메뉴 건너뛰기




Volumn 11, Issue , 2017, Pages 335-341

Fibroblast growth factor 21 and its novel association with oxidative stress

Author keywords

Diabetes; FGF21; Insulin resistance; Metabolic syndrome; Oxidative stress

Indexed keywords

ACTIVATING TRANSCRIPTION FACTOR 4; FIBROBLAST GROWTH FACTOR 21; MANGANESE SUPEROXIDE DISMUTASE; MITOGEN ACTIVATED PROTEIN KINASE; SYNAPTOPHYSIN; TRANSCRIPTION FACTOR NRF2; ATF4 PROTEIN, HUMAN; FIBROBLAST GROWTH FACTOR; NFE2L2 PROTEIN, HUMAN; NUCLEAR PROTEIN; TATA BINDING PROTEIN RELATED FACTOR; TBPL2 PROTEIN, HUMAN;

EID: 85007332132     PISSN: 22132317     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.redox.2016.12.024     Document Type: Review
Times cited : (115)

References (98)
  • 2
    • 0034697846 scopus 로고    scopus 로고
    • Identification of a novel FGF, FGF-21, preferentially expressed in the liver
    • [2] Nishimura, T., Nakatake, Y., Konishi, M., Itoh, N., Identification of a novel FGF, FGF-21, preferentially expressed in the liver. Biochim Biophys. Acta 1492 (2000), 203–206.
    • (2000) Biochim Biophys. Acta , vol.1492 , pp. 203-206
    • Nishimura, T.1    Nakatake, Y.2    Konishi, M.3    Itoh, N.4
  • 3
    • 84874933239 scopus 로고    scopus 로고
    • FGF21 suppresses hepatic glucose production through the activation of atypical protein kinase Ci/λ
    • [3] Kong, L.J., Feng, W., Wright, M., Chen, Y., Dallas-Yang, Q., Zhou, Y.P., Berger, J.P., FGF21 suppresses hepatic glucose production through the activation of atypical protein kinase Ci/λ. Eur. J. Pharmacol. 702 (2013), 302–308, 10.1016/j.ejphar.2012.11.065.
    • (2013) Eur. J. Pharmacol. , vol.702 , pp. 302-308
    • Kong, L.J.1    Feng, W.2    Wright, M.3    Chen, Y.4    Dallas-Yang, Q.5    Zhou, Y.P.6    Berger, J.P.7
  • 4
    • 79953886306 scopus 로고    scopus 로고
    • Thermogenic activation induces FGF21 expression and release in brown adipose tissue
    • [4] Hondares, E., Iglesias, R., Giralt, A., Gonzalez, F.J., Giralt, M., Mampel, T., Villarroya, F., Thermogenic activation induces FGF21 expression and release in brown adipose tissue. J. Biol. Chem. 286 (2011), 12983–12990, 10.1074/jbc.M110.215889.
    • (2011) J. Biol. Chem. , vol.286 , pp. 12983-12990
    • Hondares, E.1    Iglesias, R.2    Giralt, A.3    Gonzalez, F.J.4    Giralt, M.5    Mampel, T.6    Villarroya, F.7
  • 5
    • 33750587755 scopus 로고    scopus 로고
    • Fibroblast growth factor-21 improves pancreatic beta-cell function and survival by activation of extracellular signal-regulated kinase 1/2 and Akt signaling pathways
    • [5] Wente, W., Efanov, A.M., Brenner, M., Kharitonenkov, A., Köster, A., Sandusky, G.E., Sewing, S., Treinies, I., Zitzer, H., Gromada, J., Fibroblast growth factor-21 improves pancreatic beta-cell function and survival by activation of extracellular signal-regulated kinase 1/2 and Akt signaling pathways. Diabetes 55 (2006), 2470–2478, 10.2337/db05-1435.
    • (2006) Diabetes , vol.55 , pp. 2470-2478
    • Wente, W.1    Efanov, A.M.2    Brenner, M.3    Kharitonenkov, A.4    Köster, A.5    Sandusky, G.E.6    Sewing, S.7    Treinies, I.8    Zitzer, H.9    Gromada, J.10
  • 6
    • 84865645965 scopus 로고    scopus 로고
    • Secretomics for skeletal muscle cells: a discovery of novel regulators?
    • [6] Yoon, J.H., Kim, J., Song, P., Lee, T.G., Suh, P.-G., Ryu, S.H., Secretomics for skeletal muscle cells: a discovery of novel regulators?. Adv. Biol. Regul. 52 (2012), 340–350, 10.1016/j.jbior.2012.03.001.
    • (2012) Adv. Biol. Regul. , vol.52 , pp. 340-350
    • Yoon, J.H.1    Kim, J.2    Song, P.3    Lee, T.G.4    Suh, P.-G.5    Ryu, S.H.6
  • 9
    • 84906928425 scopus 로고    scopus 로고
    • The Roles of FGF21 in Stress Adaptation and the Treatment of Metabolic Diseases
    • [9] K.H. Kim, M. Lee, FGF21 as a Stress Hormone : The Roles of FGF21 in Stress Adaptation and the Treatment of Metabolic Diseases, 2014, pp. 245–251.
    • (2014) FGF21 as a Stress Hormone , pp. 245-251
    • Kim, K.H.1    Lee, M.2
  • 10
    • 79953217026 scopus 로고    scopus 로고
    • Fibroblast growth factor 21 is a metabolic regulator that plays a role in the adaptation to ketosis
    • [10] Domouzoglou, E.M., Maratos-Flier, E., Fibroblast growth factor 21 is a metabolic regulator that plays a role in the adaptation to ketosis. Am. J. Clin. Nutr. 93 (2011), 901S–905S, 10.3945/ajcn.110.001941.
    • (2011) Am. J. Clin. Nutr. , vol.93 , pp. 901S-905S
    • Domouzoglou, E.M.1    Maratos-Flier, E.2
  • 13
    • 84862958488 scopus 로고    scopus 로고
    • Growth hormone stimulates transcription of the fibroblast growth factor 21 gene in the liver through the signal transducer and activator of transcription 5
    • [13] Yu, J., Zhao, L., Wang, A., Eleswarapu, S., Ge, X., Chen, D., Jiang, H., Growth hormone stimulates transcription of the fibroblast growth factor 21 gene in the liver through the signal transducer and activator of transcription 5. Endocrinology 153 (2012), 750–758, 10.1210/en.2011-1591.
    • (2012) Endocrinology , vol.153 , pp. 750-758
    • Yu, J.1    Zhao, L.2    Wang, A.3    Eleswarapu, S.4    Ge, X.5    Chen, D.6    Jiang, H.7
  • 17
    • 75149195216 scopus 로고    scopus 로고
    • Fibroblast growth factor-21 may mediate growth hormone resistance in anorexia nervosa
    • [17] Fazeli, P.K., Misra, M., Goldstein, M., Miller, K.K., Klibanski, A., Fibroblast growth factor-21 may mediate growth hormone resistance in anorexia nervosa. J. Clin. Endocrinol. Metab. 95 (2010), 369–374, 10.1210/jc.2009-1730.
    • (2010) J. Clin. Endocrinol. Metab. , vol.95 , pp. 369-374
    • Fazeli, P.K.1    Misra, M.2    Goldstein, M.3    Miller, K.K.4    Klibanski, A.5
  • 19
    • 84943740629 scopus 로고    scopus 로고
    • FGF21 Response to Critical Illness: effect of Blood Glucose Control and Relation With Cellular Stress and Survival
    • [19] Thiessen, S.E., Vanhorebeek, I., Derese, I., Gunst, J., Van den Berghe, G., FGF21 Response to Critical Illness: effect of Blood Glucose Control and Relation With Cellular Stress and Survival. J. Clin. Endocrinol. Metab. 100 (2015), E1319–E1327, 10.1210/jc.2015-2700.
    • (2015) J. Clin. Endocrinol. Metab. , vol.100 , pp. E1319-E1327
    • Thiessen, S.E.1    Vanhorebeek, I.2    Derese, I.3    Gunst, J.4    Van den Berghe, G.5
  • 22
    • 79954525448 scopus 로고    scopus 로고
    • Circulating FGF21 levels are progressively increased from the early to end stages of chronic kidney diseases and are associated with renal function in Chinese
    • [22] Lin, Z., Zhou, Z., Liu, Y., Gong, Q., Yan, X., Xiao, J., Wang, X., Lin, S., Feng, W., Li, X., Circulating FGF21 levels are progressively increased from the early to end stages of chronic kidney diseases and are associated with renal function in Chinese. PLoS One, 6, 2011, 10.1371/journal.pone.0018398.
    • (2011) PLoS One , vol.6
    • Lin, Z.1    Zhou, Z.2    Liu, Y.3    Gong, Q.4    Yan, X.5    Xiao, J.6    Wang, X.7    Lin, S.8    Feng, W.9    Li, X.10
  • 24
    • 84879682766 scopus 로고    scopus 로고
    • Fibroblast growth factor 21: a novel biomarker for human muscle-manifesting mitochondrial disorders
    • [24] Suomalainen, A., Fibroblast growth factor 21: a novel biomarker for human muscle-manifesting mitochondrial disorders. Expert Opin. Med. Diagn. 7 (2013), 313–317, 10.1517/17530059.2013.812070.
    • (2013) Expert Opin. Med. Diagn. , vol.7 , pp. 313-317
    • Suomalainen, A.1
  • 25
    • 84874664386 scopus 로고    scopus 로고
    • Fibroblast growth factor 21 is induced by endoplasmic reticulum stress
    • [25] Schaap, F.G., Kremer, A.E., Lamers, W.H., Jansen, P.L.M., Gaemers, I.C., Fibroblast growth factor 21 is induced by endoplasmic reticulum stress. Biochimie 95 (2013), 692–699, 10.1016/j.biochi.2012.10.019.
    • (2013) Biochimie , vol.95 , pp. 692-699
    • Schaap, F.G.1    Kremer, A.E.2    Lamers, W.H.3    Jansen, P.L.M.4    Gaemers, I.C.5
  • 27
    • 85007351390 scopus 로고    scopus 로고
    • Clinical Measures of the Balance, ANTIOXIDANTS REDOX Signal
    • [27] Liebert, M.A., Jones, D.P., Clinical Measures of the Balance, ANTIOXIDANTS REDOX Signal., 8(8), 2006, 1–16, 10.1089/ars.2006.8.1865.
    • (2006) , vol.8 , Issue.8 , pp. 1-16
    • Liebert, M.A.1    Jones, D.P.2
  • 28
    • 84920903716 scopus 로고    scopus 로고
    • Oxidative stress: a concept in redox biology and medicine
    • [28] Sies, H., Oxidative stress: a concept in redox biology and medicine. Redox Biol. 4 (2015), 180–183, 10.1016/j.redox.2015.01.002.
    • (2015) Redox Biol. , vol.4 , pp. 180-183
    • Sies, H.1
  • 29
    • 0032786631 scopus 로고    scopus 로고
    • Reactive oxygen species: the unavoidable environmental insult?
    • [29] Gracy, R., Talent, J., Kong, Y., Conrad, C., Reactive oxygen species: the unavoidable environmental insult?. Mutat. Res. Mol. Mech. Mutagen. 428 (1999), 17–22, 10.1016/S1383-5742(99)00027-7.
    • (1999) Mutat. Res. Mol. Mech. Mutagen. , vol.428 , pp. 17-22
    • Gracy, R.1    Talent, J.2    Kong, Y.3    Conrad, C.4
  • 30
    • 84868007565 scopus 로고    scopus 로고
    • Physiological roles of mitochondrial reactive oxygen species
    • [30] Sena, L.A., Chandel, N.S., Physiological roles of mitochondrial reactive oxygen species. Mol. Cell. 48 (2012), 158–166, 10.1016/j.molcel.2012.09.025.
    • (2012) Mol. Cell. , vol.48 , pp. 158-166
    • Sena, L.A.1    Chandel, N.S.2
  • 31
    • 0036867895 scopus 로고    scopus 로고
    • Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification
    • (accessed 24.05.15)
    • [31] Kohen, R., Nyska, A., Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol. Pathol. 30 (2002), 620–650 〈http://www.ncbi.nlm.nih.gov/pubmed/12512863〉 (accessed 24.05.15).
    • (2002) Toxicol. Pathol. , vol.30 , pp. 620-650
    • Kohen, R.1    Nyska, A.2
  • 32
    • 0036591855 scopus 로고    scopus 로고
    • Free radical-induced damage to DNA: mechanisms and measurement
    • (accessed 15.10.15)
    • [32] Dizdaroglu, M., Jaruga, P., Birincioglu, M., Rodriguez, H., Free radical-induced damage to DNA: mechanisms and measurement. Free Radic. Biol. Med. 32, 2002, 1102–1115 〈http://www.ncbi.nlm.nih.gov/pubmed/12031895〉 (accessed 15.10.15).
    • (2002) Free Radic. Biol. Med. 32 , pp. 1102-1115
    • Dizdaroglu, M.1    Jaruga, P.2    Birincioglu, M.3    Rodriguez, H.4
  • 34
    • 78649883767 scopus 로고    scopus 로고
    • Fibroblast growth factor 21 as a possible endogenous factor inhibits apoptosis in cardiac endothelial cells
    • [34] Lü, Y., Liu, J.H., Zhang, L.K., Du, J., Zeng, X.J., Hao, G., Huang, J., Zhao, D.H., Wang, G.Z., Zhang, Y.C., Fibroblast growth factor 21 as a possible endogenous factor inhibits apoptosis in cardiac endothelial cells. Chin. Med. J. (Engl.). 123 (2010), 3417–3421, 10.3760/cma.j.issn.0366-6999.2010.23.008.
    • (2010) Chin. Med. J. (Engl.). , vol.123 , pp. 3417-3421
    • Lü, Y.1    Liu, J.H.2    Zhang, L.K.3    Du, J.4    Zeng, X.J.5    Hao, G.6    Huang, J.7    Zhao, D.H.8    Wang, G.Z.9    Zhang, Y.C.10
  • 35
    • 84903795970 scopus 로고    scopus 로고
    • Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease
    • [35] Cao, S.S., Kaufman, R.J., Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease. Antioxid. Redox Signal. 21 (2014), 396–413, 10.1089/ars.2014.5851.
    • (2014) Antioxid. Redox Signal. , vol.21 , pp. 396-413
    • Cao, S.S.1    Kaufman, R.J.2
  • 37
    • 77950343252 scopus 로고    scopus 로고
    • Endoplasmic reticulum stress and the inflammatory basis of metabolic disease
    • [37] Hotamisligil, G.S., Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell 140 (2010), 900–917, 10.1016/j.cell.2010.02.034.
    • (2010) Cell , vol.140 , pp. 900-917
    • Hotamisligil, G.S.1
  • 38
    • 84855966721 scopus 로고    scopus 로고
    • Role of endoplasmic reticulum stress in metabolic disease and other disorders
    • [38] Ozcan, L., Tabas, I., Role of endoplasmic reticulum stress in metabolic disease and other disorders. Annu. Rev. Med. 63 (2012), 317–328, 10.1146/annurev-med-043010-144749.
    • (2012) Annu. Rev. Med. , vol.63 , pp. 317-328
    • Ozcan, L.1    Tabas, I.2
  • 39
    • 34250899722 scopus 로고    scopus 로고
    • Signal integration in the endoplasmic reticulum unfolded protein response
    • [39] Ron, D., Walter, P., Signal integration in the endoplasmic reticulum unfolded protein response. Nat. Rev. Mol. Cell Biol. 8 (2007), 519–529, 10.1038/nrm2199.
    • (2007) Nat. Rev. Mol. Cell Biol. , vol.8 , pp. 519-529
    • Ron, D.1    Walter, P.2
  • 40
    • 82255173966 scopus 로고    scopus 로고
    • The unfolded protein response: from stress pathway to homeostatic regulation
    • [40] Walter, P., Ron, D., The unfolded protein response: from stress pathway to homeostatic regulation. Science 334 (2011), 1081–1086, 10.1126/science.1209038.
    • (2011) Science , vol.334 , pp. 1081-1086
    • Walter, P.1    Ron, D.2
  • 41
    • 84856111924 scopus 로고    scopus 로고
    • The unfolded protein response: controlling cell fate decisions under ER stress and beyond
    • [41] Hetz, C., The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat. Rev. Mol. Cell Biol. 13 (2012), 89–102, 10.1038/nrm3270.
    • (2012) Nat. Rev. Mol. Cell Biol. , vol.13 , pp. 89-102
    • Hetz, C.1
  • 42
    • 80054026314 scopus 로고    scopus 로고
    • A review of the mammalian unfoded protein response
    • [42] Chakrabarti, A., Chen, A.W., Varner, J.D., A review of the mammalian unfoded protein response. Biotechnol. Bioeng. 108 (2012), 2777–2793, 10.1002/bit.23282.A.
    • (2012) Biotechnol. Bioeng. , vol.108 , pp. 2777-2793
    • Chakrabarti, A.1    Chen, A.W.2    Varner, J.D.3
  • 43
    • 0142059951 scopus 로고    scopus 로고
    • XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response
    • (accessed 06.01.16)
    • [43] Lee, A.-H., Iwakoshi, N.N., Glimcher, L.H., XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol. Cell. Biol. 23 (2003), 7448–7459 〈http://www.ncbi.nlm.nih.gov/pubmed/14559994〉 (accessed 06.01.16).
    • (2003) Mol. Cell. Biol. , vol.23 , pp. 7448-7459
    • Lee, A.-H.1    Iwakoshi, N.N.2    Glimcher, L.H.3
  • 44
    • 84947087353 scopus 로고    scopus 로고
    • IRE1α-XBP1 is a novel branch in the transcriptional regulation of Ucp1 in brown adipocytes
    • [44] Asada, R., Kanemoto, S., Matsuhisa, K., Hino, K., Cui, M., Cui, X., Kaneko, M., Imaizumi, K., IRE1α-XBP1 is a novel branch in the transcriptional regulation of Ucp1 in brown adipocytes. Sci. Rep., 5, 2015, 16580, 10.1038/srep16580.
    • (2015) Sci. Rep. , vol.5 , pp. 16580
    • Asada, R.1    Kanemoto, S.2    Matsuhisa, K.3    Hino, K.4    Cui, M.5    Cui, X.6    Kaneko, M.7    Imaizumi, K.8
  • 46
    • 79952264011 scopus 로고    scopus 로고
    • Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress
    • [46] Tabas, I., Ron, D., Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat. Cell Biol. 13 (2011), 184–190, 10.1038/ncb0311-184.
    • (2011) Nat. Cell Biol. , vol.13 , pp. 184-190
    • Tabas, I.1    Ron, D.2
  • 47
    • 84938973534 scopus 로고    scopus 로고
    • Imaging of single cell responses to ER stress indicates that the relative dynamics of IRE1/XBP1 and PERK/ATF4 signalling rather than a switch between signalling branches determine cell survival TL - 22
    • (VN-r)
    • [47] Walter, F., Schmid, J., Düssmann, H., Concannon, C.G., Prehn, J.H.M., Imaging of single cell responses to ER stress indicates that the relative dynamics of IRE1/XBP1 and PERK/ATF4 signalling rather than a switch between signalling branches determine cell survival TL - 22. (VN-r) Cell Death Differ., 22, 2015, 10.1038/cdd.2014.241.
    • (2015) Cell Death Differ. , vol.22
    • Walter, F.1    Schmid, J.2    Düssmann, H.3    Concannon, C.G.4    Prehn, J.H.M.5
  • 48
    • 0033590451 scopus 로고    scopus 로고
    • Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase
    • [48] Harding, H.P., Zhang, Y., Ron, D., Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397 (1999), 271–274, 10.1038/16729.
    • (1999) Nature , vol.397 , pp. 271-274
    • Harding, H.P.1    Zhang, Y.2    Ron, D.3
  • 49
    • 0031755020 scopus 로고    scopus 로고
    • Identification and characterization of pancreatic eukaryotic initiation factor 2 alpha-subunit kinase, PEK, involved in translational control
    • (accessed 09.12.15)
    • [49] Shi, Y., Vattem, K.M., Sood, R., An, J., Liang, J., Stramm, L., Wek, R.C., Identification and characterization of pancreatic eukaryotic initiation factor 2 alpha-subunit kinase, PEK, involved in translational control. Mol. Cell. Biol. 18 (1998), 7499–7509 〈http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=109330&tool=pmcentrez&rendertype=abstract〉 (accessed 09.12.15).
    • (1998) Mol. Cell. Biol. , vol.18 , pp. 7499-7509
    • Shi, Y.1    Vattem, K.M.2    Sood, R.3    An, J.4    Liang, J.5    Stramm, L.6    Wek, R.C.7
  • 51
    • 79953288480 scopus 로고    scopus 로고
    • Selective inhibition of a regulatory subunit of protein phosphatase 1 restores proteostasis
    • [51] Tsaytler, P., Harding, H.P., Ron, D., Bertolotti, A., Selective inhibition of a regulatory subunit of protein phosphatase 1 restores proteostasis. Science 332 (2011), 91–94, 10.1126/science.1201396.
    • (2011) Science , vol.332 , pp. 91-94
    • Tsaytler, P.1    Harding, H.P.2    Ron, D.3    Bertolotti, A.4
  • 52
    • 60549114848 scopus 로고    scopus 로고
    • Ppp1r15 gene knockout reveals an essential role for translation initiation factor 2 alpha (eIF2alpha) dephosphorylation in mammalian development
    • [52] Harding, H.P., Zhang, Y., Scheuner, D., Chen, J.-J., Kaufman, R.J., Ron, D., Ppp1r15 gene knockout reveals an essential role for translation initiation factor 2 alpha (eIF2alpha) dephosphorylation in mammalian development. Proc. Natl. Acad. Sci. USA 106 (2009), 1832–1837, 10.1073/pnas.0809632106.
    • (2009) Proc. Natl. Acad. Sci. USA , vol.106 , pp. 1832-1837
    • Harding, H.P.1    Zhang, Y.2    Scheuner, D.3    Chen, J.-J.4    Kaufman, R.J.5    Ron, D.6
  • 53
    • 84976878488 scopus 로고    scopus 로고
    • Specificity of stress-responsive transcription factors Nrf2, ATF4, and AP-1
    • [53] Rössler, O.G., Thiel, G., Specificity of stress-responsive transcription factors Nrf2, ATF4, and AP-1. J. Cell. Biochem. 118 (2017), 127–140, 10.1002/jcb.25619.
    • (2017) J. Cell. Biochem. , vol.118 , pp. 127-140
    • Rössler, O.G.1    Thiel, G.2
  • 54
    • 84925491637 scopus 로고    scopus 로고
    • Endoplasmic reticulum stress induces up-regulation of hepatic β-Klotho expression through ATF4 signaling pathway
    • [54] Dong, K., Li, H., Zhang, M., Jiang, S., Chen, S., Zhou, J., Dai, Z., Fang, Q., Jia, W., Endoplasmic reticulum stress induces up-regulation of hepatic β-Klotho expression through ATF4 signaling pathway. Biochem. Biophys. Res. Commun. 459 (2015), 300–305, 10.1016/j.bbrc.2015.02.104.
    • (2015) Biochem. Biophys. Res. Commun. , vol.459 , pp. 300-305
    • Dong, K.1    Li, H.2    Zhang, M.3    Jiang, S.4    Chen, S.5    Zhou, J.6    Dai, Z.7    Fang, Q.8    Jia, W.9
  • 55
    • 0035947778 scopus 로고    scopus 로고
    • Feedback inhibition of the unfolded protein response by GADD34-mediated dephosphorylation of eIF2alpha
    • (accessed 11.09.15)
    • [55] Novoa, I., Zeng, H., Harding, H.P., Ron, D., Feedback inhibition of the unfolded protein response by GADD34-mediated dephosphorylation of eIF2alpha. J. Cell Biol. 153 (2001), 1011–1022 〈http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2174339&tool=pmcentrez&rendertype=abstract〉 (accessed 11.09.15).
    • (2001) J. Cell Biol. , vol.153 , pp. 1011-1022
    • Novoa, I.1    Zeng, H.2    Harding, H.P.3    Ron, D.4
  • 61
    • 84893132156 scopus 로고    scopus 로고
    • Nrf2 protects pancreatic β-Cells from oxidative and nitrosative stress in diabetic model mice
    • [61] Yagishita, Y., Fukutomi, T., Sugawara, A., Kawamura, H., Takahashi, T., Pi, J., Uruno, A., Yamamoto, M., Nrf2 protects pancreatic β-Cells from oxidative and nitrosative stress in diabetic model mice. Diabetes 63 (2013), 1–48, 10.2337/db13-0909.
    • (2013) Diabetes , vol.63 , pp. 1-48
    • Yagishita, Y.1    Fukutomi, T.2    Sugawara, A.3    Kawamura, H.4    Takahashi, T.5    Pi, J.6    Uruno, A.7    Yamamoto, M.8
  • 63
    • 42149196050 scopus 로고    scopus 로고
    • Physiological significance of reactive cysteine residues of Keap1 in determining Nrf2 activity
    • [63] Yamamoto, T., Suzuki, T., Kobayashi, A., Wakabayashi, J., Maher, J., Motohashi, H., Yamamoto, M., Physiological significance of reactive cysteine residues of Keap1 in determining Nrf2 activity. Mol. Cell. Biol. 28 (2008), 2758–2770, 10.1128/MCB.01704-07.
    • (2008) Mol. Cell. Biol. , vol.28 , pp. 2758-2770
    • Yamamoto, T.1    Suzuki, T.2    Kobayashi, A.3    Wakabayashi, J.4    Maher, J.5    Motohashi, H.6    Yamamoto, M.7
  • 66
    • 80051545287 scopus 로고    scopus 로고
    • The Keap1-Nrf2 system as an in vivo sensor for electrophiles.
    • [66] Uruno, A., Motohashi, H., The Keap1-Nrf2 system as an in vivo sensor for electrophiles. Nitric Oxide Biol. Chem. 25 (2011), 153–160, 10.1016/j.niox.2011.02.007.
    • (2011) Nitric Oxide Biol. Chem. , vol.25 , pp. 153-160
    • Uruno, A.1    Motohashi, H.2
  • 68
    • 0032953192 scopus 로고    scopus 로고
    • Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain
    • [68] Itoh, K., Wakabayashi, N., Katoh, Y., Ishii, T., Igarashi, K., Engel, J.D., Yamamoto, M., Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev. 13 (1999), 76–86, 10.1101/gad.13.1.76.
    • (1999) Genes Dev. , vol.13 , pp. 76-86
    • Itoh, K.1    Wakabayashi, N.2    Katoh, Y.3    Ishii, T.4    Igarashi, K.5    Engel, J.D.6    Yamamoto, M.7
  • 70
    • 84855415247 scopus 로고    scopus 로고
    • Thioredoxin binding protein (TBP)-2/Txnip and α-arrestin proteins in cancer and diabetes mellitus
    • [70] Masutani, H., Yoshihara, E., Masaki, S., Chen, Z., Yodoi, J., Thioredoxin binding protein (TBP)-2/Txnip and α-arrestin proteins in cancer and diabetes mellitus. J. Clin. Biochem. Nutr. 50 (2012), 23–34, 10.3164/jcbn.11-36SR.
    • (2012) J. Clin. Biochem. Nutr. , vol.50 , pp. 23-34
    • Masutani, H.1    Yoshihara, E.2    Masaki, S.3    Chen, Z.4    Yodoi, J.5
  • 71
    • 17744367054 scopus 로고    scopus 로고
    • Thioredoxin-interacting protein is stimulated by glucose through a carbohydrate response element and induces beta-cell apoptosis
    • [71] Minn, A.H., Hafele, C., Shalev, A., Thioredoxin-interacting protein is stimulated by glucose through a carbohydrate response element and induces beta-cell apoptosis. Endocrinology 146 (2005), 2397–2405, 10.1210/en.2004-1378.
    • (2005) Endocrinology , vol.146 , pp. 2397-2405
    • Minn, A.H.1    Hafele, C.2    Shalev, A.3
  • 72
    • 67649641767 scopus 로고    scopus 로고
    • Thioredoxin binding protein-2/thioredoxin-interacting protein is a critical regulator of insulin secretion and peroxisome proliferator-activated receptor function
    • [72] Oka, S., Yoshihara, E., Bizen-Abe, A., Liu, W., Watanabe, M., Yodoi, J., Masutani, H., Thioredoxin binding protein-2/thioredoxin-interacting protein is a critical regulator of insulin secretion and peroxisome proliferator-activated receptor function. Endocrinology 150 (2009), 1225–1234, 10.1210/en.2008-0646.
    • (2009) Endocrinology , vol.150 , pp. 1225-1234
    • Oka, S.1    Yoshihara, E.2    Bizen-Abe, A.3    Liu, W.4    Watanabe, M.5    Yodoi, J.6    Masutani, H.7
  • 73
    • 37649005234 scopus 로고    scopus 로고
    • Autophagy in the pathogenesis of disease
    • [73] Levine, B., Kroemer, G., Autophagy in the pathogenesis of disease. Cell 132 (2008), 27–42, 10.1016/j.cell.2007.12.018.
    • (2008) Cell , vol.132 , pp. 27-42
    • Levine, B.1    Kroemer, G.2
  • 75
    • 77956400005 scopus 로고    scopus 로고
    • Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance
    • [75] Yang, L., Li, P., Fu, S., Calay, E.S., Hotamisligil, G.S., Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metab. 11 (2010), 467–478, 10.1016/j.cmet.2010.04.005.
    • (2010) Cell Metab. , vol.11 , pp. 467-478
    • Yang, L.1    Li, P.2    Fu, S.3    Calay, E.S.4    Hotamisligil, G.S.5
  • 76
    • 0024237258 scopus 로고
    • Rates and tissue sites of non-insulin- and insulin-mediated glucose uptake in humans
    • (accessed 18.01.16)
    • [76] Baron, A.D., Brechtel, G., Wallace, P., Edelman, S.V., Rates and tissue sites of non-insulin- and insulin-mediated glucose uptake in humans. Am. J. Physiol. 255, 1988 〈http://www.ncbi.nlm.nih.gov/pubmed/3059816〉 (accessed 18.01.16).
    • (1988) Am. J. Physiol. 255
    • Baron, A.D.1    Brechtel, G.2    Wallace, P.3    Edelman, S.V.4
  • 79
    • 84858311217 scopus 로고    scopus 로고
    • Activating transcription factor 4-dependent induction of FGF21 during amino acid deprivation
    • [79] De Sousa-Coelho, A.L., Marrero, P.F., Haro, D., Activating transcription factor 4-dependent induction of FGF21 during amino acid deprivation. Biochem. J. 443 (2012), 165–171, 10.1042/BJ20111748.
    • (2012) Biochem. J. , vol.443 , pp. 165-171
    • De Sousa-Coelho, A.L.1    Marrero, P.F.2    Haro, D.3
  • 81
    • 84861571519 scopus 로고    scopus 로고
    • Association between serum fibroblast growth factor 21 and diabetic nephropathy
    • [81] Jian, W.-X., Peng, W.-H., Jin, J., Chen, X.-R., Fang, W.-J., Wang, W.-X., Qin, L., Dong, Y., Su, Q., Association between serum fibroblast growth factor 21 and diabetic nephropathy. Metabolism 61 (2012), 853–859, 10.1016/j.metabol.2011.10.012.
    • (2012) Metabolism , vol.61 , pp. 853-859
    • Jian, W.-X.1    Peng, W.-H.2    Jin, J.3    Chen, X.-R.4    Fang, W.-J.5    Wang, W.-X.6    Qin, L.7    Dong, Y.8    Su, Q.9
  • 83
    • 84891947508 scopus 로고    scopus 로고
    • Attenuation of hyperlipidemia- and diabetes-induced early-stage apoptosis and late-stage renal dysfunction via administration of fibroblast growth factor-21 is associated with suppression of renal Inflammation
    • [83] Zhang, C., Shao, M., Yang, H., Chen, L., Yu, L., Cong, W., Tian, H., Zhang, F., Cheng, P., Jin, L., Tan, Y., Li, X., Cai, L., Lu, X., Attenuation of hyperlipidemia- and diabetes-induced early-stage apoptosis and late-stage renal dysfunction via administration of fibroblast growth factor-21 is associated with suppression of renal Inflammation. PLoS One 8 (2013), 1–11, 10.1371/journal.pone.0082275.
    • (2013) PLoS One , vol.8 , pp. 1-11
    • Zhang, C.1    Shao, M.2    Yang, H.3    Chen, L.4    Yu, L.5    Cong, W.6    Tian, H.7    Zhang, F.8    Cheng, P.9    Jin, L.10    Tan, Y.11    Li, X.12    Cai, L.13    Lu, X.14
  • 84
    • 84935062734 scopus 로고    scopus 로고
    • FGF21 as a mediator of adaptive responses to stress and metabolic benefits of anti-diabetic drugs
    • [84] Kim, K.H., Lee, M.S., FGF21 as a mediator of adaptive responses to stress and metabolic benefits of anti-diabetic drugs. J. Endocrinol. 226 (2015), R1–R16, 10.1530/JOE-15-0160.
    • (2015) J. Endocrinol. , vol.226 , pp. R1-R16
    • Kim, K.H.1    Lee, M.S.2
  • 85
    • 77954933558 scopus 로고    scopus 로고
    • Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state
    • [85] Foretz, M., Hébrard, S., Leclerc, J., Zarrinpashneh, E., Soty, M., Mithieux, G., Sakamoto, K., Andreelli, F., Viollet, B., Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. J. Clin. Invest. 120 (2010), 2355–2369, 10.1172/JCI40671.
    • (2010) J. Clin. Invest. , vol.120 , pp. 2355-2369
    • Foretz, M.1    Hébrard, S.2    Leclerc, J.3    Zarrinpashneh, E.4    Soty, M.5    Mithieux, G.6    Sakamoto, K.7    Andreelli, F.8    Viollet, B.9
  • 86
    • 65549136655 scopus 로고    scopus 로고
    • Metformin and insulin suppress hepatic gluconeogenesis through phosphorylation of CREB binding protein
    • [86] He, L., Sabet, A., Djedjos, S., Miller, R., Sun, X., Hussain, M.A., Radovick, S., Wondisford, F.E., Metformin and insulin suppress hepatic gluconeogenesis through phosphorylation of CREB binding protein. Cell 137 (2009), 635–646, 10.1016/j.cell.2009.03.016.
    • (2009) Cell , vol.137 , pp. 635-646
    • He, L.1    Sabet, A.2    Djedjos, S.3    Miller, R.4    Sun, X.5    Hussain, M.A.6    Radovick, S.7    Wondisford, F.E.8
  • 87
    • 84893058002 scopus 로고    scopus 로고
    • Metformin enhances glucagon-like peptide 1 via cooperation between insulin and Wnt signaling
    • [87] Kim, M.-H., Jee, J.-H., Park, S., Lee, M.-S., Kim, K.-W., Lee, M.-K., Metformin enhances glucagon-like peptide 1 via cooperation between insulin and Wnt signaling. J. Endocrinol. 220 (2014), 117–128, 10.1530/JOE-13-0381.
    • (2014) J. Endocrinol. , vol.220 , pp. 117-128
    • Kim, M.-H.1    Jee, J.-H.2    Park, S.3    Lee, M.-S.4    Kim, K.-W.5    Lee, M.-K.6
  • 88
    • 84885383560 scopus 로고    scopus 로고
    • Metformin-induced inhibition of the mitochondrial respiratory chain increases FGF21 expression via ATF4 activation
    • [88] Kim, K.H., Jeong, Y.T., Kim, S.H., Jung, H.S., Park, K.S., Lee, H.-Y., Lee, M.-S., Metformin-induced inhibition of the mitochondrial respiratory chain increases FGF21 expression via ATF4 activation. Biochem. Biophys. Res. Commun. 440 (2013), 76–81, 10.1016/j.bbrc.2013.09.026.
    • (2013) Biochem. Biophys. Res. Commun. , vol.440 , pp. 76-81
    • Kim, K.H.1    Jeong, Y.T.2    Kim, S.H.3    Jung, H.S.4    Park, K.S.5    Lee, H.-Y.6    Lee, M.-S.7
  • 89
    • 77954933558 scopus 로고    scopus 로고
    • Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state
    • [89] Foretz, M., Hébrard, S., Leclerc, J., Zarrinpashneh, E., Soty, M., Mithieux, G., Sakamoto, K., Andreelli, F., Viollet, B., Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. J. Clin. Invest. 120 (2010), 2355–2369, 10.1172/JCI40671.
    • (2010) J. Clin. Invest. , vol.120 , pp. 2355-2369
    • Foretz, M.1    Hébrard, S.2    Leclerc, J.3    Zarrinpashneh, E.4    Soty, M.5    Mithieux, G.6    Sakamoto, K.7    Andreelli, F.8    Viollet, B.9
  • 90
    • 77949508276 scopus 로고    scopus 로고
    • Diminished diet-induced hyperglycemia and dyslipidemia and enhanced expression of PPARa?? And FGF21 in mice with hepatic ablation of brain-derived neurotropic factor
    • [90] Teillon, S., Calderon, G. a., Rios, M., Diminished diet-induced hyperglycemia and dyslipidemia and enhanced expression of PPARa?? And FGF21 in mice with hepatic ablation of brain-derived neurotropic factor. J. Endocrinol. 205 (2010), 37–47, 10.1677/JOE-09-0405.
    • (2010) J. Endocrinol. , vol.205 , pp. 37-47
    • Teillon, S.1    Calderon, G.A.2    Rios, M.3
  • 91
    • 84885383560 scopus 로고    scopus 로고
    • Metformin-induced inhibition of the mitochondrial respiratory chain increases FGF21 expression via ATF4 activation
    • [91] Kim, K.H., Jeong, Y.T., Kim, S.H., Jung, H.S., Park, K.S., Lee, H.-Y., Lee, M.-S., Metformin-induced inhibition of the mitochondrial respiratory chain increases FGF21 expression via ATF4 activation. Biochem. Biophys. Res. Commun. 440 (2013), 76–81, 10.1016/j.bbrc.2013.09.026.
    • (2013) Biochem. Biophys. Res. Commun. , vol.440 , pp. 76-81
    • Kim, K.H.1    Jeong, Y.T.2    Kim, S.H.3    Jung, H.S.4    Park, K.S.5    Lee, H.-Y.6    Lee, M.-S.7
  • 92
    • 84870054636 scopus 로고    scopus 로고
    • GLP-1 receptor agonists for individualized treatment of type 2 diabetes mellitus
    • [92] Meier, J.J., GLP-1 receptor agonists for individualized treatment of type 2 diabetes mellitus. Nat. Rev. Endocrinol. 8 (2012), 728–742, 10.1038/nrendo.2012.140.
    • (2012) Nat. Rev. Endocrinol. , vol.8 , pp. 728-742
    • Meier, J.J.1
  • 93
    • 84877252041 scopus 로고    scopus 로고
    • Exendin-4 attenuates high glucose-induced cardiomyocyte apoptosis via inhibition of endoplasmic reticulum stress and activation of SERCA2a, Am
    • [93] Younce, C.W., Burmeister, M.A., Ayala, J.E., Exendin-4 attenuates high glucose-induced cardiomyocyte apoptosis via inhibition of endoplasmic reticulum stress and activation of SERCA2a, Am. J. Physiol. - Cell Physiol. 304 (2013), C508–C518, 10.1152/ajpcell.00248.2012.
    • (2013) J. Physiol. - Cell Physiol. , vol.304 , pp. C508-C518
    • Younce, C.W.1    Burmeister, M.A.2    Ayala, J.E.3
  • 94
    • 84862058779 scopus 로고    scopus 로고
    • GLP1-derived nonapeptide GLP1(28-36)amide protects pancreatic -cells from glucolipotoxicity
    • [94] Liu, Z., Stanojevic, V., Brindamour, L.J., Habener, J.F., GLP1-derived nonapeptide GLP1(28-36)amide protects pancreatic -cells from glucolipotoxicity. J. Endocrinol. 213 (2012), 143–154, 10.1530/JOE-11-0328.
    • (2012) J. Endocrinol. , vol.213 , pp. 143-154
    • Liu, Z.1    Stanojevic, V.2    Brindamour, L.J.3    Habener, J.F.4
  • 95
    • 84900030527 scopus 로고    scopus 로고
    • Liraglutide suppresses obesity and hyperglycemia associated with increases in hepatic fibroblast growth factor 21 production in KKAy Mice
    • [95] Nonogaki, K., Hazama, M., Satoh, N., Liraglutide suppresses obesity and hyperglycemia associated with increases in hepatic fibroblast growth factor 21 production in KKAy Mice. Biomed. Res. Int., 2014, 2014, 10.1155/2014/751930.
    • (2014) Biomed. Res. Int. , vol.2014
    • Nonogaki, K.1    Hazama, M.2    Satoh, N.3
  • 96
    • 84904399681 scopus 로고    scopus 로고
    • Exendin-4 regulates lipid metabolism and fibroblast growth factor 21 in hepatic steatosis
    • [96] Lee, J., Hong, S.-W., Park, S.E., Rhee, E.-J., Park, C.-Y., Oh, K.-W., Park, S.-W., Lee, W.-Y., Exendin-4 regulates lipid metabolism and fibroblast growth factor 21 in hepatic steatosis. Metabolism 63 (2014), 1041–1048, 10.1016/j.metabol.2014.04.011.
    • (2014) Metabolism , vol.63 , pp. 1041-1048
    • Lee, J.1    Hong, S.-W.2    Park, S.E.3    Rhee, E.-J.4    Park, C.-Y.5    Oh, K.-W.6    Park, S.-W.7    Lee, W.-Y.8


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.