-
1
-
-
20444435873
-
FGF-21 as a novel metabolic regulator
-
[1] Kharitonenkov, A., Shiyanova, T.L., Koester, A., Ford, A.M., Micanovic, R., Galbreath, E.J., Sandusky, G.E., Hammond, L.J., Moyers, J.S., Owens, R.A., Gromada, J., Brozinick, J.T., Hawkins, E.D., Wroblewski, V.J., Li, D.S., Mehrbod, F., Jaskunas, S.R., Shanafelt, A.B., FGF-21 as a novel metabolic regulator. J. Clin. Invest. 115 (2005), 1627–1635, 10.1172/JCI23606.
-
(2005)
J. Clin. Invest.
, vol.115
, pp. 1627-1635
-
-
Kharitonenkov, A.1
Shiyanova, T.L.2
Koester, A.3
Ford, A.M.4
Micanovic, R.5
Galbreath, E.J.6
Sandusky, G.E.7
Hammond, L.J.8
Moyers, J.S.9
Owens, R.A.10
Gromada, J.11
Brozinick, J.T.12
Hawkins, E.D.13
Wroblewski, V.J.14
Li, D.S.15
Mehrbod, F.16
Jaskunas, S.R.17
Shanafelt, A.B.18
-
2
-
-
0034697846
-
Identification of a novel FGF, FGF-21, preferentially expressed in the liver
-
[2] Nishimura, T., Nakatake, Y., Konishi, M., Itoh, N., Identification of a novel FGF, FGF-21, preferentially expressed in the liver. Biochim Biophys. Acta 1492 (2000), 203–206.
-
(2000)
Biochim Biophys. Acta
, vol.1492
, pp. 203-206
-
-
Nishimura, T.1
Nakatake, Y.2
Konishi, M.3
Itoh, N.4
-
3
-
-
84874933239
-
FGF21 suppresses hepatic glucose production through the activation of atypical protein kinase Ci/λ
-
[3] Kong, L.J., Feng, W., Wright, M., Chen, Y., Dallas-Yang, Q., Zhou, Y.P., Berger, J.P., FGF21 suppresses hepatic glucose production through the activation of atypical protein kinase Ci/λ. Eur. J. Pharmacol. 702 (2013), 302–308, 10.1016/j.ejphar.2012.11.065.
-
(2013)
Eur. J. Pharmacol.
, vol.702
, pp. 302-308
-
-
Kong, L.J.1
Feng, W.2
Wright, M.3
Chen, Y.4
Dallas-Yang, Q.5
Zhou, Y.P.6
Berger, J.P.7
-
4
-
-
79953886306
-
Thermogenic activation induces FGF21 expression and release in brown adipose tissue
-
[4] Hondares, E., Iglesias, R., Giralt, A., Gonzalez, F.J., Giralt, M., Mampel, T., Villarroya, F., Thermogenic activation induces FGF21 expression and release in brown adipose tissue. J. Biol. Chem. 286 (2011), 12983–12990, 10.1074/jbc.M110.215889.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 12983-12990
-
-
Hondares, E.1
Iglesias, R.2
Giralt, A.3
Gonzalez, F.J.4
Giralt, M.5
Mampel, T.6
Villarroya, F.7
-
5
-
-
33750587755
-
Fibroblast growth factor-21 improves pancreatic beta-cell function and survival by activation of extracellular signal-regulated kinase 1/2 and Akt signaling pathways
-
[5] Wente, W., Efanov, A.M., Brenner, M., Kharitonenkov, A., Köster, A., Sandusky, G.E., Sewing, S., Treinies, I., Zitzer, H., Gromada, J., Fibroblast growth factor-21 improves pancreatic beta-cell function and survival by activation of extracellular signal-regulated kinase 1/2 and Akt signaling pathways. Diabetes 55 (2006), 2470–2478, 10.2337/db05-1435.
-
(2006)
Diabetes
, vol.55
, pp. 2470-2478
-
-
Wente, W.1
Efanov, A.M.2
Brenner, M.3
Kharitonenkov, A.4
Köster, A.5
Sandusky, G.E.6
Sewing, S.7
Treinies, I.8
Zitzer, H.9
Gromada, J.10
-
6
-
-
84865645965
-
Secretomics for skeletal muscle cells: a discovery of novel regulators?
-
[6] Yoon, J.H., Kim, J., Song, P., Lee, T.G., Suh, P.-G., Ryu, S.H., Secretomics for skeletal muscle cells: a discovery of novel regulators?. Adv. Biol. Regul. 52 (2012), 340–350, 10.1016/j.jbior.2012.03.001.
-
(2012)
Adv. Biol. Regul.
, vol.52
, pp. 340-350
-
-
Yoon, J.H.1
Kim, J.2
Song, P.3
Lee, T.G.4
Suh, P.-G.5
Ryu, S.H.6
-
7
-
-
84926631640
-
Fibroblast growth factor 21 protects the heart from oxidative stress
-
[7] Planavila, A., Redondo-Angulo, I., Ribas, F., Garrabou, G., Casademont, J., Giralt, M., Villarroya, F., Fibroblast growth factor 21 protects the heart from oxidative stress. Cardiovasc. Res. 106 (2014), 19–31, 10.1093/cvr/cvu263.
-
(2014)
Cardiovasc. Res.
, vol.106
, pp. 19-31
-
-
Planavila, A.1
Redondo-Angulo, I.2
Ribas, F.3
Garrabou, G.4
Casademont, J.5
Giralt, M.6
Villarroya, F.7
-
8
-
-
84883778996
-
FGF21 regulates metabolism and circadian behavior by acting on the nervous system
-
[8] Bookout, A.L., de Groot, M.H.M., Owen, B.M., Lee, S., Gautron, L., Lawrence, H.L., Ding, X., Elmquist, J.K., Takahashi, J.S., Mangelsdorf, D.J., Kliewer, S.A., FGF21 regulates metabolism and circadian behavior by acting on the nervous system. Nat. Med. 19 (2013), 1147–1152, 10.1038/nm.3249.
-
(2013)
Nat. Med.
, vol.19
, pp. 1147-1152
-
-
Bookout, A.L.1
de Groot, M.H.M.2
Owen, B.M.3
Lee, S.4
Gautron, L.5
Lawrence, H.L.6
Ding, X.7
Elmquist, J.K.8
Takahashi, J.S.9
Mangelsdorf, D.J.10
Kliewer, S.A.11
-
9
-
-
84906928425
-
-
The Roles of FGF21 in Stress Adaptation and the Treatment of Metabolic Diseases
-
[9] K.H. Kim, M. Lee, FGF21 as a Stress Hormone : The Roles of FGF21 in Stress Adaptation and the Treatment of Metabolic Diseases, 2014, pp. 245–251.
-
(2014)
FGF21 as a Stress Hormone
, pp. 245-251
-
-
Kim, K.H.1
Lee, M.2
-
10
-
-
79953217026
-
Fibroblast growth factor 21 is a metabolic regulator that plays a role in the adaptation to ketosis
-
[10] Domouzoglou, E.M., Maratos-Flier, E., Fibroblast growth factor 21 is a metabolic regulator that plays a role in the adaptation to ketosis. Am. J. Clin. Nutr. 93 (2011), 901S–905S, 10.3945/ajcn.110.001941.
-
(2011)
Am. J. Clin. Nutr.
, vol.93
, pp. 901S-905S
-
-
Domouzoglou, E.M.1
Maratos-Flier, E.2
-
12
-
-
84861655836
-
Exercise increases serum fibroblast growth factor 21 (FGF21) levels
-
[12] Cuevas-Ramos, D., Almeda-Valdés, P., Meza-Arana, C.E., Brito-Córdova, G., Gómez-Pérez, F.J., Mehta, R., Oseguera-Moguel, J., Aguilar-Salinas, C. a., Exercise increases serum fibroblast growth factor 21 (FGF21) levels. PLoS One 7 (2012), 1–8, 10.1371/journal.pone.0038022.
-
(2012)
PLoS One
, vol.7
, pp. 1-8
-
-
Cuevas-Ramos, D.1
Almeda-Valdés, P.2
Meza-Arana, C.E.3
Brito-Córdova, G.4
Gómez-Pérez, F.J.5
Mehta, R.6
Oseguera-Moguel, J.7
Aguilar-Salinas, C.A.8
-
13
-
-
84862958488
-
Growth hormone stimulates transcription of the fibroblast growth factor 21 gene in the liver through the signal transducer and activator of transcription 5
-
[13] Yu, J., Zhao, L., Wang, A., Eleswarapu, S., Ge, X., Chen, D., Jiang, H., Growth hormone stimulates transcription of the fibroblast growth factor 21 gene in the liver through the signal transducer and activator of transcription 5. Endocrinology 153 (2012), 750–758, 10.1210/en.2011-1591.
-
(2012)
Endocrinology
, vol.153
, pp. 750-758
-
-
Yu, J.1
Zhao, L.2
Wang, A.3
Eleswarapu, S.4
Ge, X.5
Chen, D.6
Jiang, H.7
-
14
-
-
82355188226
-
Plasma FGF21 is elevated by the intense lipid mobilization of lactation
-
[14] Schoenberg, K.M., Giesy, S.L., Harvatine, K.J., Waldron, M.R., Cheng, C., Kharitonenkov, A., Boisclair, Y.R., Plasma FGF21 is elevated by the intense lipid mobilization of lactation. Endocrinology 152 (2011), 4652–4661, 10.1210/en.2011-1425.
-
(2011)
Endocrinology
, vol.152
, pp. 4652-4661
-
-
Schoenberg, K.M.1
Giesy, S.L.2
Harvatine, K.J.3
Waldron, M.R.4
Cheng, C.5
Kharitonenkov, A.6
Boisclair, Y.R.7
-
15
-
-
84893452569
-
Irisin and FGF21 are cold-induced endocrine activators of brown fat function in humans
-
[15] Lee, P., Linderman, J.D., Smith, S., Brychta, R.J., Wang, J., Idelson, C., Perron, R.M., Werner, C.D., Phan, G.Q., Kammula, U.S., Kebebew, E., Pacak, K., Chen, K.Y., Celi, F.S., Irisin and FGF21 are cold-induced endocrine activators of brown fat function in humans. Cell Metab. 19 (2014), 302–309, 10.1016/j.cmet.2013.12.017.
-
(2014)
Cell Metab.
, vol.19
, pp. 302-309
-
-
Lee, P.1
Linderman, J.D.2
Smith, S.3
Brychta, R.J.4
Wang, J.5
Idelson, C.6
Perron, R.M.7
Werner, C.D.8
Phan, G.Q.9
Kammula, U.S.10
Kebebew, E.11
Pacak, K.12
Chen, K.Y.13
Celi, F.S.14
-
16
-
-
48349146527
-
Serum FGF21 levels are increased in obesity and are independently associated with the metabolic syndrome in humans
-
[16] Zhang, X., Yeung, D.C.Y., Karpisek, M., Stejskal, D., Zhou, Z.-G., Liu, F., Wong, R.L.C., Chow, W.-S., Tso, A.W.K., Lam, K.S.L., Xu, A., Serum FGF21 levels are increased in obesity and are independently associated with the metabolic syndrome in humans. Diabetes 57 (2008), 1246–1253, 10.2337/db07-1476.
-
(2008)
Diabetes
, vol.57
, pp. 1246-1253
-
-
Zhang, X.1
Yeung, D.C.Y.2
Karpisek, M.3
Stejskal, D.4
Zhou, Z.-G.5
Liu, F.6
Wong, R.L.C.7
Chow, W.-S.8
Tso, A.W.K.9
Lam, K.S.L.10
Xu, A.11
-
17
-
-
75149195216
-
Fibroblast growth factor-21 may mediate growth hormone resistance in anorexia nervosa
-
[17] Fazeli, P.K., Misra, M., Goldstein, M., Miller, K.K., Klibanski, A., Fibroblast growth factor-21 may mediate growth hormone resistance in anorexia nervosa. J. Clin. Endocrinol. Metab. 95 (2010), 369–374, 10.1210/jc.2009-1730.
-
(2010)
J. Clin. Endocrinol. Metab.
, vol.95
, pp. 369-374
-
-
Fazeli, P.K.1
Misra, M.2
Goldstein, M.3
Miller, K.K.4
Klibanski, A.5
-
18
-
-
84872057896
-
Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine
-
[18] Kim, K.H., Jeong, Y.T., Oh, H., Kim, S.H., Cho, J.M., Kim, Y.-N., Kim, S.S., Kim, D.H., Hur, K.Y., Kim, H.K., Ko, T., Han, J., Kim, H.L., Kim, J., Back, S.H., Komatsu, M., Chen, H., Chan, D.C., Konishi, M., Itoh, N., Choi, C.S., Lee, M.-S., Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine. Nat. Med. 19 (2013), 83–92, 10.1038/nm.3014.
-
(2013)
Nat. Med.
, vol.19
, pp. 83-92
-
-
Kim, K.H.1
Jeong, Y.T.2
Oh, H.3
Kim, S.H.4
Cho, J.M.5
Kim, Y.-N.6
Kim, S.S.7
Kim, D.H.8
Hur, K.Y.9
Kim, H.K.10
Ko, T.11
Han, J.12
Kim, H.L.13
Kim, J.14
Back, S.H.15
Komatsu, M.16
Chen, H.17
Chan, D.C.18
Konishi, M.19
Itoh, N.20
Choi, C.S.21
Lee, M.-S.22
more..
-
19
-
-
84943740629
-
FGF21 Response to Critical Illness: effect of Blood Glucose Control and Relation With Cellular Stress and Survival
-
[19] Thiessen, S.E., Vanhorebeek, I., Derese, I., Gunst, J., Van den Berghe, G., FGF21 Response to Critical Illness: effect of Blood Glucose Control and Relation With Cellular Stress and Survival. J. Clin. Endocrinol. Metab. 100 (2015), E1319–E1327, 10.1210/jc.2015-2700.
-
(2015)
J. Clin. Endocrinol. Metab.
, vol.100
, pp. E1319-E1327
-
-
Thiessen, S.E.1
Vanhorebeek, I.2
Derese, I.3
Gunst, J.4
Van den Berghe, G.5
-
20
-
-
84929415426
-
Serum FGF21 levels are associated with brown adipose tissue activity in humans
-
[20] Hanssen, M.J.W., Broeders, E., Samms, R.J., Vosselman, M.J., van der Lans, A.A.J.J., Cheng, C.C., Adams, A.C., van Marken Lichtenbelt, W.D., Schrauwen, P., Serum FGF21 levels are associated with brown adipose tissue activity in humans. Sci. Rep., 5, 2015, 10275, 10.1038/srep10275.
-
(2015)
Sci. Rep.
, vol.5
, pp. 10275
-
-
Hanssen, M.J.W.1
Broeders, E.2
Samms, R.J.3
Vosselman, M.J.4
van der Lans, A.A.J.J.5
Cheng, C.C.6
Adams, A.C.7
van Marken Lichtenbelt, W.D.8
Schrauwen, P.9
-
21
-
-
84878982912
-
FGF21 mediates the lipid metabolism response to amino acid starvation
-
[21] De Sousa-Coelho, A.L., Relat, J., Hondares, E., Pérez-Martí, A., Ribas, F., Villarroya, F., Marrero, P.F., Haro, D., FGF21 mediates the lipid metabolism response to amino acid starvation. J. Lipid Res. 54 (2013), 1786–1797, 10.1194/jlr.M033415.
-
(2013)
J. Lipid Res.
, vol.54
, pp. 1786-1797
-
-
De Sousa-Coelho, A.L.1
Relat, J.2
Hondares, E.3
Pérez-Martí, A.4
Ribas, F.5
Villarroya, F.6
Marrero, P.F.7
Haro, D.8
-
22
-
-
79954525448
-
Circulating FGF21 levels are progressively increased from the early to end stages of chronic kidney diseases and are associated with renal function in Chinese
-
[22] Lin, Z., Zhou, Z., Liu, Y., Gong, Q., Yan, X., Xiao, J., Wang, X., Lin, S., Feng, W., Li, X., Circulating FGF21 levels are progressively increased from the early to end stages of chronic kidney diseases and are associated with renal function in Chinese. PLoS One, 6, 2011, 10.1371/journal.pone.0018398.
-
(2011)
PLoS One
, vol.6
-
-
Lin, Z.1
Zhou, Z.2
Liu, Y.3
Gong, Q.4
Yan, X.5
Xiao, J.6
Wang, X.7
Lin, S.8
Feng, W.9
Li, X.10
-
24
-
-
84879682766
-
Fibroblast growth factor 21: a novel biomarker for human muscle-manifesting mitochondrial disorders
-
[24] Suomalainen, A., Fibroblast growth factor 21: a novel biomarker for human muscle-manifesting mitochondrial disorders. Expert Opin. Med. Diagn. 7 (2013), 313–317, 10.1517/17530059.2013.812070.
-
(2013)
Expert Opin. Med. Diagn.
, vol.7
, pp. 313-317
-
-
Suomalainen, A.1
-
25
-
-
84874664386
-
Fibroblast growth factor 21 is induced by endoplasmic reticulum stress
-
[25] Schaap, F.G., Kremer, A.E., Lamers, W.H., Jansen, P.L.M., Gaemers, I.C., Fibroblast growth factor 21 is induced by endoplasmic reticulum stress. Biochimie 95 (2013), 692–699, 10.1016/j.biochi.2012.10.019.
-
(2013)
Biochimie
, vol.95
, pp. 692-699
-
-
Schaap, F.G.1
Kremer, A.E.2
Lamers, W.H.3
Jansen, P.L.M.4
Gaemers, I.C.5
-
26
-
-
84901784272
-
ATF4- and CHOP-dependent induction of FGF21 through endoplasmic reticulum stress
-
[26] Wan, X., Lu, X., Xiao, Y., Lin, Y., Zhu, H., Ding, T., Yang, Y., Huang, Y., Zhang, Y., Liu, Y.-L., Xu, Z., Xiao, J., Li, X., ATF4- and CHOP-dependent induction of FGF21 through endoplasmic reticulum stress. Biomed. Res. Int., 2014, 2014, 807874, 10.1155/2014/807874.
-
(2014)
Biomed. Res. Int.
, vol.2014
, pp. 807874
-
-
Wan, X.1
Lu, X.2
Xiao, Y.3
Lin, Y.4
Zhu, H.5
Ding, T.6
Yang, Y.7
Huang, Y.8
Zhang, Y.9
Liu, Y.-L.10
Xu, Z.11
Xiao, J.12
Li, X.13
-
27
-
-
85007351390
-
Clinical Measures of the Balance, ANTIOXIDANTS REDOX Signal
-
[27] Liebert, M.A., Jones, D.P., Clinical Measures of the Balance, ANTIOXIDANTS REDOX Signal., 8(8), 2006, 1–16, 10.1089/ars.2006.8.1865.
-
(2006)
, vol.8
, Issue.8
, pp. 1-16
-
-
Liebert, M.A.1
Jones, D.P.2
-
28
-
-
84920903716
-
Oxidative stress: a concept in redox biology and medicine
-
[28] Sies, H., Oxidative stress: a concept in redox biology and medicine. Redox Biol. 4 (2015), 180–183, 10.1016/j.redox.2015.01.002.
-
(2015)
Redox Biol.
, vol.4
, pp. 180-183
-
-
Sies, H.1
-
29
-
-
0032786631
-
Reactive oxygen species: the unavoidable environmental insult?
-
[29] Gracy, R., Talent, J., Kong, Y., Conrad, C., Reactive oxygen species: the unavoidable environmental insult?. Mutat. Res. Mol. Mech. Mutagen. 428 (1999), 17–22, 10.1016/S1383-5742(99)00027-7.
-
(1999)
Mutat. Res. Mol. Mech. Mutagen.
, vol.428
, pp. 17-22
-
-
Gracy, R.1
Talent, J.2
Kong, Y.3
Conrad, C.4
-
30
-
-
84868007565
-
Physiological roles of mitochondrial reactive oxygen species
-
[30] Sena, L.A., Chandel, N.S., Physiological roles of mitochondrial reactive oxygen species. Mol. Cell. 48 (2012), 158–166, 10.1016/j.molcel.2012.09.025.
-
(2012)
Mol. Cell.
, vol.48
, pp. 158-166
-
-
Sena, L.A.1
Chandel, N.S.2
-
31
-
-
0036867895
-
Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification
-
(accessed 24.05.15)
-
[31] Kohen, R., Nyska, A., Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol. Pathol. 30 (2002), 620–650 〈http://www.ncbi.nlm.nih.gov/pubmed/12512863〉 (accessed 24.05.15).
-
(2002)
Toxicol. Pathol.
, vol.30
, pp. 620-650
-
-
Kohen, R.1
Nyska, A.2
-
32
-
-
0036591855
-
Free radical-induced damage to DNA: mechanisms and measurement
-
(accessed 15.10.15)
-
[32] Dizdaroglu, M., Jaruga, P., Birincioglu, M., Rodriguez, H., Free radical-induced damage to DNA: mechanisms and measurement. Free Radic. Biol. Med. 32, 2002, 1102–1115 〈http://www.ncbi.nlm.nih.gov/pubmed/12031895〉 (accessed 15.10.15).
-
(2002)
Free Radic. Biol. Med. 32
, pp. 1102-1115
-
-
Dizdaroglu, M.1
Jaruga, P.2
Birincioglu, M.3
Rodriguez, H.4
-
33
-
-
84879073269
-
Oxidative stress and human health
-
[33] Rahman, T., Hosen, I., Islam, M.M.T., Shekhar, H.U., Oxidative stress and human health. Adv. Biosci. Biotechnol 3 (2012), 997–1019, 10.4236/abb.2012.327123.
-
(2012)
Adv. Biosci. Biotechnol
, vol.3
, pp. 997-1019
-
-
Rahman, T.1
Hosen, I.2
Islam, M.M.T.3
Shekhar, H.U.4
-
34
-
-
78649883767
-
Fibroblast growth factor 21 as a possible endogenous factor inhibits apoptosis in cardiac endothelial cells
-
[34] Lü, Y., Liu, J.H., Zhang, L.K., Du, J., Zeng, X.J., Hao, G., Huang, J., Zhao, D.H., Wang, G.Z., Zhang, Y.C., Fibroblast growth factor 21 as a possible endogenous factor inhibits apoptosis in cardiac endothelial cells. Chin. Med. J. (Engl.). 123 (2010), 3417–3421, 10.3760/cma.j.issn.0366-6999.2010.23.008.
-
(2010)
Chin. Med. J. (Engl.).
, vol.123
, pp. 3417-3421
-
-
Lü, Y.1
Liu, J.H.2
Zhang, L.K.3
Du, J.4
Zeng, X.J.5
Hao, G.6
Huang, J.7
Zhao, D.H.8
Wang, G.Z.9
Zhang, Y.C.10
-
35
-
-
84903795970
-
Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease
-
[35] Cao, S.S., Kaufman, R.J., Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease. Antioxid. Redox Signal. 21 (2014), 396–413, 10.1089/ars.2014.5851.
-
(2014)
Antioxid. Redox Signal.
, vol.21
, pp. 396-413
-
-
Cao, S.S.1
Kaufman, R.J.2
-
36
-
-
5644231992
-
Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes
-
[36] Ozcan, U., Cao, Q., Yilmaz, E., Lee, A.-H., Iwakoshi, N.N., Ozdelen, E., Tuncman, G., Görgün, C., Glimcher, L.H., Hotamisligil, G.S., Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 306 (2004), 457–461, 10.1126/science.1103160.
-
(2004)
Science
, vol.306
, pp. 457-461
-
-
Ozcan, U.1
Cao, Q.2
Yilmaz, E.3
Lee, A.-H.4
Iwakoshi, N.N.5
Ozdelen, E.6
Tuncman, G.7
Görgün, C.8
Glimcher, L.H.9
Hotamisligil, G.S.10
-
37
-
-
77950343252
-
Endoplasmic reticulum stress and the inflammatory basis of metabolic disease
-
[37] Hotamisligil, G.S., Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell 140 (2010), 900–917, 10.1016/j.cell.2010.02.034.
-
(2010)
Cell
, vol.140
, pp. 900-917
-
-
Hotamisligil, G.S.1
-
38
-
-
84855966721
-
Role of endoplasmic reticulum stress in metabolic disease and other disorders
-
[38] Ozcan, L., Tabas, I., Role of endoplasmic reticulum stress in metabolic disease and other disorders. Annu. Rev. Med. 63 (2012), 317–328, 10.1146/annurev-med-043010-144749.
-
(2012)
Annu. Rev. Med.
, vol.63
, pp. 317-328
-
-
Ozcan, L.1
Tabas, I.2
-
39
-
-
34250899722
-
Signal integration in the endoplasmic reticulum unfolded protein response
-
[39] Ron, D., Walter, P., Signal integration in the endoplasmic reticulum unfolded protein response. Nat. Rev. Mol. Cell Biol. 8 (2007), 519–529, 10.1038/nrm2199.
-
(2007)
Nat. Rev. Mol. Cell Biol.
, vol.8
, pp. 519-529
-
-
Ron, D.1
Walter, P.2
-
40
-
-
82255173966
-
The unfolded protein response: from stress pathway to homeostatic regulation
-
[40] Walter, P., Ron, D., The unfolded protein response: from stress pathway to homeostatic regulation. Science 334 (2011), 1081–1086, 10.1126/science.1209038.
-
(2011)
Science
, vol.334
, pp. 1081-1086
-
-
Walter, P.1
Ron, D.2
-
41
-
-
84856111924
-
The unfolded protein response: controlling cell fate decisions under ER stress and beyond
-
[41] Hetz, C., The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat. Rev. Mol. Cell Biol. 13 (2012), 89–102, 10.1038/nrm3270.
-
(2012)
Nat. Rev. Mol. Cell Biol.
, vol.13
, pp. 89-102
-
-
Hetz, C.1
-
42
-
-
80054026314
-
A review of the mammalian unfoded protein response
-
[42] Chakrabarti, A., Chen, A.W., Varner, J.D., A review of the mammalian unfoded protein response. Biotechnol. Bioeng. 108 (2012), 2777–2793, 10.1002/bit.23282.A.
-
(2012)
Biotechnol. Bioeng.
, vol.108
, pp. 2777-2793
-
-
Chakrabarti, A.1
Chen, A.W.2
Varner, J.D.3
-
43
-
-
0142059951
-
XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response
-
(accessed 06.01.16)
-
[43] Lee, A.-H., Iwakoshi, N.N., Glimcher, L.H., XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol. Cell. Biol. 23 (2003), 7448–7459 〈http://www.ncbi.nlm.nih.gov/pubmed/14559994〉 (accessed 06.01.16).
-
(2003)
Mol. Cell. Biol.
, vol.23
, pp. 7448-7459
-
-
Lee, A.-H.1
Iwakoshi, N.N.2
Glimcher, L.H.3
-
44
-
-
84947087353
-
IRE1α-XBP1 is a novel branch in the transcriptional regulation of Ucp1 in brown adipocytes
-
[44] Asada, R., Kanemoto, S., Matsuhisa, K., Hino, K., Cui, M., Cui, X., Kaneko, M., Imaizumi, K., IRE1α-XBP1 is a novel branch in the transcriptional regulation of Ucp1 in brown adipocytes. Sci. Rep., 5, 2015, 16580, 10.1038/srep16580.
-
(2015)
Sci. Rep.
, vol.5
, pp. 16580
-
-
Asada, R.1
Kanemoto, S.2
Matsuhisa, K.3
Hino, K.4
Cui, M.5
Cui, X.6
Kaneko, M.7
Imaizumi, K.8
-
45
-
-
63449128473
-
Comprehensive characterization of genes required for protein folding in the endoplasmic reticulum
-
[45] Jonikas, M.C., Collins, S.R., Denic, V., Oh, E., Quan, E.M., Schmid, V., Weibezahn, J., Schwappach, B., Walter, P., Weissman, J.S., Schuldiner, M., Comprehensive characterization of genes required for protein folding in the endoplasmic reticulum. Science 323 (2009), 1693–1697, 10.1126/science.1167983.
-
(2009)
Science
, vol.323
, pp. 1693-1697
-
-
Jonikas, M.C.1
Collins, S.R.2
Denic, V.3
Oh, E.4
Quan, E.M.5
Schmid, V.6
Weibezahn, J.7
Schwappach, B.8
Walter, P.9
Weissman, J.S.10
Schuldiner, M.11
-
46
-
-
79952264011
-
Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress
-
[46] Tabas, I., Ron, D., Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat. Cell Biol. 13 (2011), 184–190, 10.1038/ncb0311-184.
-
(2011)
Nat. Cell Biol.
, vol.13
, pp. 184-190
-
-
Tabas, I.1
Ron, D.2
-
47
-
-
84938973534
-
Imaging of single cell responses to ER stress indicates that the relative dynamics of IRE1/XBP1 and PERK/ATF4 signalling rather than a switch between signalling branches determine cell survival TL - 22
-
(VN-r)
-
[47] Walter, F., Schmid, J., Düssmann, H., Concannon, C.G., Prehn, J.H.M., Imaging of single cell responses to ER stress indicates that the relative dynamics of IRE1/XBP1 and PERK/ATF4 signalling rather than a switch between signalling branches determine cell survival TL - 22. (VN-r) Cell Death Differ., 22, 2015, 10.1038/cdd.2014.241.
-
(2015)
Cell Death Differ.
, vol.22
-
-
Walter, F.1
Schmid, J.2
Düssmann, H.3
Concannon, C.G.4
Prehn, J.H.M.5
-
48
-
-
0033590451
-
Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase
-
[48] Harding, H.P., Zhang, Y., Ron, D., Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397 (1999), 271–274, 10.1038/16729.
-
(1999)
Nature
, vol.397
, pp. 271-274
-
-
Harding, H.P.1
Zhang, Y.2
Ron, D.3
-
49
-
-
0031755020
-
Identification and characterization of pancreatic eukaryotic initiation factor 2 alpha-subunit kinase, PEK, involved in translational control
-
(accessed 09.12.15)
-
[49] Shi, Y., Vattem, K.M., Sood, R., An, J., Liang, J., Stramm, L., Wek, R.C., Identification and characterization of pancreatic eukaryotic initiation factor 2 alpha-subunit kinase, PEK, involved in translational control. Mol. Cell. Biol. 18 (1998), 7499–7509 〈http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=109330&tool=pmcentrez&rendertype=abstract〉 (accessed 09.12.15).
-
(1998)
Mol. Cell. Biol.
, vol.18
, pp. 7499-7509
-
-
Shi, Y.1
Vattem, K.M.2
Sood, R.3
An, J.4
Liang, J.5
Stramm, L.6
Wek, R.C.7
-
50
-
-
85007339506
-
-
PubMed - NCBI, (n.d.). . (accessed January 6
-
[50] R.D. Harding HP, Novoa I, Zhang Y, Zeng H, Wek R, Schapira M, Regulated translation initiation controls stress-induced gene expression in mammalian cells. - PubMed - NCBI, (n.d.). http://www.ncbi.nlm.nih.gov/pubmed/11106749. (accessed January 6, 2016).
-
(2016)
Translation initiation controls stress-induced gene expression in mammalian cells
-
-
Harding, R.D.1
Novoa, H.P.2
Zhang, I.3
Zeng, Y.4
Wek, H.5
Schapira, R.6
Regulated, M.7
-
51
-
-
79953288480
-
Selective inhibition of a regulatory subunit of protein phosphatase 1 restores proteostasis
-
[51] Tsaytler, P., Harding, H.P., Ron, D., Bertolotti, A., Selective inhibition of a regulatory subunit of protein phosphatase 1 restores proteostasis. Science 332 (2011), 91–94, 10.1126/science.1201396.
-
(2011)
Science
, vol.332
, pp. 91-94
-
-
Tsaytler, P.1
Harding, H.P.2
Ron, D.3
Bertolotti, A.4
-
52
-
-
60549114848
-
Ppp1r15 gene knockout reveals an essential role for translation initiation factor 2 alpha (eIF2alpha) dephosphorylation in mammalian development
-
[52] Harding, H.P., Zhang, Y., Scheuner, D., Chen, J.-J., Kaufman, R.J., Ron, D., Ppp1r15 gene knockout reveals an essential role for translation initiation factor 2 alpha (eIF2alpha) dephosphorylation in mammalian development. Proc. Natl. Acad. Sci. USA 106 (2009), 1832–1837, 10.1073/pnas.0809632106.
-
(2009)
Proc. Natl. Acad. Sci. USA
, vol.106
, pp. 1832-1837
-
-
Harding, H.P.1
Zhang, Y.2
Scheuner, D.3
Chen, J.-J.4
Kaufman, R.J.5
Ron, D.6
-
53
-
-
84976878488
-
Specificity of stress-responsive transcription factors Nrf2, ATF4, and AP-1
-
[53] Rössler, O.G., Thiel, G., Specificity of stress-responsive transcription factors Nrf2, ATF4, and AP-1. J. Cell. Biochem. 118 (2017), 127–140, 10.1002/jcb.25619.
-
(2017)
J. Cell. Biochem.
, vol.118
, pp. 127-140
-
-
Rössler, O.G.1
Thiel, G.2
-
54
-
-
84925491637
-
Endoplasmic reticulum stress induces up-regulation of hepatic β-Klotho expression through ATF4 signaling pathway
-
[54] Dong, K., Li, H., Zhang, M., Jiang, S., Chen, S., Zhou, J., Dai, Z., Fang, Q., Jia, W., Endoplasmic reticulum stress induces up-regulation of hepatic β-Klotho expression through ATF4 signaling pathway. Biochem. Biophys. Res. Commun. 459 (2015), 300–305, 10.1016/j.bbrc.2015.02.104.
-
(2015)
Biochem. Biophys. Res. Commun.
, vol.459
, pp. 300-305
-
-
Dong, K.1
Li, H.2
Zhang, M.3
Jiang, S.4
Chen, S.5
Zhou, J.6
Dai, Z.7
Fang, Q.8
Jia, W.9
-
55
-
-
0035947778
-
Feedback inhibition of the unfolded protein response by GADD34-mediated dephosphorylation of eIF2alpha
-
(accessed 11.09.15)
-
[55] Novoa, I., Zeng, H., Harding, H.P., Ron, D., Feedback inhibition of the unfolded protein response by GADD34-mediated dephosphorylation of eIF2alpha. J. Cell Biol. 153 (2001), 1011–1022 〈http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2174339&tool=pmcentrez&rendertype=abstract〉 (accessed 11.09.15).
-
(2001)
J. Cell Biol.
, vol.153
, pp. 1011-1022
-
-
Novoa, I.1
Zeng, H.2
Harding, H.P.3
Ron, D.4
-
56
-
-
84879666287
-
Fibroblast growth factor 21 protects against cardiac hypertrophy in mice
-
[56] Planavila, A., Redondo, I., Hondares, E., Vinciguerra, M., Munts, C., Iglesias, R., Gabrielli, L.A., Sitges, M., Giralt, M., van Bilsen, M., Villarroya, F., van Bilsen, M., van der Vusse, G.J., Reneman, R.S., Smeets, P.J., Planavila, A., Iglesias, R., Giralt, M., Villarroya, F., Fredj, S., Bescond, J., Louault, C., Potreau, D., Gnecchi, M., Doroudgar, S., Glembotski, C.C., Frost, R.J., Engelhardt, S., Stastna, M., Chimenti, I., Marban, E., Van Eyk, J.E., Badman, M.K., Galman, C., Inagaki, T., Muise, E.S., Izumiya, Y., Hondares, E., Hondares, E., Kharitonenkov, A., Dutchak, P.A., Kharitonenkov, A., Kurosu, H., Jin, Y., Ogawa, Y., Uebanso, T., Karliner, J.S., Xu, J., Xu, J., Liu, S.Q., Booysen, H.L., Norton, G.R., Opie, L.H., Woodiwiss, A.J., Lehman, J.J., Kelly, D.P., Schilling, J., Alvarez-Guardia, D., Fisher, F.M., Stachowiak, E.K., Fang, X., Myers, J., Dunham, S., Stachowiak, M.K., Ventura-Clapier, R., Garnier, A., Veksler, V., Eisele, P.S., Salatino, S., Sobek, J., Hottiger, M.O., Handschin, C., Purushotham, A., Amat, R., Fibroblast growth factor 21 protects against cardiac hypertrophy in mice. Nat. Commun. 4 (2013), 2–14, 10.1038/ncomms3019.
-
(2013)
Nat. Commun.
, vol.4
, pp. 2-14
-
-
Planavila, A.1
Redondo, I.2
Hondares, E.3
Vinciguerra, M.4
Munts, C.5
Iglesias, R.6
Gabrielli, L.A.7
Sitges, M.8
Giralt, M.9
van Bilsen, M.10
Villarroya, F.11
van Bilsen, M.12
van der Vusse, G.J.13
Reneman, R.S.14
Smeets, P.J.15
Planavila, A.16
Iglesias, R.17
Giralt, M.18
Villarroya, F.19
Fredj, S.20
Bescond, J.21
Louault, C.22
Potreau, D.23
Gnecchi, M.24
Doroudgar, S.25
Glembotski, C.C.26
Frost, R.J.27
Engelhardt, S.28
Stastna, M.29
Chimenti, I.30
Marban, E.31
Van Eyk, J.E.32
Badman, M.K.33
Galman, C.34
Inagaki, T.35
Muise, E.S.36
Izumiya, Y.37
Hondares, E.38
Hondares, E.39
Kharitonenkov, A.40
Dutchak, P.A.41
Kharitonenkov, A.42
Kurosu, H.43
Jin, Y.44
Ogawa, Y.45
Uebanso, T.46
Karliner, J.S.47
Xu, J.48
Xu, J.49
Liu, S.Q.50
Booysen, H.L.51
Norton, G.R.52
Opie, L.H.53
Woodiwiss, A.J.54
Lehman, J.J.55
Kelly, D.P.56
Schilling, J.57
Alvarez-Guardia, D.58
Fisher, F.M.59
Stachowiak, E.K.60
Fang, X.61
Myers, J.62
Dunham, S.63
Stachowiak, M.K.64
Ventura-Clapier, R.65
Garnier, A.66
Veksler, V.67
Eisele, P.S.68
Salatino, S.69
Sobek, J.70
Hottiger, M.O.71
Handschin, C.72
Purushotham, A.73
Amat, R.74
more..
-
57
-
-
84975142470
-
Lactate induces FGF21 expression in adipocytes through a p38-MAPK pathway
-
[57] Jeanson, Y., Ribas, F., Galinier, A., Arnaud, E., Ducos, M., Andre, M., Chenouard, V., Villarroya, F., Casteilla, L., Carriere, A., Lactate induces FGF21 expression in adipocytes through a p38-MAPK pathway. Biochem. J. 473 (2016), 685–692, 10.1042/BJ20150808.
-
(2016)
Biochem. J.
, vol.473
, pp. 685-692
-
-
Jeanson, Y.1
Ribas, F.2
Galinier, A.3
Arnaud, E.4
Ducos, M.5
Andre, M.6
Chenouard, V.7
Villarroya, F.8
Casteilla, L.9
Carriere, A.10
-
58
-
-
84907015381
-
FGF21 is an endocrine signal of protein restriction
-
[58] Laeger, T., Henagan, T.M., Albarado, D.C., Redman, L.M., Bray, G.A., Noland, R.C., Münzberg, H., Hutson, S.M., Gettys, T.W., Schwartz, M.W., Morrison, C.D., FGF21 is an endocrine signal of protein restriction. J. Clin. Invest. 124 (2014), 3913–3922, 10.1172/JCI74915.
-
(2014)
J. Clin. Invest.
, vol.124
, pp. 3913-3922
-
-
Laeger, T.1
Henagan, T.M.2
Albarado, D.C.3
Redman, L.M.4
Bray, G.A.5
Noland, R.C.6
Münzberg, H.7
Hutson, S.M.8
Gettys, T.W.9
Schwartz, M.W.10
Morrison, C.D.11
-
59
-
-
84989948661
-
Metabolic responses to dietary protein restriction require an increase in FGF21 that is delayed by the absence of GCN2
-
[59] Laeger, T., Albarado, D.C., Burke, S.J., Trosclair, L., Hedgepeth, J.W., Berthoud, H.-R., Gettys, T.W., Collier, J.J., Münzberg, H., Morrison, C.D., Metabolic responses to dietary protein restriction require an increase in FGF21 that is delayed by the absence of GCN2. Cell Rep. 16 (2016), 707–716, 10.1016/j.celrep.2016.06.044.
-
(2016)
Cell Rep.
, vol.16
, pp. 707-716
-
-
Laeger, T.1
Albarado, D.C.2
Burke, S.J.3
Trosclair, L.4
Hedgepeth, J.W.5
Berthoud, H.-R.6
Gettys, T.W.7
Collier, J.J.8
Münzberg, H.9
Morrison, C.D.10
-
60
-
-
84997079080
-
Nrf2 as a key player of redox regulation in cardiovascular diseases
-
(accessed 16.12.16)
-
[60] Barančík, M., Grešová, L., Barteková, M., Dovinová, I., Ík, M.B., Grešová, L., Barteková, M., Dovinová, I., Nrf2 as a key player of redox regulation in cardiovascular diseases. Physiol. Res. 65 (2016), S1–S10 〈http://www.ncbi.nlm.nih.gov/pubmed/27643930〉 (accessed 16.12.16).
-
(2016)
Physiol. Res.
, vol.65
, pp. S1-S10
-
-
Barančík, M.1
Grešová, L.2
Barteková, M.3
Dovinová, I.4
Ík, M.B.5
Grešová, L.6
Barteková, M.7
Dovinová, I.8
-
61
-
-
84893132156
-
Nrf2 protects pancreatic β-Cells from oxidative and nitrosative stress in diabetic model mice
-
[61] Yagishita, Y., Fukutomi, T., Sugawara, A., Kawamura, H., Takahashi, T., Pi, J., Uruno, A., Yamamoto, M., Nrf2 protects pancreatic β-Cells from oxidative and nitrosative stress in diabetic model mice. Diabetes 63 (2013), 1–48, 10.2337/db13-0909.
-
(2013)
Diabetes
, vol.63
, pp. 1-48
-
-
Yagishita, Y.1
Fukutomi, T.2
Sugawara, A.3
Kawamura, H.4
Takahashi, T.5
Pi, J.6
Uruno, A.7
Yamamoto, M.8
-
62
-
-
80053389113
-
Nrf2 represses FGF21 during long-term high-fat diet - Induced obesity in mice
-
[62] Chartoumpekis, D.V., Ziros, P.G., Psyrogiannis, A.I., Papavassiliou, A.G., Kyriazopoulou, V.E., Sykiotis, G.P., Habeos, I.G., Nrf2 represses FGF21 during long-term high-fat diet - Induced obesity in mice. Diabetes 60 (2011), 2465–2473, 10.2337/db11-0112.
-
(2011)
Diabetes
, vol.60
, pp. 2465-2473
-
-
Chartoumpekis, D.V.1
Ziros, P.G.2
Psyrogiannis, A.I.3
Papavassiliou, A.G.4
Kyriazopoulou, V.E.5
Sykiotis, G.P.6
Habeos, I.G.7
-
63
-
-
42149196050
-
Physiological significance of reactive cysteine residues of Keap1 in determining Nrf2 activity
-
[63] Yamamoto, T., Suzuki, T., Kobayashi, A., Wakabayashi, J., Maher, J., Motohashi, H., Yamamoto, M., Physiological significance of reactive cysteine residues of Keap1 in determining Nrf2 activity. Mol. Cell. Biol. 28 (2008), 2758–2770, 10.1128/MCB.01704-07.
-
(2008)
Mol. Cell. Biol.
, vol.28
, pp. 2758-2770
-
-
Yamamoto, T.1
Suzuki, T.2
Kobayashi, A.3
Wakabayashi, J.4
Maher, J.5
Motohashi, H.6
Yamamoto, M.7
-
64
-
-
84910681905
-
Nrf2 induces fibroblast growth factor 21 in diabetic mice
-
[64] Furusawa, Y., Uruno, A., Yagishita, Y., Higashi, C., Yamamoto, M., Nrf2 induces fibroblast growth factor 21 in diabetic mice. Genes Cells, 2014, 10.1111/gtc.12186.
-
(2014)
Genes Cells
-
-
Furusawa, Y.1
Uruno, A.2
Yagishita, Y.3
Higashi, C.4
Yamamoto, M.5
-
65
-
-
84864461148
-
Validation of the multiple sensor mechanism of the Keap1-Nrf2 system
-
[65] Takaya, K., Suzuki, T., Motohashi, H., Onodera, K., Satomi, S., Kensler, T.W., Yamamoto, M., Validation of the multiple sensor mechanism of the Keap1-Nrf2 system. Free Radic. Biol. Med. 53 (2012), 817–827, 10.1016/j.freeradbiomed.2012.06.023.
-
(2012)
Free Radic. Biol. Med.
, vol.53
, pp. 817-827
-
-
Takaya, K.1
Suzuki, T.2
Motohashi, H.3
Onodera, K.4
Satomi, S.5
Kensler, T.W.6
Yamamoto, M.7
-
66
-
-
80051545287
-
The Keap1-Nrf2 system as an in vivo sensor for electrophiles.
-
[66] Uruno, A., Motohashi, H., The Keap1-Nrf2 system as an in vivo sensor for electrophiles. Nitric Oxide Biol. Chem. 25 (2011), 153–160, 10.1016/j.niox.2011.02.007.
-
(2011)
Nitric Oxide Biol. Chem.
, vol.25
, pp. 153-160
-
-
Uruno, A.1
Motohashi, H.2
-
67
-
-
0031577292
-
An Nrf2/Small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements
-
[67] Itoh, K., Chiba, T., Takahashi, S., Ishii, T., Igarashi, K., Katoh, Y., Oyake, T., Hayashi, N., Satoh, K., Hatayama, I., Yamamoto, M., Nabeshima, Y., An Nrf2/Small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem. Biophys. Res. Commun. 236 (1997), 313–322, 10.1006/bbrc.1997.6943.
-
(1997)
Biochem. Biophys. Res. Commun.
, vol.236
, pp. 313-322
-
-
Itoh, K.1
Chiba, T.2
Takahashi, S.3
Ishii, T.4
Igarashi, K.5
Katoh, Y.6
Oyake, T.7
Hayashi, N.8
Satoh, K.9
Hatayama, I.10
Yamamoto, M.11
Nabeshima, Y.12
-
68
-
-
0032953192
-
Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain
-
[68] Itoh, K., Wakabayashi, N., Katoh, Y., Ishii, T., Igarashi, K., Engel, J.D., Yamamoto, M., Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev. 13 (1999), 76–86, 10.1101/gad.13.1.76.
-
(1999)
Genes Dev.
, vol.13
, pp. 76-86
-
-
Itoh, K.1
Wakabayashi, N.2
Katoh, Y.3
Ishii, T.4
Igarashi, K.5
Engel, J.D.6
Yamamoto, M.7
-
69
-
-
84880682182
-
The Keap1-Nrf2 system prevents onset of diabetes mellitus
-
[69] Uruno, A., Furusawa, Y., Yagishita, Y., Fukutomi, T., Muramatsu, H., Negishi, T., Sugawara, A., Kensler, T.W., Yamamoto, M., The Keap1-Nrf2 system prevents onset of diabetes mellitus. Mol. Cell. Biol. 33 (2013), 2996–3010, 10.1128/MCB.00225-13.
-
(2013)
Mol. Cell. Biol.
, vol.33
, pp. 2996-3010
-
-
Uruno, A.1
Furusawa, Y.2
Yagishita, Y.3
Fukutomi, T.4
Muramatsu, H.5
Negishi, T.6
Sugawara, A.7
Kensler, T.W.8
Yamamoto, M.9
-
70
-
-
84855415247
-
Thioredoxin binding protein (TBP)-2/Txnip and α-arrestin proteins in cancer and diabetes mellitus
-
[70] Masutani, H., Yoshihara, E., Masaki, S., Chen, Z., Yodoi, J., Thioredoxin binding protein (TBP)-2/Txnip and α-arrestin proteins in cancer and diabetes mellitus. J. Clin. Biochem. Nutr. 50 (2012), 23–34, 10.3164/jcbn.11-36SR.
-
(2012)
J. Clin. Biochem. Nutr.
, vol.50
, pp. 23-34
-
-
Masutani, H.1
Yoshihara, E.2
Masaki, S.3
Chen, Z.4
Yodoi, J.5
-
71
-
-
17744367054
-
Thioredoxin-interacting protein is stimulated by glucose through a carbohydrate response element and induces beta-cell apoptosis
-
[71] Minn, A.H., Hafele, C., Shalev, A., Thioredoxin-interacting protein is stimulated by glucose through a carbohydrate response element and induces beta-cell apoptosis. Endocrinology 146 (2005), 2397–2405, 10.1210/en.2004-1378.
-
(2005)
Endocrinology
, vol.146
, pp. 2397-2405
-
-
Minn, A.H.1
Hafele, C.2
Shalev, A.3
-
72
-
-
67649641767
-
Thioredoxin binding protein-2/thioredoxin-interacting protein is a critical regulator of insulin secretion and peroxisome proliferator-activated receptor function
-
[72] Oka, S., Yoshihara, E., Bizen-Abe, A., Liu, W., Watanabe, M., Yodoi, J., Masutani, H., Thioredoxin binding protein-2/thioredoxin-interacting protein is a critical regulator of insulin secretion and peroxisome proliferator-activated receptor function. Endocrinology 150 (2009), 1225–1234, 10.1210/en.2008-0646.
-
(2009)
Endocrinology
, vol.150
, pp. 1225-1234
-
-
Oka, S.1
Yoshihara, E.2
Bizen-Abe, A.3
Liu, W.4
Watanabe, M.5
Yodoi, J.6
Masutani, H.7
-
73
-
-
37649005234
-
Autophagy in the pathogenesis of disease
-
[73] Levine, B., Kroemer, G., Autophagy in the pathogenesis of disease. Cell 132 (2008), 27–42, 10.1016/j.cell.2007.12.018.
-
(2008)
Cell
, vol.132
, pp. 27-42
-
-
Levine, B.1
Kroemer, G.2
-
74
-
-
52749094770
-
Loss of autophagy diminishes pancreatic β cell mass and function with resultant hyperglycemia
-
[74] Jung, H.S., Chung, K.W., Won Kim, J., Kim, J., Komatsu, M., Tanaka, K., Nguyen, Y.H., Kang, T.M., Yoon, K.-H., Kim, J.-W., Jeong, Y.T., Han, M.S., Lee, M.-K., Kim, K.-W., Shin, J., Lee, M.-S., Loss of autophagy diminishes pancreatic β cell mass and function with resultant hyperglycemia. Cell Metab. 8 (2008), 318–324, 10.1016/j.cmet.2008.08.013.
-
(2008)
Cell Metab.
, vol.8
, pp. 318-324
-
-
Jung, H.S.1
Chung, K.W.2
Won Kim, J.3
Kim, J.4
Komatsu, M.5
Tanaka, K.6
Nguyen, Y.H.7
Kang, T.M.8
Yoon, K.-H.9
Kim, J.-W.10
Jeong, Y.T.11
Han, M.S.12
Lee, M.-K.13
Kim, K.-W.14
Shin, J.15
Lee, M.-S.16
-
75
-
-
77956400005
-
Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance
-
[75] Yang, L., Li, P., Fu, S., Calay, E.S., Hotamisligil, G.S., Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metab. 11 (2010), 467–478, 10.1016/j.cmet.2010.04.005.
-
(2010)
Cell Metab.
, vol.11
, pp. 467-478
-
-
Yang, L.1
Li, P.2
Fu, S.3
Calay, E.S.4
Hotamisligil, G.S.5
-
76
-
-
0024237258
-
Rates and tissue sites of non-insulin- and insulin-mediated glucose uptake in humans
-
(accessed 18.01.16)
-
[76] Baron, A.D., Brechtel, G., Wallace, P., Edelman, S.V., Rates and tissue sites of non-insulin- and insulin-mediated glucose uptake in humans. Am. J. Physiol. 255, 1988 〈http://www.ncbi.nlm.nih.gov/pubmed/3059816〉 (accessed 18.01.16).
-
(1988)
Am. J. Physiol. 255
-
-
Baron, A.D.1
Brechtel, G.2
Wallace, P.3
Edelman, S.V.4
-
77
-
-
84937137980
-
High-fat diet and FGF21 cooperatively promote aerobic thermogenesis in mtDNA mutator mice
-
[77] Wall, C.E., Whyte, J., Suh, J.M., Fan, W., Collins, B., Liddle, C., Yu, R.T., Atkins, A.R., Naviaux, J.C., Li, K., Bright, A.T., Alaynick, W.A., Downes, M., Naviaux, R.K., Evans, R.M., High-fat diet and FGF21 cooperatively promote aerobic thermogenesis in mtDNA mutator mice. Proc. Natl. Acad. Sci. Usa. 112 (2015), 8714–8719, 10.1073/pnas.1509930112.
-
(2015)
Proc. Natl. Acad. Sci. Usa.
, vol.112
, pp. 8714-8719
-
-
Wall, C.E.1
Whyte, J.2
Suh, J.M.3
Fan, W.4
Collins, B.5
Liddle, C.6
Yu, R.T.7
Atkins, A.R.8
Naviaux, J.C.9
Li, K.10
Bright, A.T.11
Alaynick, W.A.12
Downes, M.13
Naviaux, R.K.14
Evans, R.M.15
-
78
-
-
67650472358
-
Tissue-specific glucose toxicity induces mitochondrial damage in a burn injury model of critical illness
-
[78] Vanhorebeek, I., Ellger, B., De Vos, R., Boussemaere, M., Debaveye, Y., Vander Perre, S., Rabbani, N., Thornalley, P.J., Van den Berghe, G., Tissue-specific glucose toxicity induces mitochondrial damage in a burn injury model of critical illness. Crit. Care Med. 37 (2009), 1355–1364, 10.1097/CCM.0b013e31819cec17.
-
(2009)
Crit. Care Med.
, vol.37
, pp. 1355-1364
-
-
Vanhorebeek, I.1
Ellger, B.2
De Vos, R.3
Boussemaere, M.4
Debaveye, Y.5
Vander Perre, S.6
Rabbani, N.7
Thornalley, P.J.8
Van den Berghe, G.9
-
79
-
-
84858311217
-
Activating transcription factor 4-dependent induction of FGF21 during amino acid deprivation
-
[79] De Sousa-Coelho, A.L., Marrero, P.F., Haro, D., Activating transcription factor 4-dependent induction of FGF21 during amino acid deprivation. Biochem. J. 443 (2012), 165–171, 10.1042/BJ20111748.
-
(2012)
Biochem. J.
, vol.443
, pp. 165-171
-
-
De Sousa-Coelho, A.L.1
Marrero, P.F.2
Haro, D.3
-
80
-
-
84982792098
-
Oxidative stress in diabetic nephropathy with early chronic kidney disease
-
[80] Miranda-Díaz, A.G., Pazarín-Villaseñor, L., Yanowsky-Escatell, F.G., Andrade-Sierra, J., Oxidative stress in diabetic nephropathy with early chronic kidney disease. J. Diabetes Res. 2016 (2016), 1–7, 10.1155/2016/7047238.
-
(2016)
J. Diabetes Res.
, vol.2016
, pp. 1-7
-
-
Miranda-Díaz, A.G.1
Pazarín-Villaseñor, L.2
Yanowsky-Escatell, F.G.3
Andrade-Sierra, J.4
-
81
-
-
84861571519
-
Association between serum fibroblast growth factor 21 and diabetic nephropathy
-
[81] Jian, W.-X., Peng, W.-H., Jin, J., Chen, X.-R., Fang, W.-J., Wang, W.-X., Qin, L., Dong, Y., Su, Q., Association between serum fibroblast growth factor 21 and diabetic nephropathy. Metabolism 61 (2012), 853–859, 10.1016/j.metabol.2011.10.012.
-
(2012)
Metabolism
, vol.61
, pp. 853-859
-
-
Jian, W.-X.1
Peng, W.-H.2
Jin, J.3
Chen, X.-R.4
Fang, W.-J.5
Wang, W.-X.6
Qin, L.7
Dong, Y.8
Su, Q.9
-
82
-
-
84883151328
-
Fibroblast growth factor 21 improves insulin resistance and ameliorates renal injury in db/db mice
-
[82] Kim, H.W., Lee, J.E., Cha, J.J., Hyun, Y.Y., Kim, J.E., Lee, M.H., Song, H.K., Nam, D.H., Han, J.Y., Han, S.Y., Han, K.H., Kang, Y.S., Cha, D.R., Fibroblast growth factor 21 improves insulin resistance and ameliorates renal injury in db/db mice. Endocrinology 154 (2013), 3366–3376, 10.1210/en.2012-2276.
-
(2013)
Endocrinology
, vol.154
, pp. 3366-3376
-
-
Kim, H.W.1
Lee, J.E.2
Cha, J.J.3
Hyun, Y.Y.4
Kim, J.E.5
Lee, M.H.6
Song, H.K.7
Nam, D.H.8
Han, J.Y.9
Han, S.Y.10
Han, K.H.11
Kang, Y.S.12
Cha, D.R.13
-
83
-
-
84891947508
-
Attenuation of hyperlipidemia- and diabetes-induced early-stage apoptosis and late-stage renal dysfunction via administration of fibroblast growth factor-21 is associated with suppression of renal Inflammation
-
[83] Zhang, C., Shao, M., Yang, H., Chen, L., Yu, L., Cong, W., Tian, H., Zhang, F., Cheng, P., Jin, L., Tan, Y., Li, X., Cai, L., Lu, X., Attenuation of hyperlipidemia- and diabetes-induced early-stage apoptosis and late-stage renal dysfunction via administration of fibroblast growth factor-21 is associated with suppression of renal Inflammation. PLoS One 8 (2013), 1–11, 10.1371/journal.pone.0082275.
-
(2013)
PLoS One
, vol.8
, pp. 1-11
-
-
Zhang, C.1
Shao, M.2
Yang, H.3
Chen, L.4
Yu, L.5
Cong, W.6
Tian, H.7
Zhang, F.8
Cheng, P.9
Jin, L.10
Tan, Y.11
Li, X.12
Cai, L.13
Lu, X.14
-
84
-
-
84935062734
-
FGF21 as a mediator of adaptive responses to stress and metabolic benefits of anti-diabetic drugs
-
[84] Kim, K.H., Lee, M.S., FGF21 as a mediator of adaptive responses to stress and metabolic benefits of anti-diabetic drugs. J. Endocrinol. 226 (2015), R1–R16, 10.1530/JOE-15-0160.
-
(2015)
J. Endocrinol.
, vol.226
, pp. R1-R16
-
-
Kim, K.H.1
Lee, M.S.2
-
85
-
-
77954933558
-
Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state
-
[85] Foretz, M., Hébrard, S., Leclerc, J., Zarrinpashneh, E., Soty, M., Mithieux, G., Sakamoto, K., Andreelli, F., Viollet, B., Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. J. Clin. Invest. 120 (2010), 2355–2369, 10.1172/JCI40671.
-
(2010)
J. Clin. Invest.
, vol.120
, pp. 2355-2369
-
-
Foretz, M.1
Hébrard, S.2
Leclerc, J.3
Zarrinpashneh, E.4
Soty, M.5
Mithieux, G.6
Sakamoto, K.7
Andreelli, F.8
Viollet, B.9
-
86
-
-
65549136655
-
Metformin and insulin suppress hepatic gluconeogenesis through phosphorylation of CREB binding protein
-
[86] He, L., Sabet, A., Djedjos, S., Miller, R., Sun, X., Hussain, M.A., Radovick, S., Wondisford, F.E., Metformin and insulin suppress hepatic gluconeogenesis through phosphorylation of CREB binding protein. Cell 137 (2009), 635–646, 10.1016/j.cell.2009.03.016.
-
(2009)
Cell
, vol.137
, pp. 635-646
-
-
He, L.1
Sabet, A.2
Djedjos, S.3
Miller, R.4
Sun, X.5
Hussain, M.A.6
Radovick, S.7
Wondisford, F.E.8
-
87
-
-
84893058002
-
Metformin enhances glucagon-like peptide 1 via cooperation between insulin and Wnt signaling
-
[87] Kim, M.-H., Jee, J.-H., Park, S., Lee, M.-S., Kim, K.-W., Lee, M.-K., Metformin enhances glucagon-like peptide 1 via cooperation between insulin and Wnt signaling. J. Endocrinol. 220 (2014), 117–128, 10.1530/JOE-13-0381.
-
(2014)
J. Endocrinol.
, vol.220
, pp. 117-128
-
-
Kim, M.-H.1
Jee, J.-H.2
Park, S.3
Lee, M.-S.4
Kim, K.-W.5
Lee, M.-K.6
-
88
-
-
84885383560
-
Metformin-induced inhibition of the mitochondrial respiratory chain increases FGF21 expression via ATF4 activation
-
[88] Kim, K.H., Jeong, Y.T., Kim, S.H., Jung, H.S., Park, K.S., Lee, H.-Y., Lee, M.-S., Metformin-induced inhibition of the mitochondrial respiratory chain increases FGF21 expression via ATF4 activation. Biochem. Biophys. Res. Commun. 440 (2013), 76–81, 10.1016/j.bbrc.2013.09.026.
-
(2013)
Biochem. Biophys. Res. Commun.
, vol.440
, pp. 76-81
-
-
Kim, K.H.1
Jeong, Y.T.2
Kim, S.H.3
Jung, H.S.4
Park, K.S.5
Lee, H.-Y.6
Lee, M.-S.7
-
89
-
-
77954933558
-
Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state
-
[89] Foretz, M., Hébrard, S., Leclerc, J., Zarrinpashneh, E., Soty, M., Mithieux, G., Sakamoto, K., Andreelli, F., Viollet, B., Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. J. Clin. Invest. 120 (2010), 2355–2369, 10.1172/JCI40671.
-
(2010)
J. Clin. Invest.
, vol.120
, pp. 2355-2369
-
-
Foretz, M.1
Hébrard, S.2
Leclerc, J.3
Zarrinpashneh, E.4
Soty, M.5
Mithieux, G.6
Sakamoto, K.7
Andreelli, F.8
Viollet, B.9
-
90
-
-
77949508276
-
Diminished diet-induced hyperglycemia and dyslipidemia and enhanced expression of PPARa?? And FGF21 in mice with hepatic ablation of brain-derived neurotropic factor
-
[90] Teillon, S., Calderon, G. a., Rios, M., Diminished diet-induced hyperglycemia and dyslipidemia and enhanced expression of PPARa?? And FGF21 in mice with hepatic ablation of brain-derived neurotropic factor. J. Endocrinol. 205 (2010), 37–47, 10.1677/JOE-09-0405.
-
(2010)
J. Endocrinol.
, vol.205
, pp. 37-47
-
-
Teillon, S.1
Calderon, G.A.2
Rios, M.3
-
91
-
-
84885383560
-
Metformin-induced inhibition of the mitochondrial respiratory chain increases FGF21 expression via ATF4 activation
-
[91] Kim, K.H., Jeong, Y.T., Kim, S.H., Jung, H.S., Park, K.S., Lee, H.-Y., Lee, M.-S., Metformin-induced inhibition of the mitochondrial respiratory chain increases FGF21 expression via ATF4 activation. Biochem. Biophys. Res. Commun. 440 (2013), 76–81, 10.1016/j.bbrc.2013.09.026.
-
(2013)
Biochem. Biophys. Res. Commun.
, vol.440
, pp. 76-81
-
-
Kim, K.H.1
Jeong, Y.T.2
Kim, S.H.3
Jung, H.S.4
Park, K.S.5
Lee, H.-Y.6
Lee, M.-S.7
-
92
-
-
84870054636
-
GLP-1 receptor agonists for individualized treatment of type 2 diabetes mellitus
-
[92] Meier, J.J., GLP-1 receptor agonists for individualized treatment of type 2 diabetes mellitus. Nat. Rev. Endocrinol. 8 (2012), 728–742, 10.1038/nrendo.2012.140.
-
(2012)
Nat. Rev. Endocrinol.
, vol.8
, pp. 728-742
-
-
Meier, J.J.1
-
93
-
-
84877252041
-
Exendin-4 attenuates high glucose-induced cardiomyocyte apoptosis via inhibition of endoplasmic reticulum stress and activation of SERCA2a, Am
-
[93] Younce, C.W., Burmeister, M.A., Ayala, J.E., Exendin-4 attenuates high glucose-induced cardiomyocyte apoptosis via inhibition of endoplasmic reticulum stress and activation of SERCA2a, Am. J. Physiol. - Cell Physiol. 304 (2013), C508–C518, 10.1152/ajpcell.00248.2012.
-
(2013)
J. Physiol. - Cell Physiol.
, vol.304
, pp. C508-C518
-
-
Younce, C.W.1
Burmeister, M.A.2
Ayala, J.E.3
-
94
-
-
84862058779
-
GLP1-derived nonapeptide GLP1(28-36)amide protects pancreatic -cells from glucolipotoxicity
-
[94] Liu, Z., Stanojevic, V., Brindamour, L.J., Habener, J.F., GLP1-derived nonapeptide GLP1(28-36)amide protects pancreatic -cells from glucolipotoxicity. J. Endocrinol. 213 (2012), 143–154, 10.1530/JOE-11-0328.
-
(2012)
J. Endocrinol.
, vol.213
, pp. 143-154
-
-
Liu, Z.1
Stanojevic, V.2
Brindamour, L.J.3
Habener, J.F.4
-
95
-
-
84900030527
-
Liraglutide suppresses obesity and hyperglycemia associated with increases in hepatic fibroblast growth factor 21 production in KKAy Mice
-
[95] Nonogaki, K., Hazama, M., Satoh, N., Liraglutide suppresses obesity and hyperglycemia associated with increases in hepatic fibroblast growth factor 21 production in KKAy Mice. Biomed. Res. Int., 2014, 2014, 10.1155/2014/751930.
-
(2014)
Biomed. Res. Int.
, vol.2014
-
-
Nonogaki, K.1
Hazama, M.2
Satoh, N.3
-
96
-
-
84904399681
-
Exendin-4 regulates lipid metabolism and fibroblast growth factor 21 in hepatic steatosis
-
[96] Lee, J., Hong, S.-W., Park, S.E., Rhee, E.-J., Park, C.-Y., Oh, K.-W., Park, S.-W., Lee, W.-Y., Exendin-4 regulates lipid metabolism and fibroblast growth factor 21 in hepatic steatosis. Metabolism 63 (2014), 1041–1048, 10.1016/j.metabol.2014.04.011.
-
(2014)
Metabolism
, vol.63
, pp. 1041-1048
-
-
Lee, J.1
Hong, S.-W.2
Park, S.E.3
Rhee, E.-J.4
Park, C.-Y.5
Oh, K.-W.6
Park, S.-W.7
Lee, W.-Y.8
-
97
-
-
84883481988
-
The effects of LY2405319, an FGF21 Analog, in obese human subjects with type 2 diabetes
-
[97] Gaich, G., Chien, J.Y., Fu, H., Glass, L.C., Deeg, M.A., Holland, W.L., Kharitonenkov, A., Bumol, T., Schilske, H.K., Moller, D.E., The effects of LY2405319, an FGF21 Analog, in obese human subjects with type 2 diabetes. Cell Metab. 18 (2013), 333–340, 10.1016/j.cmet.2013.08.005.
-
(2013)
Cell Metab.
, vol.18
, pp. 333-340
-
-
Gaich, G.1
Chien, J.Y.2
Fu, H.3
Glass, L.C.4
Deeg, M.A.5
Holland, W.L.6
Kharitonenkov, A.7
Bumol, T.8
Schilske, H.K.9
Moller, D.E.10
-
98
-
-
84946496130
-
Pharmacokinetics and pharmacodynamics of PF-05231023, a novel long-acting FGF21 mimetic, in a first-in-human study
-
[98] Dong, J.Q., Rossulek, M., Somayaji, V.R., Baltrukonis, D., Liang, Y., Hudson, K., Hernandez-Illas, M., Calle, R.A., Pharmacokinetics and pharmacodynamics of PF-05231023, a novel long-acting FGF21 mimetic, in a first-in-human study. Br. J. Clin. Pharmacol. 80 (2015), 1051–1063, 10.1111/bcp.12676.
-
(2015)
Br. J. Clin. Pharmacol.
, vol.80
, pp. 1051-1063
-
-
Dong, J.Q.1
Rossulek, M.2
Somayaji, V.R.3
Baltrukonis, D.4
Liang, Y.5
Hudson, K.6
Hernandez-Illas, M.7
Calle, R.A.8
|