., Almendros, C., Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 155 (2009), 733–740, 10.1099/mic.0.023960-0.
-
(2009)
Microbiology
, vol.155
, pp. 733-740
-
-
Mojica, F.J.M.1
Diez-Villasenor, C.2
Garcia-Martinez, J.3
Almendros, C.4
-
24
-
-
78149261827
-
The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA
-
[24] Garneau, J.E., Dupuis, M.-È., Villion, M., Romero, D.a., Barrangou, R., Boyaval, P., Fremaux, C., Horvath, P., Magadán, A.H., Moineau, S., The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468 (2010), 67–71, 10.1038/nature09523.
-
(2010)
Nature
, vol.468
, pp. 67-71
-
-
Garneau, J.E.1
Dupuis, M.-È.2
Villion, M.3
Romero, D.A.4
Barrangou, R.5
Boyaval, P.6
Fremaux, C.7
Horvath, P.8
Magadán, A.H.9
Moineau, S.10
-
25
-
-
84866859751
-
Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria
-
[25] Gasiunas, G., Barrangou, R., Horvath, P., Siksnys, V., Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc. Natl. Acad. Sci. U. S. A. 109 (2012), E2579–E2586, 10.1073/pnas.1208507109.
-
(2012)
Proc. Natl. Acad. Sci. U. S. A.
, vol.109
, pp. E2579-E2586
-
-
Gasiunas, G.1
Barrangou, R.2
Horvath, P.3
Siksnys, V.4
-
26
-
-
70449753811
-
RNA-guided RNA cleavage by a CRISPR RNA–Cas protein complex
-
[26] Hale, C.R., Zhao, P., Olson, S., Duff, M.O., Graveley, B.R., Wells, L., Terns, R.M., Terns, M.P., RNA-guided RNA cleavage by a CRISPR RNA–Cas protein complex. Cell 139 (2009), 945–956, 10.1016/j.cell.2009.07.040.
-
(2009)
Cell
, vol.139
, pp. 945-956
-
-
Hale, C.R.1
Zhao, P.2
Olson, S.3
Duff, M.O.4
Graveley, B.R.5
Wells, L.6
Terns, R.M.7
Terns, M.P.8
-
27
-
-
84876567971
-
RNA-programmed genome editing in human cells
-
[27] Jinek, M., East, A., Cheng, A., Lin, S., Ma, E., Doudna, J., RNA-programmed genome editing in human cells. Elife., 2013, 2013, e00471, 10.7554/eLife.00471.
-
(2013)
Elife.
, vol.2013
, pp. e00471
-
-
Jinek, M.1
East, A.2
Cheng, A.3
Lin, S.4
Ma, E.5
Doudna, J.6
-
28
-
-
79955574254
-
Structural basis for CRISPR RNA-guided DNA recognition by Cascade
-
[28] Jore, M.M., Lundgren, M., van Duijn, E., Bultema, J.B., Westra, E.R., Waghmare, S.P., Wiedenheft, B., Pul, Ü., Wurm, R., Wagner, R., Beijer, M.R., Barendregt, A., Zhou, K., Snijders, A.P.L., Dickman, M.J., Doudna, J.A., Boekema, E.J., Heck, A.J.R., van der Oost, J., Brouns, S.J.J., Structural basis for CRISPR RNA-guided DNA recognition by Cascade. Nat. Struct. Mol. Biol. 18 (2011), 529–536, 10.1038/nsmb.2019.
-
(2011)
Nat. Struct. Mol. Biol.
, vol.18
, pp. 529-536
-
-
Jore, M.M.1
Lundgren, M.2
van Duijn, E.3
Bultema, J.B.4
Westra, E.R.5
Waghmare, S.P.6
Wiedenheft, B.7
Pul, Ü.8
Wurm, R.9
Wagner, R.10
Beijer, M.R.11
Barendregt, A.12
Zhou, K.13
Snijders, A.P.L.14
Dickman, M.J.15
Doudna, J.A.16
Boekema, E.J.17
Heck, A.J.R.18
van der Oost, J.19
Brouns, S.J.J.20
more..
-
29
-
-
84861996069
-
CRISPR immunity relies on the consecutive binding and degradation of negatively supercoiled invader DNA by Cascade and Cas3
-
[29] Westra, E.R., van Erp, P.B.G., Künne, T., Wong, S.P., Staals, R.H.J., Seegers, C.L.C., Bollen, S., Jore, M.M., Semenova, E., Severinov, K., de Vos, W.M., Dame, R.T., de Vries, R., Brouns, S.J.J., van der Oost, J., CRISPR immunity relies on the consecutive binding and degradation of negatively supercoiled invader DNA by Cascade and Cas3. Mol. Cell 46 (2012), 595–605, 10.1016/j.molcel.2012.03.018.
-
(2012)
Mol. Cell
, vol.46
, pp. 595-605
-
-
Westra, E.R.1
van Erp, P.B.G.2
Künne, T.3
Wong, S.P.4
Staals, R.H.J.5
Seegers, C.L.C.6
Bollen, S.7
Jore, M.M.8
Semenova, E.9
Severinov, K.10
de Vos, W.M.11
Dame, R.T.12
de Vries, R.13
Brouns, S.J.J.14
van der Oost, J.15
-
30
-
-
16444385662
-
Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements
-
[30] Mojica, F.J.M., Díez-Villaseñor, C., García-Martínez, J., Soria, E., Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J. Mol. Evol. 60 (2005), 174–182, 10.1007/s00239-004-0046-3.
-
(2005)
J. Mol. Evol.
, vol.60
, pp. 174-182
-
-
Mojica, F.J.M.1
Díez-Villaseñor, C.2
García-Martínez, J.3
Soria, E.4
-
31
-
-
0036267740
-
Identification of genes that are associated with DNA repeats in prokaryotes
-
[31] Jansen, R., Van Embden, J.D.A., Gaastra, W., Schouls, L.M., Identification of genes that are associated with DNA repeats in prokaryotes. Mol. Microbiol. 43 (2002), 1565–1575, 10.1046/j.1365-2958.2002.02839.x.
-
(2002)
Mol. Microbiol.
, vol.43
, pp. 1565-1575
-
-
Jansen, R.1
Van Embden, J.D.A.2
Gaastra, W.3
Schouls, L.M.4
-
32
-
-
23844505202
-
Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin
-
[32] Bolotin, A., Quinquis, B., Sorokin, A., Dusko Ehrlich, S., Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151 (2005), 2551–2561, 10.1099/mic.0.28048-0.
-
(2005)
Microbiology
, vol.151
, pp. 2551-2561
-
-
Bolotin, A.1
Quinquis, B.2
Sorokin, A.3
Dusko Ehrlich, S.4
-
33
-
-
58049191229
-
Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes
-
[33] Carte, J., Wang, R., Li, H., Terns, R.M., Terns, M.P., Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes. Genes Dev. 22 (2008), 3489–3496, 10.1101/gad.1742908.
-
(2008)
Genes Dev.
, vol.22
, pp. 3489-3496
-
-
Carte, J.1
Wang, R.2
Li, H.3
Terns, R.M.4
Terns, M.P.5
-
34
-
-
49649114086
-
Small CRISPR RNAs guide antiviral defense in prokaryotes
-
[34] Brouns, S.J.J., Jore, M.M., Lundgren, M., Westra, E.R., Slijkhuis, R.J.H., Snijders, A.P.L., Dickman, M.J., Makarova, K.S., Koonin, E.V., van der Oost, J., Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321 (2008), 960–964, 10.1126/science.1159689.
-
(2008)
Science
, vol.321
, pp. 960-964
-
-
Brouns, S.J.J.1
Jore, M.M.2
Lundgren, M.3
Westra, E.R.4
Slijkhuis, R.J.H.5
Snijders, A.P.L.6
Dickman, M.J.7
Makarova, K.S.8
Koonin, E.V.9
van der Oost, J.10
-
35
-
-
79953250082
-
CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III
-
[35] Deltcheva, E., Chylinski, K., Sharma, C.M., Gonzales, K., CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471 (2011), 602–607, 10.1038/nature09886.CRISPR.
-
(2011)
Nature
, vol.471
, pp. 602-607
-
-
Deltcheva, E.1
Chylinski, K.2
Sharma, C.M.3
Gonzales, K.4
-
36
-
-
84957535039
-
Major bacterial lineages are essentially devoid of CRISPR–Cas viral defence systems
-
[36] Burstein, D., Sun, C.L., Brown, C.T., Sharon, I., Anantharaman, K., Probst, A.J., Thomas, B.C., Banfield, J.F., Major bacterial lineages are essentially devoid of CRISPR–Cas viral defence systems. Nat. Commun., 7, 2016, 10613, 10.1038/ncomms10613.
-
(2016)
Nat. Commun.
, vol.7
, pp. 10613
-
-
Burstein, D.1
Sun, C.L.2
Brown, C.T.3
Sharon, I.4
Anantharaman, K.5
Probst, A.J.6
Thomas, B.C.7
Banfield, J.F.8
-
37
-
-
79956157571
-
Evolution and classification of the CRISPR–Cas systems
-
[37] Makarova, K.S., Haft, D.H., Barrangou, R., Brouns, S.J.J., Charpentier, E., Horvath, P., Moineau, S., Mojica, F.J.M., Wolf, Y.I., Yakunin, A.F., van der Oost, J., Koonin, E.V., Evolution and classification of the CRISPR–Cas systems. Nat. Rev. Microbiol. 9 (2011), 467–477, 10.1038/nrmicro2577.
-
(2011)
Nat. Rev. Microbiol.
, vol.9
, pp. 467-477
-
-
Makarova, K.S.1
Haft, D.H.2
Barrangou, R.3
Brouns, S.J.J.4
Charpentier, E.5
Horvath, P.6
Moineau, S.7
Mojica, F.J.M.8
Wolf, Y.I.9
Yakunin, A.F.10
van der Oost, J.11
Koonin, E.V.12
-
38
-
-
84902095351
-
Classification and evolution of type II CRISPR–Cas systems
-
[38] Chylinski, K., Makarova, K.S., Charpentier, E., Koonin, E.V., Classification and evolution of type II CRISPR–Cas systems. Nucleic Acids Res. 42 (2014), 6091–6105, 10.1093/nar/gku241.
-
(2014)
Nucleic Acids Res.
, vol.42
, pp. 6091-6105
-
-
Chylinski, K.1
Makarova, K.S.2
Charpentier, E.3
Koonin, E.V.4
-
39
-
-
84974606818
-
C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector
-
[39] Abudayyeh, O.O., Gootenberg, J.S., Konermann, S., Joung, J., Slaymaker, I.M., Cox, D.B., Shmakov, S., Makarova, K.S., Semenova, E., Minakhin, L., Severinov, K., Regev, A., Lander, E.S., Koonin, E.V., Zhang, F., C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science, 353, 2016, aaf5573, 10.1101/054742.
-
(2016)
Science
, vol.353
-
-
Abudayyeh, O.O.1
Gootenberg, J.S.2
Konermann, S.3
Joung, J.4
Slaymaker, I.M.5
Cox, D.B.6
Shmakov, S.7
Makarova, K.S.8
Semenova, E.9
Minakhin, L.10
Severinov, K.11
Regev, A.12
Lander, E.S.13
Koonin, E.V.14
Zhang, F.15
-
40
-
-
84958965794
-
Bipartite recognition of target RNAs activates DNA cleavage by the type III-B CRISPR–Cas system
-
[40] Elmore, J.R., Sheppard, N.F., Ramia, N., Deighan, T., Li, H., Terns, R.M., Terns, M.P., Bipartite recognition of target RNAs activates DNA cleavage by the type III-B CRISPR–Cas system. Genes Dev. 30 (2016), 447–459, 10.1101/gad.272153.115.
-
(2016)
Genes Dev.
, vol.30
, pp. 447-459
-
-
Elmore, J.R.1
Sheppard, N.F.2
Ramia, N.3
Deighan, T.4
Li, H.5
Terns, R.M.6
Terns, M.P.7
-
41
-
-
75749118174
-
Self versus non-self discrimination during CRISPR RNA-directed immunity
-
[41] Marraffini, L.A., Sontheimer, E.J., Self versus non-self discrimination during CRISPR RNA-directed immunity. Nature 463 (2010), 568–571, 10.1038/nature08703.
-
(2010)
Nature
, vol.463
, pp. 568-571
-
-
Marraffini, L.A.1
Sontheimer, E.J.2
-
42
-
-
80052599927
-
RNA-guided complex from a bacterial immune system enhances target recognition through seed sequence interactions
-
[42] Wiedenheft, B., van Duijn, E., Bultema, J.B., Waghmare, S.P., Zhoua, K., Barendregt, A., Westphal, W., Heck, A.J.R., Boekema, E.J., Dickman, M.J., Douda, J., RNA-guided complex from a bacterial immune system enhances target recognition through seed sequence interactions. Proc. Natl. Acad. Sci., 108, 2011, 15010, 10.1073/pnas.1111854108.
-
(2011)
Proc. Natl. Acad. Sci.
, vol.108
, pp. 15010
-
-
Wiedenheft, B.1
van Duijn, E.2
Bultema, J.B.3
Waghmare, S.P.4
Zhoua, K.5
Barendregt, A.6
Westphal, W.7
Heck, A.J.R.8
Boekema, E.J.9
Dickman, M.J.10
Douda, J.11
-
43
-
-
84907204893
-
Crystal structure of a CRISPR RNA-guided surveillance complex bound to a ssDNA target
-
[43] Mulepati, S., Héroux, A., Bailey, S., Crystal structure of a CRISPR RNA-guided surveillance complex bound to a ssDNA target. Science 345 (2014), 1479–1484, 10.1126/science.1256996.
-
(2014)
Science
, vol.345
, pp. 1479-1484
-
-
Mulepati, S.1
Héroux, A.2
Bailey, S.3
-
44
-
-
84893157352
-
Structures of Cas9 endonucleases reveal RNA-mediated conformational activation
-
[44] Jinek, M., Jiang, F., Taylor, D.W., Sternberg, S.H., Kaya, E., Ma, E., Anders, C., Hauer, M., Zhou, K., Lin, S., Kaplan, M., Iavarone, A.T., Charpentier, E., Nogales, E., Doudna, J.A., Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science, 343, 2014, 1247997, 10.1126/science.1247997.
-
(2014)
Science
, vol.343
, pp. 1247997
-
-
Jinek, M.1
Jiang, F.2
Taylor, D.W.3
Sternberg, S.H.4
Kaya, E.5
Ma, E.6
Anders, C.7
Hauer, M.8
Zhou, K.9
Lin, S.10
Kaplan, M.11
Iavarone, A.T.12
Charpentier, E.13
Nogales, E.14
Doudna, J.A.15
-
45
-
-
84896733529
-
Crystal structure of Cas9 in complex with guide RNA and target DNA
-
[45] Nishimasu, H., Ran, F.A., Hsu, P.D., Konermann, S., Shehata, S.I., Dohmae, N., Ishitani, R., Zhang, F., Nureki, O., Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156 (2014), 935–949, 10.1016/j.cell.2014.02.001.
-
(2014)
Cell
, vol.156
, pp. 935-949
-
-
Nishimasu, H.1
Ran, F.A.2
Hsu, P.D.3
Konermann, S.4
Shehata, S.I.5
Dohmae, N.6
Ishitani, R.7
Zhang, F.8
Nureki, O.9
-
46
-
-
84908508061
-
Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease
-
[46] Anders, C., Niewoehner, O., Duerst, A., Jinek, M., Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature 513 (2014), 569–573, 10.1038/nature13579.
-
(2014)
Nature
, vol.513
, pp. 569-573
-
-
Anders, C.1
Niewoehner, O.2
Duerst, A.3
Jinek, M.4
-
47
-
-
84895871173
-
DNA interrogation by the CRISPR RNA-guided endonuclease Cas9
-
[47] Sternberg, S.H., Redding, S., Jinek, M., Greene, E.C., Doudna, J., DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 507 (2014), 62–67, 10.1038/nature13011.
-
(2014)
Nature
, vol.507
, pp. 62-67
-
-
Sternberg, S.H.1
Redding, S.2
Jinek, M.3
Greene, E.C.4
Doudna, J.5
-
48
-
-
84883338164
-
DNA motifs determining the efficiency of adaptation into the Escherichia coli CRISPR array
-
[48] Yosef, I., Shitrit, D., Goren, M.G., Burstein, D., Pupko, T., Qimron, U., DNA motifs determining the efficiency of adaptation into the Escherichia coli CRISPR array. Proc. Natl. Acad. Sci. U. S. A. 110 (2013), 14396–14401, 10.1073/pnas.1300108110.
-
(2013)
Proc. Natl. Acad. Sci. U. S. A.
, vol.110
, pp. 14396-14401
-
-
Yosef, I.1
Shitrit, D.2
Goren, M.G.3
Burstein, D.4
Pupko, T.5
Qimron, U.6
-
49
-
-
84879021475
-
High-throughput analysis of type I-E CRISPR/Cas spacer acquisition in E. coli
-
[49] Savitskaya, E., Semenova, E., Dedkov, V., Metlitskaya, A., Severinov, K., High-throughput analysis of type I-E CRISPR/Cas spacer acquisition in E. coli. RNA Biol. 10 (2013), 716–725, 10.4161/rna.24325.
-
(2013)
RNA Biol.
, vol.10
, pp. 716-725
-
-
Savitskaya, E.1
Semenova, E.2
Dedkov, V.3
Metlitskaya, A.4
Severinov, K.5
-
50
-
-
84928473578
-
CRISPR adaptation biases explain preference for acquisition of foreign DNA
-
[50] Levy, A., Goren, M.G., Yosef, I., Auster, O., Manor, M., Amitai, G., Edgar, R., Qimron, U., Sorek, R., CRISPR adaptation biases explain preference for acquisition of foreign DNA. Nature 520 (2015), 505–510, 10.1038/nature14302.
-
(2015)
Nature
, vol.520
, pp. 505-510
-
-
Levy, A.1
Goren, M.G.2
Yosef, I.3
Auster, O.4
Manor, M.5
Amitai, G.6
Edgar, R.7
Qimron, U.8
Sorek, R.9
-
51
-
-
84924705939
-
Cas9 specifies functional viral targets during CRISPR–Cas adaptation
-
[51] Heler, R., Samai, P., Modell, J.W., Weiner, C., Goldberg, G.W., Bikard, D., Marraffini, L.A., Cas9 specifies functional viral targets during CRISPR–Cas adaptation. Nature 519 (2015), 199–202, 10.1038/nature14245.
-
(2015)
Nature
, vol.519
, pp. 199-202
-
-
Heler, R.1
Samai, P.2
Modell, J.W.3
Weiner, C.4
Goldberg, G.W.5
Bikard, D.6
Marraffini, L.A.7
-
52
-
-
84922998282
-
Cas9 function and host genome sampling in type II-A CRISPR–cas adaptation
-
[52] Wei, Y., Terns, R.M., Terns, M.P., Terns, M.P., Terns, M.P., Cas9 function and host genome sampling in type II-A CRISPR–cas adaptation. Genes Dev. 29 (2015), 356–361, 10.1101/gad.257550.114.
-
(2015)
Genes Dev.
, vol.29
, pp. 356-361
-
-
Wei, Y.1
Terns, R.M.2
Terns, M.P.3
Terns, M.P.4
Terns, M.P.5
-
53
-
-
84992463479
-
Cas3-derived target DNA degradation fragments fuel primed CRISPR adaptation
-
[53] Kunne, T., Kieper, S.N., Bannenberg, J.W., Depken, M., Suarez-diez, M., Brouns, S.J.J., Ku, T., Kieper, S.N., Bannenberg, J.W., Vogel, A.I.M., Miellet, W.R., Klein, M., Cas3-derived target DNA degradation fragments fuel primed CRISPR adaptation. Mol. Cell 63 (2016), 852–864, 10.1016/j.molcel.2016.07.011.
-
(2016)
Mol. Cell
, vol.63
, pp. 852-864
-
-
Kunne, T.1
Kieper, S.N.2
Bannenberg, J.W.3
Depken, M.4
Suarez-diez, M.5
Brouns, S.J.J.6
Ku, T.7
Kieper, S.N.8
Bannenberg, J.W.9
Vogel, A.I.M.10
Miellet, W.R.11
Klein, M.12
-
54
-
-
84959407493
-
CRISPR interference and priming varies with individual spacer sequences
-
[54] Xue, C., Seetharam, A.S., Musharova, O., Severinov, K., Brouns, S.J.J., Severin, A.J., Sashital, D.G., CRISPR interference and priming varies with individual spacer sequences. Nucleic Acids Res. 43 (2015), 10831–10847, 10.1093/nar/gkv1259.
-
(2015)
Nucleic Acids Res.
, vol.43
, pp. 10831-10847
-
-
Xue, C.1
Seetharam, A.S.2
Musharova, O.3
Severinov, K.4
Brouns, S.J.J.5
Severin, A.J.6
Sashital, D.G.7
-
55
-
-
84995642200
-
Conformational control of Cascade interference and priming activities in CRISPR immunity
-
[55] Xue, C., Whitis, N.R., Sashital, D.G., Xue, C., Whitis, N.R., Sashital, D.G., Conformational control of Cascade interference and priming activities in CRISPR immunity. Mol. Cell 64 (2016), 826–834, 10.1016/j.molcel.2016.09.033.
-
(2016)
Mol. Cell
, vol.64
, pp. 826-834
-
-
Xue, C.1
Whitis, N.R.2
Sashital, D.G.3
Xue, C.4
Whitis, N.R.5
Sashital, D.G.6
-
56
-
-
84883803197
-
Right of admission reserved, no matter the path
-
[56] Mojica, F.J.M., Díez-Villaseñor, C., Right of admission reserved, no matter the path. Trends Microbiol. 21 (2013), 446–448, 10.1016/j.tim.2013.06.003.
-
(2013)
Trends Microbiol.
, vol.21
, pp. 446-448
-
-
Mojica, F.J.M.1
Díez-Villaseñor, C.2
-
57
-
-
84879026965
-
Protospacer recognition motifs: mixed identities and functional diversity
-
[57] Shah, S., Erdmann, S., Mojica, F., Garrett, R., Protospacer recognition motifs: mixed identities and functional diversity. RNA Biol. 10 (2013), 891–899, 10.4161/rna.23764.
-
(2013)
RNA Biol.
, vol.10
, pp. 891-899
-
-
Shah, S.1
Erdmann, S.2
Mojica, F.3
Garrett, R.4
-
58
-
-
79959963663
-
Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence
-
[58] Semenova, E., Jore, M.M., Datsenko, K.A., Semenova, A., Westra, E.R., Wanner, B., van der Oost, J., Brouns, S.J.J., Severinov, K., Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence. Proc. Natl. Acad. Sci. U. S. A. 108 (2011), 10098–10103, 10.1073/pnas.1104144108.
-
(2011)
Proc. Natl. Acad. Sci. U. S. A.
, vol.108
, pp. 10098-10103
-
-
Semenova, E.1
Jore, M.M.2
Datsenko, K.A.3
Semenova, A.4
Westra, E.R.5
Wanner, B.6
van der Oost, J.7
Brouns, S.J.J.8
Severinov, K.9
-
59
-
-
84956770932
-
DNA targeting by the type I-G and type I-A CRISPR–Cas systems of Pyrococcus furiosus
-
(gkv1140)
-
[59] Elmore, J., Deighan, T., Westpheling, J., Terns, R.M., Terns, M.P., DNA targeting by the type I-G and type I-A CRISPR–Cas systems of Pyrococcus furiosus. Nucleic Acids Res., 43, 2015, 10353–10363, 10.1093/nar/gkv1140 (gkv1140).
-
(2015)
Nucleic Acids Res.
, vol.43
, pp. 10353-10363
-
-
Elmore, J.1
Deighan, T.2
Westpheling, J.3
Terns, R.M.4
Terns, M.P.5
-
60
-
-
84874608929
-
RNA-guided editing of bacterial genomes using CRISPR–Cas systems
-
[60] Jiang, W., Bikard, D., Cox, D., Zhang, F., Marraffini, L.A., RNA-guided editing of bacterial genomes using CRISPR–Cas systems. Nat. Biotechnol. 31 (2013), 233–239, 10.1038/nbt.2508.
-
(2013)
Nat. Biotechnol.
, vol.31
, pp. 233-239
-
-
Jiang, W.1
Bikard, D.2
Cox, D.3
Zhang, F.4
Marraffini, L.A.5
-
61
-
-
84887104139
-
Orthogonal Cas9 proteins for RNA-guided gene regulation and editing
-
[61] Esvelt, K.M., Mali, P., Braff, J.L., Moosburner, M., Yaung, S.J., Church, G.M., Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat. Methods 10 (2013), 1116–1121, 10.1038/nmeth.2681.
-
(2013)
Nat. Methods
, vol.10
, pp. 1116-1121
-
-
Esvelt, K.M.1
Mali, P.2
Braff, J.L.3
Moosburner, M.4
Yaung, S.J.5
Church, G.M.6
-
62
-
-
84922322005
-
Guide RNA functional modules direct Cas9 activity and orthogonality
-
[62] Briner, A.E., Donohoue, P.D., Gomaa, A.A., Selle, K., Slorach, E.M., Nye, C.H., Haurwitz, R.E., Beisel, C.L., May, A.P., Barrangou, R., Guide RNA functional modules direct Cas9 activity and orthogonality. Mol. Cell 56 (2014), 333–339, 10.1016/j.molcel.2014.09.019.
-
(2014)
Mol. Cell
, vol.56
, pp. 333-339
-
-
Briner, A.E.1
Donohoue, P.D.2
Gomaa, A.A.3
Selle, K.4
Slorach, E.M.5
Nye, C.H.6
Haurwitz, R.E.7
Beisel, C.L.8
May, A.P.9
Barrangou, R.10
-
63
-
-
84884687531
-
Type I-E CRISPR–Cas systems discriminate target from non-target DNA through base pairing-independent PAM recognition
-
[63] Westra, E.R., Semenova, E., Datsenko, K.A., Jackson, R.N., Wiedenheft, B., Severinov, K., Brouns, S.J.J., Type I-E CRISPR–Cas systems discriminate target from non-target DNA through base pairing-independent PAM recognition. PLoS Genet., 9, 2013, e1003742, 10.1371/journal.pgen.1003742.
-
(2013)
PLoS Genet.
, vol.9
-
-
Westra, E.R.1
Semenova, E.2
Datsenko, K.A.3
Jackson, R.N.4
Wiedenheft, B.5
Severinov, K.6
Brouns, S.J.J.7
-
64
-
-
84979464834
-
Identifying and visualizing functional PAM diversity across CRISPR–Cas systems
-
[64] Leenay, R.T., Maksimchuk, K.R., Slotkowski, R.A., Agrawal, R.N., Gomaa, A.A., Briner, A.E., Barrangou, R., Beisel, C.L., Identifying and visualizing functional PAM diversity across CRISPR–Cas systems. Mol. Cell 62 (2016), 137–147, 10.1016/j.molcel.2016.02.031.
-
(2016)
Mol. Cell
, vol.62
, pp. 137-147
-
-
Leenay, R.T.1
Maksimchuk, K.R.2
Slotkowski, R.A.3
Agrawal, R.N.4
Gomaa, A.A.5
Briner, A.E.6
Barrangou, R.7
Beisel, C.L.8
-
65
-
-
84927514894
-
In vivo genome editing using Staphylococcus aureus Cas9
-
[65] Ran, F.A., Cong, L., Yan, W.X., Scott, D.A., Gootenberg, J.S., Kriz, A.J., Zetsche, B., Shalem, O., Wu, X., Makarova, K.S., Koonin, E.V., Sharp, P.A., Zhang, F., In vivo genome editing using Staphylococcus aureus Cas9. Nature 520 (2015), 186–190, 10.1038/nature14299.
-
(2015)
Nature
, vol.520
, pp. 186-190
-
-
Ran, F.A.1
Cong, L.2
Yan, W.X.3
Scott, D.A.4
Gootenberg, J.S.5
Kriz, A.J.6
Zetsche, B.7
Shalem, O.8
Wu, X.9
Makarova, K.S.10
Koonin, E.V.11
Sharp, P.A.12
Zhang, F.13
-
66
-
-
0025183708
-
Basic local alignment search tool
-
[66] Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J., Basic local alignment search tool. J. Mol. Biol. 215 (1990), 403–410, 10.1016/S0022-2836(05)80360-2.
-
(1990)
J. Mol. Biol.
, vol.215
, pp. 403-410
-
-
Altschul, S.F.1
Gish, W.2
Miller, W.3
Myers, E.W.4
Lipman, D.J.5
-
67
-
-
84879014174
-
CRISPRTarget: Bioinformatic prediction and analysis of crRNA targets
-
[67] Biswas, A., Gagnon, J.N., Brouns, S.J.J., Fineran, P.C., Brown, C.M., CRISPRTarget: Bioinformatic prediction and analysis of crRNA targets. RNA Biol. 10 (2013), 817–827, 10.4161/rna.24046.
-
(2013)
RNA Biol.
, vol.10
, pp. 817-827
-
-
Biswas, A.1
Gagnon, J.N.2
Brouns, S.J.J.3
Fineran, P.C.4
Brown, C.M.5
-
68
-
-
84975270845
-
Molecular recordings by directed CRISPR spacer acquisition
-
[68] Shipman, S.L., Shipman, S.L., Nivala, J., Macklis, J.D., Church, G.M., Molecular recordings by directed CRISPR spacer acquisition. Science, 1175, 2016, aaf1175, 10.1126/science.aaf1175.
-
(2016)
Science
, vol.1175
-
-
Shipman, S.L.1
Shipman, S.L.2
Nivala, J.3
Macklis, J.D.4
Church, G.M.5
-
69
-
-
84975678715
-
Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR–Cas system
-
[69] Zetsche, B., Gootenberg, J.S., Abudayyeh, O.O., Slaymaker, I.M., Makarova, K.S., Essletzbichler, P., Volz, S.E., Joung, J., van der Oost, J., Regev, A., Koonin, E.V., Zhang, F., Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR–Cas system. Cell 163 (2015), 759–771, 10.1016/j.cell.2015.09.038.
-
(2015)
Cell
, vol.163
, pp. 759-771
-
-
Zetsche, B.1
Gootenberg, J.S.2
Abudayyeh, O.O.3
Slaymaker, I.M.4
Makarova, K.S.5
Essletzbichler, P.6
Volz, S.E.7
Joung, J.8
van der Oost, J.9
Regev, A.10
Koonin, E.V.11
Zhang, F.12
-
70
-
-
84884155038
-
High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity
-
[70] Pattanayak, V., Lin, S., Guilinger, J.P., Ma, E., Doudna, J.A., Liu, D.R., High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat. Biotechnol. 31 (2013), 839–843, 10.1038/nbt.2673.
-
(2013)
Nat. Biotechnol.
, vol.31
, pp. 839-843
-
-
Pattanayak, V.1
Lin, S.2
Guilinger, J.P.3
Ma, E.4
Doudna, J.A.5
Liu, D.R.6
-
71
-
-
84947730555
-
Rapid characterization of CRISPR–Cas9 protospacer adjacent motif sequence elements
-
[71] Karvelis, T., Gasiunas, G., Young, J., Bigelyte, G., Silanskas, A., Cigan, M., Siksnys, V., Rapid characterization of CRISPR–Cas9 protospacer adjacent motif sequence elements. Genome Biol., 16, 2015, 253, 10.1186/s13059-015-0818-7.
-
(2015)
Genome Biol.
, vol.16
, pp. 253
-
-
Karvelis, T.1
Gasiunas, G.2
Young, J.3
Bigelyte, G.4
Silanskas, A.5
Cigan, M.6
Siksnys, V.7
-
72
-
-
84937908208
-
Engineered CRISPR–Cas9 nucleases with altered PAM specificities
-
[72] Kleinstiver, B.P., Prew, M.S., Tsai, S.Q., Topkar, V.V., Nguyen, N.T., Zheng, Z., Gonzales, A.P.W., Li, Z., Peterson, R.T., Yeh, J.-R.J., Aryee, M.J., Joung, J.K., Engineered CRISPR–Cas9 nucleases with altered PAM specificities. Nature 523 (2015), 481–485, 10.1038/nature14592.
-
(2015)
Nature
, vol.523
, pp. 481-485
-
-
Kleinstiver, B.P.1
Prew, M.S.2
Tsai, S.Q.3
Topkar, V.V.4
Nguyen, N.T.5
Zheng, Z.6
Gonzales, A.P.W.7
Li, Z.8
Peterson, R.T.9
Yeh, J.-R.J.10
Aryee, M.J.11
Joung, J.K.12
-
73
-
-
84964862130
-
The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA
-
[73] Fonfara, I., Richter, H., Bratovič, M., Le Rhun, A., Charpentier, E., The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature 532 (2016), 517–521, 10.1038/nature17945.
-
(2016)
Nature
, vol.532
, pp. 517-521
-
-
Fonfara, I.1
Richter, H.2
Bratovič, M.3
Le Rhun, A.4
Charpentier, E.5
-
74
-
-
85008601428
-
High-throughput biochemical profiling reveals Cas9 off-target binding and unbinding heterogeneity
-
[74] Boyle, E.A., Andreasson, J.O.L., Lauren, M., Sternberg, S.H., Wu, M.J., Chantal, K., Doudna, J.A., Greenleaf, W.J., High-throughput biochemical profiling reveals Cas9 off-target binding and unbinding heterogeneity. bioRxiv, 2016, 10.1101/059782.
-
(2016)
bioRxiv
-
-
Boyle, E.A.1
Andreasson, J.O.L.2
Lauren, M.3
Sternberg, S.H.4
Wu, M.J.5
Chantal, K.6
Doudna, J.A.7
Greenleaf, W.J.8
-
75
-
-
80053366291
-
Interactive metagenomic visualization in a Web browser
-
[75] Ondov, B.D., Bergman, N.H., Phillippy, A.M., Interactive metagenomic visualization in a Web browser. BMC Bioinformatics, 12, 2011, 10.1186/1471–2105–12-385.
-
(2011)
BMC Bioinformatics
, vol.12
-
-
Ondov, B.D.1
Bergman, N.H.2
Phillippy, A.M.3
-
76
-
-
84949791988
-
Broadening the targeting range of Staphylococcus aureus CRISPR–Cas9 by modifying PAM recognition
-
[76] Kleinstiver, B.P., Prew, M.S., Tsai, S.Q., Nguyen, N.T., Topkar, V.V., Zheng, Z., Joung, J.K., Broadening the targeting range of Staphylococcus aureus CRISPR–Cas9 by modifying PAM recognition. Nat. Biotechnol. 33 (2015), 1293–1298, 10.1038/nbt.3404.
-
(2015)
Nat. Biotechnol.
, vol.33
, pp. 1293-1298
-
-
Kleinstiver, B.P.1
Prew, M.S.2
Tsai, S.Q.3
Nguyen, N.T.4
Topkar, V.V.5
Zheng, Z.6
Joung, J.K.7
-
77
-
-
84962514403
-
Structural plasticity of PAM recognition by engineered variants of the RNA-guided endonuclease Cas9
-
[77] Anders, C., Bargsten, K., Jinek, M., Structural plasticity of PAM recognition by engineered variants of the RNA-guided endonuclease Cas9. Mol. Cell 61 (2016), 895–902, 10.1016/j.molcel.2016.02.020.
-
(2016)
Mol. Cell
, vol.61
, pp. 895-902
-
-
Anders, C.1
Bargsten, K.2
Jinek, M.3
-
78
-
-
84964831029
-
The crystal structure of Cpf1 in complex with CRISPR RNA
-
[78] Dong, D., Ren, K., Qiu, X., Zheng, J., Guo, M., Guan, X., Liu, H., Li, N., Zhang, B., Yang, D., Ma, C., Wang, S., Wu, D., Ma, Y., Fan, S., Wang, J., Gao, N., Huang, Z., The crystal structure of Cpf1 in complex with CRISPR RNA. Nature 532 (2016), 522–526, 10.1038/nature17944.
-
(2016)
Nature
, vol.532
, pp. 522-526
-
-
Dong, D.1
Ren, K.2
Qiu, X.3
Zheng, J.4
Guo, M.5
Guan, X.6
Liu, H.7
Li, N.8
Zhang, B.9
Yang, D.10
Ma, C.11
Wang, S.12
Wu, D.13
Ma, Y.14
Fan, S.15
Wang, J.16
Gao, N.17
Huang, Z.18
-
79
-
-
84940368054
-
Crystal structure of Staphylococcus aureus Cas9
-
[79] Nishimasu, H., Cong, L., Winston, X., Nishimasu, H., Cong, L., Yan, W.X., Ran, F.A., Zetsche, B., Li, Y., Crystal structure of Staphylococcus aureus Cas9. Cell 162 (2015), 1113–1126, 10.1016/j.cell.2015.08.007.
-
(2015)
Cell
, vol.162
, pp. 1113-1126
-
-
Nishimasu, H.1
Cong, L.2
Winston, X.3
Nishimasu, H.4
Cong, L.5
Yan, W.X.6
Ran, F.A.7
Zetsche, B.8
Li, Y.9
-
80
-
-
84907208955
-
Crystal structure of the CRISPR RNA-guided surveillance complex from Escherichia coli
-
[80] Jackson, R.N., Golden, S.M., van Erp, P.B.G., Carter, J., Westra, E.R., Brouns, S.J.J., van der Oost, J., Terwilliger, T.C., Read, R.J., Wiedenheft, B., Crystal structure of the CRISPR RNA-guided surveillance complex from Escherichia coli. Science 345 (2014), 1473–1479, 10.1126/science.1256328.
-
(2014)
Science
, vol.345
, pp. 1473-1479
-
-
Jackson, R.N.1
Golden, S.M.2
van Erp, P.B.G.3
Carter, J.4
Westra, E.R.5
Brouns, S.J.J.6
van der Oost, J.7
Terwilliger, T.C.8
Read, R.J.9
Wiedenheft, B.10
-
81
-
-
84923266604
-
GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR–Cas nucleases
-
[81] Tsai, S.Q., Zheng, Z., Nguyen, N.T., Liebers, M., Topkar, V.V., Thapar, V., Wyvekens, N., Khayter, C., Iafrate, A.J., Le, L.P., Aryee, M.J., Joung, J.K., GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR–Cas nucleases. Nat. Biotechnol. 33 (2015), 187–197, 10.1038/nbt.3117.
-
(2015)
Nat. Biotechnol.
, vol.33
, pp. 187-197
-
-
Tsai, S.Q.1
Zheng, Z.2
Nguyen, N.T.3
Liebers, M.4
Topkar, V.V.5
Thapar, V.6
Wyvekens, N.7
Khayter, C.8
Iafrate, A.J.9
Le, L.P.10
Aryee, M.J.11
Joung, J.K.12
-
82
-
-
84861639567
-
Proteins and DNA elements essential for the CRISPR adaptation process in Escherichia coli
-
[82] Yosef, I., Goren, M.G., Qimron, U., Proteins and DNA elements essential for the CRISPR adaptation process in Escherichia coli. Nucleic Acids Res. 40 (2012), 5569–5576, 10.1093/nar/gks216.
-
(2012)
Nucleic Acids Res.
, vol.40
, pp. 5569-5576
-
-
Yosef, I.1
Goren, M.G.2
Qimron, U.3
-
83
-
-
84902010986
-
Cas1–Cas2 complex formation mediates spacer acquisition during CRISPR–Cas adaptive immunity
-
[83] Nuñez, J.K., Kranzusch, P.J., Noeske, J., Wright, A.V., Davies, C.W., Doudna, J.A., Cas1–Cas2 complex formation mediates spacer acquisition during CRISPR–Cas adaptive immunity. Nat. Struct. Mol. Biol. 21 (2014), 528–534, 10.1038/nsmb.2820.
-
(2014)
Nat. Struct. Mol. Biol.
, vol.21
, pp. 528-534
-
-
Nuñez, J.K.1
Kranzusch, P.J.2
Noeske, J.3
Wright, A.V.4
Davies, C.W.5
Doudna, J.A.6
-
84
-
-
84864864464
-
Molecular memory of prior infections activates the CRISPR/Cas adaptive bacterial immunity system
-
[84] Datsenko, K.a., Pougach, K., Tikhonov, A., Wanner, B.L., Severinov, K., Semenova, E., Molecular memory of prior infections activates the CRISPR/Cas adaptive bacterial immunity system. Nat. Commun., 3, 2012, 945, 10.1038/ncomms1937.
-
(2012)
Nat. Commun.
, vol.3
, pp. 945
-
-
Datsenko, K.A.1
Pougach, K.2
Tikhonov, A.3
Wanner, B.L.4
Severinov, K.5
Semenova, E.6
-
85
-
-
84963941043
-
High-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide off-target effects
-
[85] Kleinstiver, B.P., Pattanayak, V., Prew, M.S., Tsai, S.Q., Nguyen, N.T., Zheng, Z., Keith Joung, J., High-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529 (2016), 490–495, 10.1038/nature16526.
-
(2016)
Nature
, vol.529
, pp. 490-495
-
-
Kleinstiver, B.P.1
Pattanayak, V.2
Prew, M.S.3
Tsai, S.Q.4
Nguyen, N.T.5
Zheng, Z.6
Keith Joung, J.7
-
86
-
-
84952943845
-
Rationally engineered Cas9 nucleases with improved specificity
-
[86] Slaymaker, I.M., Gao, L., Zetsche, B., Scott, D.A., Yan, W.X., Zhang, F., Rationally engineered Cas9 nucleases with improved specificity. Science 351 (2015), 84–88, 10.1126/science.aad5227.
-
(2015)
Science
, vol.351
, pp. 84-88
-
-
Slaymaker, I.M.1
Gao, L.2
Zetsche, B.3
Scott, D.A.4
Yan, W.X.5
Zhang, F.6
-
87
-
-
84946593480
-
Function of the CRISPR–Cas system of the human pathogen Clostridium difficile
-
[87] Boudry, P., Semenova, E., Monot, M., Datsenko, K.A., Lopatina, A., Sekulovic, O., Ospina-Bedoya, M., Severinov, L.-C.F.K., Dupuy, B., Soutourinaa, O., Function of the CRISPR–Cas system of the human pathogen Clostridium difficile. MBio 6 (2015), e01112–e01115, 10.1128/mBio.01112-15.Editor.
-
(2015)
MBio
, vol.6
, pp. e01112-e01115
-
-
Boudry, P.1
Semenova, E.2
Monot, M.3
Datsenko, K.A.4
Lopatina, A.5
Sekulovic, O.6
Ospina-Bedoya, M.7
Severinov, L.-C.F.K.8
Dupuy, B.9
Soutourinaa, O.10
-
88
-
-
84868143545
-
The CRISPR/cas adaptive immune system of Pseudomonas aeruginosa mediates resistance to naturally occurring and engineered phages
-
[88] Cady, K.C., Bondy-Denomy, J., Heussler, G.E., Davidson, A.R., O'Toole, G.A., The CRISPR/cas adaptive immune system of Pseudomonas aeruginosa mediates resistance to naturally occurring and engineered phages. J. Bacteriol. 194 (2012), 5728–5738, 10.1128/JB.01184-12.
-
(2012)
J. Bacteriol.
, vol.194
, pp. 5728-5738
-
-
Cady, K.C.1
Bondy-Denomy, J.2
Heussler, G.E.3
Davidson, A.R.4
O'Toole, G.A.5
-
89
-
-
2142738304
-
WebLogo: a sequence logo generator
-
[89] Crooks, G., Hon, G., Chandonia, J., Brenner, S., WebLogo: a sequence logo generator. Genome Res. 14 (2004), 1188–1190, 10.1101/gr.849004.1.
-
(2004)
Genome Res.
, vol.14
, pp. 1188-1190
-
-
Crooks, G.1
Hon, G.2
Chandonia, J.3
Brenner, S.4
|