-
1
-
-
12344323484
-
Type 2 diabetes-A matter of beta-cell life and death?
-
Rhodes, C.J. Type 2 diabetes-A matter of beta-cell life and death? Science, 2005, 307, 380-384.
-
(2005)
Science
, vol.307
, pp. 380-384
-
-
Rhodes, C.J.1
-
2
-
-
84901445280
-
β-cell failure in type 2 diabetes: Postulated mechanisms and prospects for prevention and treatment
-
Halban, P.A.; Polonsky, K.S.; Bowden, D.W.; Hawkins, M.A.; Ling, C.; Mather, K.J.; Powers. A.C.; Rhodes, C.J.; Sussel, L.; Weir, G.C. β-cell failure in type 2 diabetes: Postulated mechanisms and prospects for prevention and treatment. Diabetes Care, 2014, 37, 1751-1758.
-
(2014)
Diabetes Care
, vol.37
, pp. 1751-1758
-
-
Halban, P.A.1
Polonsky, K.S.2
Bowden, D.W.3
Hawkins, M.A.4
Ling, C.5
Mather, K.J.6
Powers, A.C.7
Rhodes, C.J.8
Sussel, L.9
Weir, G.C.10
-
3
-
-
84926320134
-
Pancreatic α-cell glucose toxicity in type 2 diabetes mellitus
-
Kaneto, H. Pancreatic α-cell glucose toxicity in type 2 diabetes mellitus. Curr. Diabetes Rev., 2015, 11, 2-6.
-
(2015)
Curr. Diabetes Rev.
, vol.11
, pp. 2-6
-
-
Kaneto, H.1
-
4
-
-
0036092239
-
Banting lecture 2001: Dysregulation of fatty acid metabolism in the etiology of type 2 diabetes
-
McGarry, J.D. Banting lecture 2001: Dysregulation of fatty acid metabolism in the etiology of type 2 diabetes. Diabetes, 2002, 51, 7-18.
-
(2002)
Diabetes
, vol.51
, pp. 7-18
-
-
McGarry, J.D.1
-
5
-
-
0036153256
-
Minireview: Secondary betacell failure in type 2 diabetes-A convergence of glucotoxicity and lipotoxicity
-
Poitout, V.; Robertson, R.P. Minireview: Secondary betacell failure in type 2 diabetes-A convergence of glucotoxicity and lipotoxicity. Endocrinology, 2002, 143, 339-342.
-
(2002)
Endocrinology
, vol.143
, pp. 339-342
-
-
Poitout, V.1
Robertson, R.P.2
-
6
-
-
33745863033
-
Islet β cell failure in type 2 diabetes
-
Prentki, M.; Nolan, C.J. Islet β cell failure in type 2 diabetes. J. Clin. Invest., 2006, 116, 1802-1812.
-
(2006)
J. Clin. Invest.
, vol.116
, pp. 1802-1812
-
-
Prentki, M.1
Nolan, C.J.2
-
7
-
-
84925847548
-
Role of pancreatic transcription factors in maintenance of mature α-cell function
-
Kaneto, H.; Matsuoka, T. Role of pancreatic transcription factors in maintenance of mature α-cell function. Int. J. Mol. Sci., 2015, 16, 6281-6297.
-
(2015)
Int. J. Mol. Sci.
, vol.16
, pp. 6281-6297
-
-
Kaneto, H.1
Matsuoka, T.2
-
8
-
-
0031020374
-
Glycation-dependent reactive oxygen species-mediated suppression of the insulin gene promoter activity in HIT cells
-
Matsuoka, T.; Kajimoto, Y.; Watada, H.; Kaneto, H.; Kishimoto, M.; Umayahara, Y.; Fujitani, Y.; Kamada, T.; Kawamori, R.; Yamasaki, Y. Glycation-dependent, reactive oxygen species-mediated suppression of the insulin gene promoter activity in HIT cells. J. Clin. Invest., 1997, 99, 144-150.
-
(1997)
J. Clin. Invest.
, vol.99
, pp. 144-150
-
-
Matsuoka, T.1
Kajimoto, Y.2
Watada, H.3
Kaneto, H.4
Kishimoto, M.5
Umayahara, Y.6
Fujitani, Y.7
Kamada, T.8
Kawamori, R.9
Yamasaki, Y.10
-
9
-
-
0032998220
-
Hyperglycemia causes oxidative stress in pancreatic α-cells of GK rats, a model of type 2 diabetes
-
Ihara, Y.; Toyokuni, S.; Uchida, K.; Odaka, H.; Tanaka, T.; Ikeda, H.; Hiai, H.; Seino, Y.; Yamada, Y. Hyperglycemia causes oxidative stress in pancreatic α-cells of GK rats, a model of type 2 diabetes. Diabetes, 1999, 48, 927-932.
-
(1999)
Diabetes
, vol.48
, pp. 927-932
-
-
Ihara, Y.1
Toyokuni, S.2
Uchida, K.3
Odaka, H.4
Tanaka, T.5
Ikeda, H.6
Hiai, H.7
Seino, Y.8
Yamada, Y.9
-
10
-
-
0033600762
-
Hydrogen peroxide alters mitochondrial activation and insulin secretion in pancreatic beta cells
-
Maechler, P.; Jornot, L.; Wollheim, C.B. Hydrogen peroxide alters mitochondrial activation and insulin secretion in pancreatic beta cells. J. Biol. Chem., 1999, 274, 27905-27913.
-
(1999)
J. Biol. Chem.
, vol.274
, pp. 27905-27913
-
-
Maechler, P.1
Jornot, L.2
Wollheim, C.B.3
-
11
-
-
0033499583
-
Beneficial effects of antioxidants for diabetes: Possible protection of pancreatic α-cells against glucose toxicity
-
Kaneto, H.; Kajimoto, Y.; Miyagawa, J.; Matsuoka, T.; Fujitani, Y.; Umayahara, Y.; Hanafusa, T.; Matsuzawa, Y.; Yamasaki, Y.; Hori, M. Beneficial effects of antioxidants for diabetes: Possible protection of pancreatic α-cells against glucose toxicity. Diabetes, 1999, 48, 2398-2406.
-
(1999)
Diabetes
, vol.48
, pp. 2398-2406
-
-
Kaneto, H.1
Kajimoto, Y.2
Miyagawa, J.3
Matsuoka, T.4
Fujitani, Y.5
Umayahara, Y.6
Hanafusa, T.7
Matsuzawa, Y.8
Yamasaki, Y.9
Hori, M.10
-
12
-
-
0035903192
-
Activation of the hexosamine pathway leads to deterioration of pancreatic α-cell function by provoking oxidative stress
-
Kaneto, H.; Xu, G.; Song, K.H.; Suzuma, K.; Bonner-Weir, S.; Sharma, A.; Weir, G.C. Activation of the hexosamine pathway leads to deterioration of pancreatic α-cell function by provoking oxidative stress. J. Biol. Chem., 2001, 276, 31099-31104.
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 31099-31104
-
-
Kaneto, H.1
Xu, G.2
Song, K.H.3
Suzuma, K.4
Bonner-Weir, S.5
Sharma, A.6
Weir, G.C.7
-
13
-
-
10744227975
-
Oxidative stress induces nucleocytoplasmic translocation of pancreatic transcription factor PDX-1 through activation of c-Jun N-terminal kinase
-
Kawamori, D.; Kajimoto, Y.; Kaneto, H.; Umayahara, Y.; Fujitani, Y.; Miyatsuka, T.; Watada, H.; Leibiger, L.B.; Yamasaki, Y.; Hori, M. Oxidative stress induces nucleocytoplasmic translocation of pancreatic transcription factor PDX-1 through activation of c-Jun N-terminal kinase. Diabetes, 2003, 52, 2896-2904.
-
(2003)
Diabetes
, vol.52
, pp. 2896-2904
-
-
Kawamori, D.1
Kajimoto, Y.2
Kaneto, H.3
Umayahara, Y.4
Fujitani, Y.5
Miyatsuka, T.6
Watada, H.7
Leibiger, L.B.8
Yamasaki, Y.9
Hori, M.10
-
14
-
-
21544471229
-
Oxidative stress, ER stress, and the JNK pathway in type 2 diabetes
-
Kaneto, H.; Matsuoka, T.; Nakatani, Y.; Kawamori, D.; Miyatsuka, T.; Matsuhisa, M.; Yamasaki, Y. Oxidative stress, ER stress, and the JNK pathway in type 2 diabetes. J. Mol. Med., 2005, 83, 429-439.
-
(2005)
J. Mol. Med.
, vol.83
, pp. 429-439
-
-
Kaneto, H.1
Matsuoka, T.2
Nakatani, Y.3
Kawamori, D.4
Miyatsuka, T.5
Matsuhisa, M.6
Yamasaki, Y.7
-
15
-
-
0037341238
-
Glucose toxicity in α-cells: Type 2 diabetes, good radicals gone bad, and the glutathione connection
-
Robertson, R.P.; Harmon, J.; Tran, P.O.; Tanaka, Y.; Takahashi, H. Glucose toxicity in α-cells: Type 2 diabetes, good radicals gone bad, and the glutathione connection. Diabetes, 2003, 52, 581-587.
-
(2003)
Diabetes
, vol.52
, pp. 581-587
-
-
Robertson, R.P.1
Harmon, J.2
Tran, P.O.3
Tanaka, Y.4
Takahashi, H.5
-
16
-
-
5644248079
-
Chronic oxidative stress as a central mechanism for glucose toxicity in pancreatic islet beta cells in diabetes
-
Robertson, R.P. Chronic oxidative stress as a central mechanism for glucose toxicity in pancreatic islet beta cells in diabetes. J. Biol. Chem., 2004, 279, 42351-42354.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 42351-42354
-
-
Robertson, R.P.1
-
17
-
-
0032863183
-
Prevention of glucose toxicity in HIT-T15 cells and Zucker diabetic fatty rats by antioxidants
-
Tanaka, Y.; Gleason, C.E.; Tran, P.O.T.; Harmon, J.S.; Robertson, R.P. Prevention of glucose toxicity in HIT-T15 cells and Zucker diabetic fatty rats by antioxidants. Proc. Natl. Acad. Sci. USA, 1999, 96, 10857-10862.
-
(1999)
Proc. Natl. Acad. Sci. USA
, vol.96
, pp. 10857-10862
-
-
Tanaka, Y.1
Gleason, C.E.2
Tran, P.O.T.3
Harmon, J.S.4
Robertson, R.P.5
-
18
-
-
0037125997
-
A role of glutathione peroxidase in protecting pancreatic α cells against oxidative stress in a model of glucose toxicity
-
Tanaka, Y.; Tran, P.O.T.; Harmon, J.; Robertson, R.P. A role of glutathione peroxidase in protecting pancreatic α cells against oxidative stress in a model of glucose toxicity. Proc. Natl. Acad. Sci. USA, 2002, 99, 12363-12368.
-
(2002)
Proc. Natl. Acad. Sci. USA
, vol.99
, pp. 12363-12368
-
-
Tanaka, Y.1
Tran, P.O.T.2
Harmon, J.3
Robertson, R.P.4
-
19
-
-
15744379018
-
Oxidative stressmediated, post-translational loss of MafA protein as a contributing mechanism to loss of insulin gene expression in glucotoxic beta cells
-
Harmon, J.S.; Stein, R.; Robertson, R.P. Oxidative stressmediated, post-translational loss of MafA protein as a contributing mechanism to loss of insulin gene expression in glucotoxic beta cells. J. Biol. Chem., 2005, 280, 11107-11113.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 11107-11113
-
-
Harmon, J.S.1
Stein, R.2
Robertson, R.P.3
-
20
-
-
0027384997
-
IPF1 a homeodomain-containing-transactivator of the insulin gene
-
Ohlsson, H.; Karlsson, K.; Edlund, T. IPF1, a homeodomain-containing-transactivator of the insulin gene. EMBO J., 1993, 12, 4251-4259.
-
(1993)
EMBO J.
, vol.12
, pp. 4251-4259
-
-
Ohlsson, H.1
Karlsson, K.2
Edlund, T.3
-
21
-
-
0027373441
-
Characterization of somatostatin transactivating factor-1, a novel homeobox factor that stimulates somatostatin expression in pancreatic islet cells
-
Leonard, J.; Peers, B.; Johnson, T.; Ferreri, K.; Lee, S.; Montminy, M.R. Characterization of somatostatin transactivating factor-1, a novel homeobox factor that stimulates somatostatin expression in pancreatic islet cells. Mol. Endocrinol., 1993, 7, 1275-1283.
-
(1993)
Mol. Endocrinol.
, vol.7
, pp. 1275-1283
-
-
Leonard, J.1
Peers, B.2
Johnson, T.3
Ferreri, K.4
Lee, S.5
Montminy, M.R.6
-
22
-
-
0028314969
-
IDX-1: A new homeodomain transcription factor expressed in rat pancreatic islets and duodenum that transactivates the somatostatin gene
-
Miller, C.P.; McGehee, R.E.; Habener, J.F. IDX-1: A new homeodomain transcription factor expressed in rat pancreatic islets and duodenum that transactivates the somatostatin gene. EMBO J., 1994, 13, 1145-1156.
-
(1994)
EMBO J.
, vol.13
, pp. 1145-1156
-
-
Miller, C.P.1
McGehee, R.E.2
Habener, J.F.3
-
23
-
-
0028149890
-
Insulinpromoter-factor 1 is required for pancreas development in mice
-
Jonsson, J.; Carlsson, L.; Edlund, T.; Edlund, H. Insulinpromoter-factor 1 is required for pancreas development in mice. Nature, 1994, 37, 606-609.
-
(1994)
Nature
, vol.37
, pp. 606-609
-
-
Jonsson, J.1
Carlsson, L.2
Edlund, T.3
Edlund, H.4
-
24
-
-
0032525981
-
α-cell-specific inactivation of the mouse Ipf1/Pdx1 gene results in loss of the α-cell phenotype and maturity onset diabetes
-
Ahlgren, U.; Jonsson, J.; Jonsson, L.; Simu, K.; Edlund, H. α-cell-specific inactivation of the mouse Ipf1/Pdx1 gene results in loss of the α-cell phenotype and maturity onset diabetes. Genes Dev., 1998, 12, 1763-1768.
-
(1998)
Genes Dev.
, vol.12
, pp. 1763-1768
-
-
Ahlgren, U.1
Jonsson, J.2
Jonsson, L.3
Simu, K.4
Edlund, H.5
-
25
-
-
0037125977
-
Experimental control of pancreatic development and maintenance
-
Holland, A.M.; Hale, M.A.; Kagami, H.; Hammer, R.E.; MacDonald, R.J. Experimental control of pancreatic development and maintenance. Proc. Natl. Acad. Sci. USA, 2002, 99, 12236-12241.
-
(2002)
Proc. Natl. Acad. Sci. USA
, vol.99
, pp. 12236-12241
-
-
Holland, A.M.1
Hale, M.A.2
Kagami, H.3
Hammer, R.E.4
MacDonald, R.J.5
-
26
-
-
0038692109
-
PDX-1 protein containing its own Antennapedia-like protein transduction domain can transduce pancreatic duct and islet cells
-
Noguchi, H.; Kaneto, H.; Weir, G.C.; Bonner-Weir, S. PDX-1 protein containing its own Antennapedia-like protein transduction domain can transduce pancreatic duct and islet cells. Diabetes, 2003, 52, 1732-1737.
-
(2003)
Diabetes
, vol.52
, pp. 1732-1737
-
-
Noguchi, H.1
Kaneto, H.2
Weir, G.C.3
Bonner-Weir, S.4
-
27
-
-
15944417831
-
PDX-1/VP16 fusion protein, together with NeuroD or Ngn3, markedly induces insulin gene transcription and ameliorates glucose tolerance
-
Kaneto, H.; Nakatani, Y.; Miyatsuka, T.; Matsuoka, T.; Matsuhisa, M.; Hori, M.; Yamasaki, Y. PDX-1/VP16 fusion protein, together with NeuroD or Ngn3, markedly induces insulin gene transcription and ameliorates glucose tolerance. Diabetes, 2005, 54, 1009-1022.
-
(2005)
Diabetes
, vol.54
, pp. 1009-1022
-
-
Kaneto, H.1
Nakatani, Y.2
Miyatsuka, T.3
Matsuoka, T.4
Matsuhisa, M.5
Hori, M.6
Yamasaki, Y.7
-
28
-
-
33744813002
-
Persistent expression of PDX-1 causes acinar-to-duct transition through Stat3 activation
-
Miyatsuka, T.; Kaneto, H.; Shiraiwa, T.; Matsuoka, T.; Yamamoto, K.; Kato, K.; Nakamura, Y.; Akira, S.; Takeda, K.; Kajimoto, Y.; Yamasaki, Y.; Sandgren, E.P.; Kawaguchi, Y.; Wright, C.V.E.; Fujitani, Y. Persistent expression of PDX-1 causes acinar-to-duct transition through Stat3 activation. Genes Develop., 2006, 20, 1435-1440.
-
(2006)
Genes Develop.
, vol.20
, pp. 1435-1440
-
-
Miyatsuka, T.1
Kaneto, H.2
Shiraiwa, T.3
Matsuoka, T.4
Yamamoto, K.5
Kato, K.6
Nakamura, Y.7
Akira, S.8
Takeda, K.9
Kajimoto, Y.10
Yamasaki, Y.11
Sandgren, E.P.12
Kawaguchi, Y.13
Wright, C.V.E.14
Fujitani, Y.15
-
29
-
-
53349178722
-
In vivo reprogramming of adult pancreatic exocrine cells to beta-cells
-
Zhou, Q.; Brown, J.; Kanarek, A.; Rajagopal, J.; Melton, D.A. In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature, 2008, 455, 627-32.
-
(2008)
Nature
, vol.455
, pp. 627-632
-
-
Zhou, Q.1
Brown, J.2
Kanarek, A.3
Rajagopal, J.4
Melton, D.A.5
-
30
-
-
84894601056
-
Sequential introduction and dosage balance of defined transcription factors affect reprogramming efficiency from pancreatic duct cells into insulin-producing cells
-
Miyashita, K.; Miyatsuka, T.; Matsuoka, T.A.; Sasaki, S.; Takebe, S.; Yasuda, T.; Watada, H.; Kaneto, H.; Shimomura, I. Sequential introduction and dosage balance of defined transcription factors affect reprogramming efficiency from pancreatic duct cells into insulin-producing cells. Biochem. Biophys. Res. Commun., 2014, 444, 514-519.
-
(2014)
Biochem. Biophys. Res. Commun.
, vol.444
, pp. 514-519
-
-
Miyashita, K.1
Miyatsuka, T.2
Matsuoka, T.A.3
Sasaki, S.4
Takebe, S.5
Yasuda, T.6
Watada, H.7
Kaneto, H.8
Shimomura, I.9
-
31
-
-
34547459936
-
Crucial role of PDX-1 in pancreas development, α-cell differentiation, and induc tion of surrogate α-cells
-
Kaneto, H.; Miyatsuka, T.; Shiraiwa, T.; Yamamoto, K.; Kato, K.; Fujitani, Y.; Matsuoka, T. Crucial role of PDX-1 in pancreas development, α-cell differentiation, and induc tion of surrogate α-cells. Curr. Med. Chem., 2007, 14, 103-112.
-
(2007)
Curr. Med. Chem.
, vol.14
, pp. 103-112
-
-
Kaneto, H.1
Miyatsuka, T.2
Shiraiwa, T.3
Yamamoto, K.4
Kato, K.5
Fujitani, Y.6
Matsuoka, T.7
-
32
-
-
0037076351
-
Identification of α-cell-specific insulin gene transcription factor RIPE3b1 as mammalian MafA
-
Olbrot, M.; Rud, J.; Moss, L.G.; Sharma, A. Identification of α-cell-specific insulin gene transcription factor RIPE3b1 as mammalian MafA. Proc. Natl. Acad. Sci. USA, 2002, 99, 6737-6742.
-
(2002)
Proc. Natl. Acad. Sci. USA
, vol.99
, pp. 6737-6742
-
-
Olbrot, M.1
Rud, J.2
Moss, L.G.3
Sharma, A.4
-
33
-
-
0037147306
-
MafA is a glucose-regulated and pancreatic α-cell-specific transcriptional activator for the insulin gene
-
Kataoka, K.; Han, S.I.; Shioda, S.; Hirai, M.; Nishizawa, M.; Handa, H. MafA is a glucose-regulated and pancreatic α-cell-specific transcriptional activator for the insulin gene. J. Biol. Chem., 2002, 277, 49903-49910.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 49903-49910
-
-
Kataoka, K.1
Han, S.I.2
Shioda, S.3
Hirai, M.4
Nishizawa, M.5
Handa, H.6
-
34
-
-
0041970072
-
Members of the large Maf transcription family regulate insulin gene transcription in islet α cells
-
Matsuoka, T.; Zhao, L.; Artner, I.; Jarrett, H.W.; Friedman, D.; Means, A.; Stein, R. Members of the large Maf transcription family regulate insulin gene transcription in islet α cells. Mol. Cell. Biol., 2003, 23, 6049-6062.
-
(2003)
Mol. Cell. Biol.
, vol.23
, pp. 6049-6062
-
-
Matsuoka, T.1
Zhao, L.2
Artner, I.3
Jarrett, H.W.4
Friedman, D.5
Means, A.6
Stein, R.7
-
35
-
-
1542297749
-
The MafA transcription factor appears to be responsible for tissue-specific expression of insulin
-
Matsuoka, T.; Artner, I.; Henderson, E.; Means, A.; Sander, M.; Stein, R. The MafA transcription factor appears to be responsible for tissue-specific expression of insulin. Proc. Natl. Acad. Sci. USA, 2004, 101, 2930-2933.
-
(2004)
Proc. Natl. Acad. Sci. USA
, vol.101
, pp. 2930-2933
-
-
Matsuoka, T.1
Artner, I.2
Henderson, E.3
Means, A.4
Sander, M.5
Stein, R.6
-
36
-
-
17644381301
-
A crucial role of MafA as a novel therapeutic target for diabetes
-
Kaneto, H.; Matsuoka, T.; Nakatani, Y.; Miyatsuka, T.; Matsuhisa, M.; Hori, M.; Yamasaki, Y. A crucial role of MafA as a novel therapeutic target for diabetes. J. Biol. Chem., 2005, 280, 15047-15052.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 15047-15052
-
-
Kaneto, H.1
Matsuoka, T.2
Nakatani, Y.3
Miyatsuka, T.4
Matsuhisa, M.5
Hori, M.6
Yamasaki, Y.7
-
37
-
-
35649014826
-
MafA regulates expression of genes important to islet α cell function
-
Matsuoka, T.; Kaneto, H.; Stein, R.; Miyatsuka, T.; Kawamori, D.; Henderson, E.; Kojima, I.; Matsuhisa, M.; Hori, M.; Yamasaki, Y. MafA regulates expression of genes important to islet α cell function. Mol. Endocrinol., 2007, 21, 2764-2774.
-
(2007)
Mol. Endocrinol.
, vol.21
, pp. 2764-2774
-
-
Matsuoka, T.1
Kaneto, H.2
Stein, R.3
Miyatsuka, T.4
Kawamori, D.5
Henderson, E.6
Kojima, I.7
Matsuhisa, M.8
Hori, M.9
Yamasaki, Y.10
-
38
-
-
34447124165
-
MAFA controls genes implicated in insulin biosynthesis and secretion
-
Wang, H.; Brun, T.; Kataoka, K.; Sharma, A.J.; Wollheim, C.B. MAFA controls genes implicated in insulin biosynthesis and secretion. Diabetologia, 2007, 50, 348-358.
-
(2007)
Diabetologia
, vol.50
, pp. 348-358
-
-
Wang, H.1
Brun, T.2
Kataoka, K.3
Sharma, A.J.4
Wollheim, C.B.5
-
39
-
-
20344368579
-
MafA is a key regulator of glucose-stimulated insulin secretion
-
Zhang, C.; Moriguchi, T.; Kajihara, M.; Esaki, R.; Harada, A.; Shimohata, H.; Oishi, H.; Hamada, M.; Morito, N.; Hasegawa, K.; Kudo, T.; Engel, J.D.; Yamamoto, M.; Takahashi, S. MafA is a key regulator of glucose-stimulated insulin secretion. Mol. Cell Biol., 2005, 25, 4969-4976.
-
(2005)
Mol. Cell Biol.
, vol.25
, pp. 4969-4976
-
-
Zhang, C.1
Moriguchi, T.2
Kajihara, M.3
Esaki, R.4
Harada, A.5
Shimohata, H.6
Oishi, H.7
Hamada, M.8
Morito, N.9
Hasegawa, K.10
Kudo, T.11
Engel, J.D.12
Yamamoto, M.13
Takahashi, S.14
-
40
-
-
77954258871
-
Regulation of MafA expression in pancreatic α-cells in db/db mice with diabetes
-
Matsuoka, T.; Kaneto, H.; Miyatsuka, T.; Yamamoto, T.; Yamamoto, K.; Kato, K.; Shimomura, I.; Stein, R.; Matsuhisa, M. Regulation of MafA expression in pancreatic α-cells in db/db mice with diabetes. Diabetes, 2010, 59, 1709-1720.
-
(2010)
Diabetes
, vol.59
, pp. 1709-1720
-
-
Matsuoka, T.1
Kaneto, H.2
Miyatsuka, T.3
Yamamoto, T.4
Yamamoto, K.5
Kato, K.6
Shimomura, I.7
Stein, R.8
Matsuhisa, M.9
-
41
-
-
84901293490
-
The MafA transcription factor becomes essential to islet β-cells soon after birth
-
Hang, Y.; Yamamoto, T.; Benniger, R.K.; Brissova, M.; Guo, M.; Bush, W.; Piston, D.W.; Powers, A.C.; Magnuson, M.; Thurmond, D.C.; Stein, R. The MafA transcription factor becomes essential to islet β-cells soon after birth. Diabetes, 2014, 63, 1994-2005.
-
(2014)
Diabetes
, vol.63
, pp. 1994-2005
-
-
Hang, Y.1
Yamamoto, T.2
Benniger, R.K.3
Brissova, M.4
Guo, M.5
Bush, W.6
Piston, D.W.7
Powers, A.C.8
Magnuson, M.9
Thurmond, D.C.10
Stein, R.11
-
42
-
-
84925496747
-
MafA is critical for maintenance of the mature beta cell phenotype in mice
-
Nishimura, W.; Takahashi, S.; Yasuda, K. MafA is critical for maintenance of the mature beta cell phenotype in mice. Diabetologia, 2015, 58, 566-574.
-
(2015)
Diabetologia
, vol.58
, pp. 566-574
-
-
Nishimura, W.1
Takahashi, S.2
Yasuda, K.3
-
43
-
-
84925308021
-
Preserving MafA expression in diabetic islet α-cells improves glycemic control in vivo
-
Matsuoka, T.; Kaneto, H.; Kawashima, S.; Miyatsuka, T.; Tochino, Y.; Yoshikawa, A.; Imagawa, A.; Miyazaki, J.; Gannon, M.; Stein, R.; Shimomura, I. Preserving MafA expression in diabetic islet α-cells improves glycemic control in vivo. J. Biol. Chem., 2015, 290, 7647-7657.
-
(2015)
J. Biol. Chem.
, vol.290
, pp. 7647-7657
-
-
Matsuoka, T.1
Kaneto, H.2
Kawashima, S.3
Miyatsuka, T.4
Tochino, Y.5
Yoshikawa, A.6
Imagawa, A.7
Miyazaki, J.8
Gannon, M.9
Stein, R.10
Shimomura, I.11
-
44
-
-
0028941181
-
Tissuespecific regulation of the insulin gene by a novel basic helix-loop-helix transcription factor
-
Naya, F.J.; Stellrecht, C.M.M.; and Tsai, M.-J. Tissuespecific regulation of the insulin gene by a novel basic helix-loop-helix transcription factor. Genes Dev., 1995, 9, 1009-1019.
-
(1995)
Genes Dev.
, vol.9
, pp. 1009-1019
-
-
Naya, F.J.1
Stellrecht, C.M.M.2
Tsai, M.-J.3
-
45
-
-
0030886674
-
Diabetes, defective pancreatic morphogenesis, and abnormal enteroendocrine differentiation in BETA2/NeuroD-deficient mice
-
Naya, F.J. ; Huang, H.; Qiu, Y.; Mutoh, H.; DeMayo, F.; Leiter, A.B.; and Tsai, M.-J. Diabetes, defective pancreatic morphogenesis, and abnormal enteroendocrine differentiation in BETA2/NeuroD-deficient mice. Genes Dev., 1997, 11, 323-334.
-
(1997)
Genes Dev.
, vol.11
, pp. 323-334
-
-
Naya, F.J.1
Huang, H.2
Qiu, Y.3
Mutoh, H.4
DeMayo, F.5
Leiter, A.B.6
Tsai, M.-J.7
-
46
-
-
0028127761
-
Glucose-induced transcription of the insulin gene is mediated by factors required for α-celltype-specific expression
-
Sharma, A.; and Stein, R. Glucose-induced transcription of the insulin gene is mediated by factors required for α-celltype-specific expression. Mol. Cell Biol., 1994, 14, 871-879.
-
(1994)
Mol. Cell Biol.
, vol.14
, pp. 871-879
-
-
Sharma, A.1
Stein, R.2
-
47
-
-
0028358092
-
The insulin gene contains multiple transcriptional elements that respond to glucose
-
German, M.S.; and Wang, J. The insulin gene contains multiple transcriptional elements that respond to glucose. Mol. Cell. Biol., 1994, 14, 4067-4075.
-
(1994)
Mol. Cell. Biol.
, vol.14
, pp. 4067-4075
-
-
German, M.S.1
Wang, J.2
-
48
-
-
0033553462
-
Chronic hyperglycemia triggers loss of pancreatic beta cell differentiation in an animal model of diabetes
-
Jonas, J.C.; Sharma, A.; Hasenkamp, W.; Ilkova, H.; Patan G.; Laybutt, R.; Bonner-Weir, S.; and Weir, G.C. Chronic hyperglycemia triggers loss of pancreatic beta cell differentiation in an animal model of diabetes. J. Biol. Chem., 1999, 274, 14112-14121.
-
(1999)
J. Biol. Chem.
, vol.274
, pp. 14112-14121
-
-
Jonas, J.C.1
Sharma, A.2
Hasenkamp, W.3
Ilkova, H.4
Patan, G.5
Laybutt, R.6
Bonner-Weir, S.7
Weir, G.C.8
-
49
-
-
0035112448
-
Key events of pancreas formation are triggered in gut endoderm by ectopic expression of pancreatic regulatory genes
-
Grapin-Botton, A.; Majithia, A.R.; Melton, D.A. Key events of pancreas formation are triggered in gut endoderm by ectopic expression of pancreatic regulatory genes. Genes Dev., 2001, 15, 444-454.
-
(2001)
Genes Dev.
, vol.15
, pp. 444-454
-
-
Grapin-Botton, A.1
Majithia, A.R.2
Melton, D.A.3
-
50
-
-
0033606972
-
Notch signaling controls pancreatic cell differentiation
-
Apelqvist, A.; Li, H. ; Sommer, L.; Beatus, P.; Anderson, D.J.; Honjo, T.; de Angelis, M.H.; Lendahl, U.; Edlund, H. Notch signaling controls pancreatic cell differentiation. Nature, 1999, 400, 877-881.
-
(1999)
Nature
, vol.400
, pp. 877-881
-
-
Apelqvist, A.1
Li, H.2
Sommer, L.3
Beatus, P.4
Anderson, D.J.5
Honjo, T.6
De Angelis, M.H.7
Lendahl, U.8
Edlund, H.9
-
51
-
-
0033825383
-
Expression of neurogenin3 reveals an islet cell precursor population in the pancreas
-
Schwitzgebel, V.M.; Scheel, D.W.; Conners, J.R.; Kalamaras, J.; Lee, J.E. ; Anderson, D.J.; Sussel, L.; Johnson, J.D. ; German, M.S. Expression of neurogenin3 reveals an islet cell precursor population in the pancreas. Development, 2000, 127, 3533-3542.
-
(2000)
Development
, vol.127
, pp. 3533-3542
-
-
Schwitzgebel, V.M.1
Scheel, D.W.2
Conners, J.R.3
Kalamaras, J.4
Lee, J.E.5
Anderson, D.J.6
Sussel, L.7
Johnson, J.D.8
German, M.S.9
-
52
-
-
0034652287
-
Neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas
-
Gradwohl, G.; Dierich, A.; LeMeur, M.; Guillemot, F. neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc. Natl. Acad. Sci. USA, 2000, 97, 1607-1611.
-
(2000)
Proc. Natl. Acad. Sci. USA
, vol.97
, pp. 1607-1611
-
-
Gradwohl, G.1
Dierich, A.2
LeMeur, M.3
Guillemot, F.4
-
53
-
-
84866389264
-
Pancreatic β cell dedifferentiation as a mechanism of diabetic β cell failure
-
Talchai, C.; Xuan, S.; Lin, H.V.; Sussel, L.; Accili, D. Pancreatic β cell dedifferentiation as a mechanism of diabetic β cell failure. Cell, 2012, 50, 1223-1234.
-
(2012)
Cell
, vol.50
, pp. 1223-1234
-
-
Talchai, C.1
Xuan, S.2
Lin, H.V.3
Sussel, L.4
Accili, D.5
-
54
-
-
84900330718
-
Pancreatic β cell dedifferentiation in diabetes and redifferentiation following insulin therapy
-
Wang, Z.; York, N.W.; Nichols, C.G.; Remedi. M/S. Pancreatic β cell dedifferentiation in diabetes and redifferentiation following insulin therapy. Cell Metab., 2014, 19, 872-82.
-
(2014)
Cell Metab.
, vol.19
, pp. 872-882
-
-
Wang, Z.1
York, N.W.2
Nichols, C.G.3
Remedi, M.S.4
-
55
-
-
0027391607
-
Preserved incretin activity of glucagon-like peptide 1 [7-36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus
-
Nauck, M. A.; Heimesaat, M. M.; Orskov, C.; Holst, J. J.; Ebert, R.; Creutzfeldt, W. Preserved incretin activity of glucagon-like peptide 1 [7-36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus. J. Clin. Invest., 1993, 91, 301-307.
-
(1993)
J. Clin. Invest.
, vol.91
, pp. 301-307
-
-
Nauck, M.A.1
Heimesaat, M.M.2
Orskov, C.3
Holst, J.J.4
Ebert, R.5
Creutzfeldt, W.6
-
56
-
-
34249724553
-
Downregulation of GLP-1 and GIP receptor expression by hyperglycemia: Possible contribution to the impaired incretin effects in diabetes
-
Xu, G.; Kaneto, H.; Laybutt, D.R.; Duvivier-Kali, V.; Trivedi, N.; Suzuma, K.; King, G.L.; Weir, G.C.; Bonner-Weir, S. Downregulation of GLP-1 and GIP receptor expression by hyperglycemia: Possible contribution to the impaired incretin effects in diabetes. Diabetes, 2007, 56, 1551-1558.
-
(2007)
Diabetes
, vol.56
, pp. 1551-1558
-
-
Xu, G.1
Kaneto, H.2
Laybutt, D.R.3
Duvivier-Kali, V.4
Trivedi, N.5
Suzuma, K.6
King, G.L.7
Weir, G.C.8
Bonner-Weir, S.9
-
57
-
-
78650866390
-
Effect of alogliptin, pioglitazone and glargine on pancreatic α-cells in diabetic db/db mice
-
Kawashima, S.; Matsuoka, T.; Kaneto, H.; Tochino, Y.; Kato, K.; Yamamoto, K.; Yamamoto, T.; Matsuhisa, M.; Shimomura, I. Effect of alogliptin, pioglitazone and glargine on pancreatic α-cells in diabetic db/db mice. Biochem. Biophys. Res. Commun., 2011, 404, 534-540.
-
(2011)
Biochem. Biophys. Res. Commun.
, vol.404
, pp. 534-540
-
-
Kawashima, S.1
Matsuoka, T.2
Kaneto, H.3
Tochino, Y.4
Kato, K.5
Yamamoto, K.6
Yamamoto, T.7
Matsuhisa, M.8
Shimomura, I.9
-
58
-
-
67249096093
-
Decreased TCF7L2 protein levels in type 2 diabetes mellitus correlate with downregulation of GIP-and GLP-1 receptors and impaired beta-cell function
-
Shu, L.; Matveyenko, A.V.; Kerr-Conte, J.; Cho, J.H.; McIntosh, C.H.; Maedler, K. Decreased TCF7L2 protein levels in type 2 diabetes mellitus correlate with downregulation of GIP-and GLP-1 receptors and impaired beta-cell function. Hum. Mol. Genet., 2009, 18, 2388-2399.
-
(2009)
Hum. Mol. Genet.
, vol.18
, pp. 2388-2399
-
-
Shu, L.1
Matveyenko, A.V.2
Kerr-Conte, J.3
Cho, J.H.4
McIntosh, C.H.5
Maedler, K.6
-
59
-
-
43749120731
-
Glucagon-like peptide-1 activation of TCF7L2-dependent Wnt signaling enhances pancreatic beta cell proliferation
-
Liu, Z.; Habener, J.F. Glucagon-like peptide-1 activation of TCF7L2-dependent Wnt signaling enhances pancreatic beta cell proliferation. J. Biol. Chem., 2008, 283, 8723-8735.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 8723-8735
-
-
Liu, Z.1
Habener, J.F.2
-
60
-
-
84894538334
-
TCF7L2 in mouse pancreatic beta cells plays a crucial role in glucose homeostasis by regulating beta cell mass
-
Takamoto, I.; Kubota, N.; Nakaya, K.; Kumagai, K.; Hashimoto, S.; Kubota, T.; Inoue, M.; Kajiwara, E.; Katsuyama, H.; Obata, A.; Sakurai, Y.; Iwamoto, M.; Kitamura, T.; Ueki, K.; Kadowaki, T. TCF7L2 in mouse pancreatic beta cells plays a crucial role in glucose homeostasis by regulating beta cell mass. Diabetologia, 2014, 57, 542-553.
-
(2014)
Diabetologia
, vol.57
, pp. 542-553
-
-
Takamoto, I.1
Kubota, N.2
Nakaya, K.3
Kumagai, K.4
Hashimoto, S.5
Kubota, T.6
Inoue, M.7
Kajiwara, E.8
Katsuyama, H.9
Obata, A.10
Sakurai, Y.11
Iwamoto, M.12
Kitamura, T.13
Ueki, K.14
Kadowaki, T.15
-
61
-
-
84924320471
-
Selective disruption of Tcf7l2 in the pancreatic β cell impairs secretory function and lowers β cell mass
-
Mitchell, R.K.; Mondragon, A.; Chen, L.; McGinty, J.A.; French, P.M.; Ferrer, J.; Thorens, B.; Hodson, D.J.; Rutter, G.A.; Xavier, G.D. Selective disruption of Tcf7l2 in the pancreatic β cell impairs secretory function and lowers β cell mass. Hum. Mol. Genet., 2015, 24, 1390-1399.
-
(2015)
Hum. Mol. Genet.
, vol.24
, pp. 1390-1399
-
-
Mitchell, R.K.1
Mondragon, A.2
Chen, L.3
McGinty, J.A.4
French, P.M.5
Ferrer, J.6
Thorens, B.7
Hodson, D.J.8
Rutter, G.A.9
Xavier, G.D.10
-
62
-
-
79954631160
-
The human glucagon-like peptide-1 analogue liraglutide preserves pancreatic beta cells via regulation of cell kinetics and suppression of oxidative and endoplasmic reticulum stress in a mouse model of diabetes
-
Shimoda, M.; Kanda, Y.; Hamamoto, S.; Tawaramoto, K.; Hashiramoto, M.; Matsuki, M.; Kaku, K. The human glucagon-like peptide-1 analogue liraglutide preserves pancreatic beta cells via regulation of cell kinetics and suppression of oxidative and endoplasmic reticulum stress in a mouse model of diabetes. Diabetologia, 2011, 54, 1098-1108.
-
(2011)
Diabetologia
, vol.54
, pp. 1098-1108
-
-
Shimoda, M.1
Kanda, Y.2
Hamamoto, S.3
Tawaramoto, K.4
Hashiramoto, M.5
Matsuki, M.6
Kaku, K.7
-
63
-
-
84871935582
-
Vildagliptin preserves the mass and function of pancreatic beta cells via the developmental regulation and suppression of oxidative and endoplasmic reticulum stress in a mouse model of diabetes
-
Hamamoto, S.; Kanda, Y.; Shimoda, M.; Tatsumi, F.; Kohara, K.; Tawaramoto, K.; Hashiramoto, M.; Kaku, K. Vildagliptin preserves the mass and function of pancreatic beta cells via the developmental regulation and suppression of oxidative and endoplasmic reticulum stress in a mouse model of diabetes. Diabetes Obes. Metab., 2013, 15, 153-163.
-
(2013)
Diabetes Obes. Metab.
, vol.15
, pp. 153-163
-
-
Hamamoto, S.1
Kanda, Y.2
Shimoda, M.3
Tatsumi, F.4
Kohara, K.5
Tawaramoto, K.6
Hashiramoto, M.7
Kaku, K.8
-
64
-
-
83455230039
-
Dipeptidyl peptidase-4 inhibitors and preservation of pancreatic islet-cell function: A critical appraisal of the evidence
-
van Genugten, R.E.; van Raalte, D.H.; Diamant, M. Dipeptidyl peptidase-4 inhibitors and preservation of pancreatic islet-cell function: A critical appraisal of the evidence. Diabetes Obes. Metab., 2012, 14, 101-11.
-
(2012)
Diabetes Obes. Metab.
, vol.14
, pp. 101-111
-
-
Van Genugten, R.E.1
Van Raalte, D.H.2
Diamant, M.3
-
65
-
-
13844262626
-
Structural and functional analysis of pancreatic islets preserved by pioglitazone in db/db mice
-
Kawasaki, F.; Matsuda, M.; Kanda, Y.; Inoue, H.; Kaku, K. Structural and functional analysis of pancreatic islets preserved by pioglitazone in db/db mice. Am. J. Physiol. Endocrinol. Metab., 2005, 288, E510-E518.
-
(2005)
Am. J. Physiol. Endocrinol. Metab.
, vol.288
, pp. E510-E518
-
-
Kawasaki, F.1
Matsuda, M.2
Kanda, Y.3
Inoue, H.4
Kaku, K.5
-
66
-
-
74949113575
-
Molecular mechanism by which pioglitazone preserves pancreatic beta-cells in obese diabetic mice: Evidence for acute and chronic actions as a PPARgamma agonist
-
Kanda, Y.; Shimoda, M.; Hamamoto, S.; Tawaramoto, K.; Kawasaki, F.; Hashiramoto, M.; Nakashima, K.; Matsuki, M.; Kaku, K. Molecular mechanism by which pioglitazone preserves pancreatic beta-cells in obese diabetic mice: Evidence for acute and chronic actions as a PPARgamma agonist. Am. J. Physiol. Endocrinol. Metab., 2010, 298, E278-E286.
-
(2010)
Am. J. Physiol. Endocrinol. Metab.
, vol.298
, pp. E278-E286
-
-
Kanda, Y.1
Shimoda, M.2
Hamamoto, S.3
Tawaramoto, K.4
Kawasaki, F.5
Hashiramoto, M.6
Nakashima, K.7
Matsuki, M.8
Kaku, K.9
-
67
-
-
33947149143
-
Beta-cell preservation with thiazolidinediones
-
Campbell, I.W.; Mariz, S. Beta-cell preservation with thiazolidinediones. Diabetes Res. Clin. Pract., 2007, 76, 163-76.
-
(2007)
Diabetes Res. Clin. Pract.
, vol.76
, pp. 163-176
-
-
Campbell, I.W.1
Mariz, S.2
-
68
-
-
84938292971
-
Combination of DPP-4 inhibitor and PPAR? Agonist exerts protective effects on pancreatic β-cells in diabetic db/db mice through the augmentation of IRS-2 expression
-
Hirukawa, H.; Kaneto, H.; Shimoda, M.; Kimura, T.; Okauchi, S.; Obata, A.; Kohara, K.; Hamamoto, S.; Tawaramoto, K.; Hashiramoto, M.; Kaku, K. Combination of DPP-4 inhibitor and PPAR? agonist exerts protective effects on pancreatic β-cells in diabetic db/db mice through the augmentation of IRS-2 expression. Mol. Cell. Endocrinol., 2015, 413, 49-60.
-
(2015)
Mol. Cell. Endocrinol.
, vol.413
, pp. 49-60
-
-
Hirukawa, H.1
Kaneto, H.2
Shimoda, M.3
Kimura, T.4
Okauchi, S.5
Obata, A.6
Kohara, K.7
Hamamoto, S.8
Tawaramoto, K.9
Hashiramoto, M.10
Kaku, K.11
-
69
-
-
84913568797
-
Protective effects of pioglitazone and/or liraglutide on pancreatic α-cells: Comparison of their effects between in an early and advanced stage of diabetes
-
Kimura, T.; Kaneto, H.; Shimoda, M.; Hirukawa, H.; Hamamoto, S.; Tawaramoto, K.; Hashiramoto, M.; Kaku, K. Protective effects of pioglitazone and/or liraglutide on pancreatic α-cells: Comparison of their effects between in an early and advanced stage of diabetes. Mol. Cell. Endocrinol., 2015, 400, 78-89.
-
(2015)
Mol. Cell. Endocrinol.
, vol.400
, pp. 78-89
-
-
Kimura, T.1
Kaneto, H.2
Shimoda, M.3
Hirukawa, H.4
Hamamoto, S.5
Tawaramoto, K.6
Hashiramoto, M.7
Kaku, K.8
-
70
-
-
84957441258
-
Protective effects of SGLT2 inhibitor luseogliflozin on pancreatic α-cells in obese type 2 diabetic db/db mice
-
Okauchi, S.; Shimoda, M.; Obata, A.; Kimura, T.; Hirukawa, H.; Kohara, K.; Mune, T.; Kaku, K.; Kaneto, H. Protective effects of SGLT2 inhibitor luseogliflozin on pancreatic α-cells in obese type 2 diabetic db/db mice. Biochem. Biophys. Res. Commun., 2016, 470, 772-782.
-
(2016)
Biochem. Biophys. Res. Commun.
, vol.470
, pp. 772-782
-
-
Okauchi, S.1
Shimoda, M.2
Obata, A.3
Kimura, T.4
Hirukawa, H.5
Kohara, K.6
Mune, T.7
Kaku, K.8
Kaneto, H.9
-
71
-
-
84946599933
-
Shortterm selective alleviation of glucotoxicity and lipotoxicity ameliorates the suppressed expression of key β-cell factors under diabetic conditions
-
Shimo, N.; Matsuoka, T.; Miyatsuka, T.; Takebe, S.; Tochino, Y.; Takahara, M.; Kaneto, H.; Shimomura, I. Shortterm selective alleviation of glucotoxicity and lipotoxicity ameliorates the suppressed expression of key β-cell factors under diabetic conditions. Biochem. Biophys. Res. Commun., 2015, 467, 948-954.
-
(2015)
Biochem. Biophys. Res. Commun.
, vol.467
, pp. 948-954
-
-
Shimo, N.1
Matsuoka, T.2
Miyatsuka, T.3
Takebe, S.4
Tochino, Y.5
Takahara, M.6
Kaneto, H.7
Shimomura, I.8
-
72
-
-
0017420557
-
The role of glucagon in the endogenous hyperglycemia of diabetes mellitus
-
Unger, R.H.; Orci, L. The role of glucagon in the endogenous hyperglycemia of diabetes mellitus. Annu. Rev. Med., 1977, 28, 119-130.
-
(1977)
Annu. Rev. Med.
, vol.28
, pp. 119-130
-
-
Unger, R.H.1
Orci, L.2
-
73
-
-
84937763347
-
Inhibition of the glucose transporter SGLT2 with dapagliflozin in pancreatic alpha cells triggers glucagon secretion
-
Bonner, C.; Kerr-Conte, J.; Gmyr, V.; Queniat, G.; Moerman, E.; Thenet, J.; Beaucamps, C.; Delalleau, N.; Popescu, I.; Malaisse, WJ.; Sener, A.; Deprez, B.; Abderrahmani, A.; Staels, B.; Pattou, F. Inhibition of the glucose transporter SGLT2 with dapagliflozin in pancreatic alpha cells triggers glucagon secretion. Nat. Med., 2015, 21, 512-517.
-
(2015)
Nat. Med.
, vol.21
, pp. 512-517
-
-
Bonner, C.1
Kerr-Conte, J.2
Gmyr, V.3
Queniat, G.4
Moerman, E.5
Thenet, J.6
Beaucamps, C.7
Delalleau, N.8
Popescu, I.9
Malaisse, W.J.10
Sener, A.11
Deprez, B.12
Abderrahmani, A.13
Staels, B.14
Pattou, F.15
-
74
-
-
84960517126
-
Tofogliflozin improves insulin resistance in skeletal muscle and accelerates lipolysis in adipose tissue in male mice
-
Obata, A.; Kubota, N.; Kubota, T.; Iwamoto, M.; Sato, H.; Sakurai, Y.; Takamoto, I.; Katsuyama, H.; Suzuki, Y.; Fukazawa, M.; Ikeda, S.; Iwayama, K.; Tokuyama, K.; Ueki, K.; Kadowaki, T. Tofogliflozin improves insulin resistance in skeletal muscle and accelerates lipolysis in adipose tissue in male mice. Endocrinology, 2016, 157, 1029-1042.
-
(2016)
Endocrinology
, vol.157
, pp. 1029-1042
-
-
Obata, A.1
Kubota, N.2
Kubota, T.3
Iwamoto, M.4
Sato, H.5
Sakurai, Y.6
Takamoto, I.7
Katsuyama, H.8
Suzuki, Y.9
Fukazawa, M.10
Ikeda, S.11
Iwayama, K.12
Tokuyama, K.13
Ueki, K.14
Kadowaki, T.15
-
75
-
-
84893682957
-
SGLT2 selective inhibitor ipragliflozin reduces body fat mass by increasing fatty acid oxidation in high-fat diet-induced obese rats
-
Yokono, M.; Takasu, T.; Hayashizaki, Y.; Mitsuoka, K.; Kihara, R.; Muramatsu, Y.; Miyoshi, S.; Tahara, A.; Kurosaki, E.; Li, Q.; Tomiyama, H.; Sasamata, M.; Shibasaki, M.; Uchiyama, Y. SGLT2 selective inhibitor ipragliflozin reduces body fat mass by increasing fatty acid oxidation in high-fat diet-induced obese rats. Eur. J. Pharmacol., 2014, 727, 66-74.
-
(2014)
Eur. J. Pharmacol.
, vol.727
, pp. 66-74
-
-
Yokono, M.1
Takasu, T.2
Hayashizaki, Y.3
Mitsuoka, K.4
Kihara, R.5
Muramatsu, Y.6
Miyoshi, S.7
Tahara, A.8
Kurosaki, E.9
Li, Q.10
Tomiyama, H.11
Sasamata, M.12
Shibasaki, M.13
Uchiyama, Y.14
-
76
-
-
84905446525
-
Tofogliflozin a sodium/glucose cotransporter 2 inhibitor, attenuates body weight gain and fat accumulation in diabetic and obese animal models
-
Suzuki, M.; Takeda, M.; Kito, A.; Fukazawa, M.; Yata, T.; Yamamoto, M.; Nagata, T.; Fukuzawa, T.; Yamane, M.; Honda, K.; Suzuki, Y.; Kawabe, Y. Tofogliflozin, a sodium/glucose cotransporter 2 inhibitor, attenuates body weight gain and fat accumulation in diabetic and obese animal models. Nutr. Diabetes, 2014, 4, e125.
-
(2014)
Nutr. Diabetes
, vol.4
, pp. e125
-
-
Suzuki, M.1
Takeda, M.2
Kito, A.3
Fukazawa, M.4
Yata, T.5
Yamamoto, M.6
Nagata, T.7
Fukuzawa, T.8
Yamane, M.9
Honda, K.10
Suzuki, Y.11
Kawabe, Y.12
-
77
-
-
84892479365
-
Dapagliflozin maintains glycaemic control while reducing weight and body fat mass over 2 years in patients with type 2 diabetes mellitus inadequately controlled on metformin
-
Bolinder, J.; Ljunggren, O.; Johansson, L.; Wilding, J.; Langkilde, AM.; Sj?t?m CD, Sugg J, Parikh S. Dapagliflozin maintains glycaemic control while reducing weight and body fat mass over 2 years in patients with type 2 diabetes mellitus inadequately controlled on metformin. Diabetes Obes. Metab., 2014, 16, 159-169.
-
(2014)
Diabetes Obes. Metab.
, vol.16
, pp. 159-169
-
-
Bolinder, J.1
Ljunggren, O.2
Johansson, L.3
Wilding, J.4
Langkilde, A.M.5
Sjtm, C.D.6
Sugg, J.7
Parikh, S.8
-
78
-
-
84893827104
-
Dapagliflozin improves muscle insulin sensitivity but enhances endogenous glucose production
-
Merovci, A.; Solis-Herrera, C.; Daniele, G.; Eldor, R.; Fiorentino, T.Y.; Tripathy, D.; Xiong, J.; Perez, Z.; Norton, L.; Abdul-Ghani, MA.; DeFronzo, RA. Dapagliflozin improves muscle insulin sensitivity but enhances endogenous glucose production. J. Clin. Invest., 2014, 124, 509-514.
-
(2014)
J. Clin. Invest.
, vol.124
, pp. 509-514
-
-
Merovci, A.1
Solis-Herrera, C.2
Daniele, G.3
Eldor, R.4
Fiorentino, T.Y.5
Tripathy, D.6
Xiong, J.7
Perez, Z.8
Norton, L.9
Abdul-Ghani, M.A.10
DeFronzo, R.A.11
|