-
2
-
-
0031531764
-
A characterization of Markov equivalence classes for acyclic digraphs
-
Andersson, S. A., Madigan, D. and Perlman, M. D. (1997) A characterization of Markov equivalence classes for acyclic digraphs. Ann. Statist., 25, 505–541.
-
(1997)
Ann. Statist.
, vol.25
, pp. 505-541
-
-
Andersson, S.A.1
Madigan, D.2
Perlman, M.D.3
-
3
-
-
0346880128
-
Identification of causal effects using instrumental variables
-
Angrist, J. D., Imbens, G. W. and Rubin, D. B. (1996) Identification of causal effects using instrumental variables. J. Am. Statist. Ass., 91, 444–455.
-
(1996)
J. Am. Statist. Ass.
, vol.91
, pp. 444-455
-
-
Angrist, J.D.1
Imbens, G.W.2
Rubin, D.B.3
-
4
-
-
82255196005
-
Square-root lasso: pivotal recovery of sparse signals via conic programming
-
Belloni, A., Chernozhukov, V. and Wang, L. (2011) Square-root lasso: pivotal recovery of sparse signals via conic programming. Biometrika, 98, 791–806.
-
(2011)
Biometrika
, vol.98
, pp. 791-806
-
-
Belloni, A.1
Chernozhukov, V.2
Wang, L.3
-
8
-
-
84987997394
-
CAM: causal additive models, high-dimensional order search and penalized regression
-
Bühlmann, P., Peters, J. and Ernest, J. (2014) CAM: causal additive models, high-dimensional order search and penalized regression. Ann. Statist., 42, 2526–2556.
-
(2014)
Ann. Statist.
, vol.42
, pp. 2526-2556
-
-
Bühlmann, P.1
Peters, J.2
Ernest, J.3
-
9
-
-
84886494144
-
Controlling false positive selections in high-dimensional regression and causal inference
-
Bühlmann, P., Rütimann, P. and Kalisch, M. (2013) Controlling false positive selections in high-dimensional regression and causal inference. Statist. Meth. Med. Res., 22, 466–492.
-
(2013)
Statist. Meth. Med. Res.
, vol.22
, pp. 466-492
-
-
Bühlmann, P.1
Rütimann, P.2
Kalisch, M.3
-
10
-
-
0043245810
-
Boosting with the L2-loss: regression and classification
-
Bühlmann, P. and Yu, B. (2003) Boosting with the L2-loss: regression and classification. J. Am. Statist. Ass., 98, 324–339.
-
(2003)
J. Am. Statist. Ass.
, vol.98
, pp. 324-339
-
-
Bühlmann, P.1
Yu, B.2
-
11
-
-
2542465947
-
On inclusion-driven learning of Bayesian networks
-
Castelo, R. and Kocka, T. (2003) On inclusion-driven learning of Bayesian networks. J. Mach. Learn. Res., 4, 527–574.
-
(2003)
J. Mach. Learn. Res.
, vol.4
, pp. 527-574
-
-
Castelo, R.1
Kocka, T.2
-
12
-
-
0042967741
-
Optimal structure identification with greedy search
-
Chickering, D. M. (2002) Optimal structure identification with greedy search. J. Mach. Learn. Res., 3, 507–554.
-
(2002)
J. Mach. Learn. Res.
, vol.3
, pp. 507-554
-
-
Chickering, D.M.1
-
13
-
-
0001369142
-
Tests of equality between sets of coefficients in two linear regressions
-
Chow, G. C. (1960) Tests of equality between sets of coefficients in two linear regressions. Econometrica, 28, 591–605.
-
(1960)
Econometrica
, vol.28
, pp. 591-605
-
-
Chow, G.C.1
-
14
-
-
0007047929
-
Causal discovery from a mixture of experimental and observational data
-
In, San Francisco Morgan Kaufmann
-
Cooper, G. and Yoo, C. (1999) Causal discovery from a mixture of experimental and observational data. In Proc. 15th A. Conf. Uncertainty in Artificial Intelligence, pp. 116–125.San Francisco: Morgan Kaufmann.
-
(1999)
Proc. 15th A. Conf. Uncertainty in Artificial Intelligence
, pp. 116-125
-
-
Cooper, G.1
Yoo, C.2
-
15
-
-
0002614170
-
Über eine Eigenschaft der normalen Verteilungsfunktion
-
Cramér, H. (1936) Über eine Eigenschaft der normalen Verteilungsfunktion. Math. Zeits., 41, 405–414.
-
(1936)
Math. Zeits.
, vol.41
, pp. 405-414
-
-
Cramér, H.1
-
16
-
-
1542742382
-
Causal inference without counterfactuals
-
Dawid, A. P. (2000) Causal inference without counterfactuals. J. Am. Statist. Ass., 95, 407–424.
-
(2000)
J. Am. Statist. Ass.
, vol.95
, pp. 407-424
-
-
Dawid, A.P.1
-
18
-
-
84957055317
-
The decision-theoretic approach to causal inference
-
In, (eds, C. R. Berzuini, A. P. Dawid, L. Bernardinelli,), ch. 4, Chichester, Wiley
-
Dawid, A. P. (2012) The decision-theoretic approach to causal inference. In Causality: Statistical Perspectives and Applications (eds C. R. Berzuini, A. P. Dawid and L. Bernardinelli), ch. 4, pp. 25–42. Chichester: Wiley
-
(2012)
Causality: Statistical Perspectives and Applications
, pp. 25-42
-
-
Dawid, A.P.1
-
19
-
-
84928163239
-
Statistical causality from a decision-theoretic perspective
-
Dawid, A. P. (2015) Statistical causality from a decision-theoretic perspective. A. Rev. Statist. Appl., 2, 273–303.
-
(2015)
A. Rev. Statist. Appl.
, vol.2
, pp. 273-303
-
-
Dawid, A.P.1
-
20
-
-
78751616989
-
Identifying the consequences of dynamic treatment strategies: a decision-theoretic overview
-
Dawid, A. P. and Didelez, V. (2010) Identifying the consequences of dynamic treatment strategies: a decision-theoretic overview. Statist. Surv., 4, 184–231.
-
(2010)
Statist. Surv.
, vol.4
, pp. 184-231
-
-
Dawid, A.P.1
Didelez, V.2
-
21
-
-
80053192470
-
Direct and indirect effects of sequential treatments
-
In, Corvallis Association for Uncertainty in Artificial Intelligence Press
-
Didelez, V., Dawid, A. P. and Geneletti, S. (2006) Direct and indirect effects of sequential treatments. In Proc. 22nd A. Conf. Uncertainty in Artifical Intelligence, pp. 138–146. Corvallis: Association for Uncertainty in Artificial Intelligence Press
-
(2006)
Proc. 22nd A. Conf. Uncertainty in Artifical Intelligence
, pp. 138-146
-
-
Didelez, V.1
Dawid, A.P.2
Geneletti, S.3
-
22
-
-
77957778209
-
Assumptions of IV methods for observational epidemiology
-
Didelez, V., Meng, S. and Sheehan, N. A. (2010) Assumptions of IV methods for observational epidemiology. Statist. Sci., 25, 22–40.
-
(2010)
Statist. Sci.
, vol.25
, pp. 22-40
-
-
Didelez, V.1
Meng, S.2
Sheehan, N.A.3
-
24
-
-
84885387466
-
Testing equality of functions under monotonicity constraints
-
Durot, C., Groeneboom, P. and Lopuhaä, H. (2013) Testing equality of functions under monotonicity constraints. J. Nonparam. Statist., 25, 939–970.
-
(2013)
J. Nonparam. Statist.
, vol.25
, pp. 939-970
-
-
Durot, C.1
Groeneboom, P.2
Lopuhaä, H.3
-
26
-
-
46649113945
-
Interventions and causal inference
-
Eberhardt, F. and Scheines, R. (2007) Interventions and causal inference. Philos. Sci., 74, 981–995.
-
(2007)
Philos. Sci.
, vol.74
, pp. 981-995
-
-
Eberhardt, F.1
Scheines, R.2
-
27
-
-
0035470889
-
Greedy function approximation: a gradient boosting machine
-
Friedman, J. H. (2001) Greedy function approximation: a gradient boosting machine. Ann. Statist., 29, 1189–1232.
-
(2001)
Ann. Statist.
, vol.29
, pp. 1189-1232
-
-
Friedman, J.H.1
-
28
-
-
0032924944
-
Causal diagrams for epidemiologic research
-
Greenland, S., Pearl, J. and Robins, J. M. (1999) Causal diagrams for epidemiologic research. Epidemiology, 10, 37–48.
-
(1999)
Epidemiology
, vol.10
, pp. 37-48
-
-
Greenland, S.1
Pearl, J.2
Robins, J.M.3
-
29
-
-
0002556498
-
The probability approach in econometrics
-
Haavelmo, T. (1944) The probability approach in econometrics. Econometrica, 12, suppl., S1–S115.
-
(1944)
Econometrica
, vol.12
, pp. S1-S115
-
-
Haavelmo, T.1
-
30
-
-
84869152656
-
Characterization and greedy learning of interventional Markov equivalence classes of directed acyclic graphs
-
Hauser, A. and Bühlmann, P. (2012) Characterization and greedy learning of interventional Markov equivalence classes of directed acyclic graphs. J. Mach. Learn. Res., 13, 2409–2464.
-
(2012)
J. Mach. Learn. Res.
, vol.13
, pp. 2409-2464
-
-
Hauser, A.1
Bühlmann, P.2
-
31
-
-
84917733558
-
Jointly interventional and observational data: estimation of interventional Markov equivalence classes of directed acyclic graphs
-
Hauser, A. and Bühlmann, P. (2015) Jointly interventional and observational data: estimation of interventional Markov equivalence classes of directed acyclic graphs. J. R. Statist. Soc. B, 77, 291–318.
-
(2015)
J. R. Statist. Soc. B
, vol.77
, pp. 291-318
-
-
Hauser, A.1
Bühlmann, P.2
-
32
-
-
57249084023
-
Active learning of causal networks with intervention experiments and optimal designs
-
He, Y.-B. and Geng, Z. (2008) Active learning of causal networks with intervention experiments and optimal designs. J. Mach. Learn. Res., 9, 2523–2547.
-
(2008)
J. Mach. Learn. Res.
, vol.9
, pp. 2523-2547
-
-
He, Y.-B.1
Geng, Z.2
-
33
-
-
33748106661
-
Instruments for causal inference: an epidemiologist's dream
-
Hernán, M. and Robins, J. (2006) Instruments for causal inference: an epidemiologist's dream? Epidemiology, 17, 360–372.
-
(2006)
Epidemiology
, vol.17
, pp. 360-372
-
-
Hernán, M.1
Robins, J.2
-
34
-
-
84971972604
-
The logic of causal inference
-
Hoover, K. D. (1990) The logic of causal inference. Econ. Philos., 6, 207–234.
-
(1990)
Econ. Philos.
, vol.6
, pp. 207-234
-
-
Hoover, K.D.1
-
35
-
-
77956921559
-
Model-based boosting 2.0
-
Hothorn, T., Bühlmann, P., Kneib, T., Schmid, M. and Hofner, B. (2010) Model-based boosting 2.0. J. Mach. Learn. Res., 11, 2109–2113.
-
(2010)
J. Mach. Learn. Res.
, vol.11
, pp. 2109-2113
-
-
Hothorn, T.1
Bühlmann, P.2
Kneib, T.3
Schmid, M.4
Hofner, B.5
-
36
-
-
84858789485
-
Nonlinear causal discovery with additive noise models
-
In, Red Hook Curran Associates
-
Hoyer, P. O., Janzing, D., Mooij, J. M., Peters, J. and Schölkopf, B. (2009) Nonlinear causal discovery with additive noise models. In Advances in Neural Information Processing Systems, vol. 21, pp. 689–696.Red Hook: Curran Associates.
-
(2009)
Advances in Neural Information Processing Systems
, vol.21
, pp. 689-696
-
-
Hoyer, P.O.1
Janzing, D.2
Mooij, J.M.3
Peters, J.4
Schölkopf, B.5
-
37
-
-
84870911885
-
Learning linear cyclic causal models with latent variables
-
Hyttinen, A., Eberhardt, F. and Hoyer, P. O. (2012) Learning linear cyclic causal models with latent variables. J. Mach. Learn. Res., 13, 3387–3439.
-
(2012)
J. Mach. Learn. Res.
, vol.13
, pp. 3387-3439
-
-
Hyttinen, A.1
Eberhardt, F.2
Hoyer, P.O.3
-
38
-
-
0037685280
-
Expression profiling reveals off-target gene regulation by RNAi
-
Jackson, A. L., Bartz, S. R., Schelter, J., Kobayashi, S. V., Burchard, J., Mao, M., Li, B., Cavet, G. and Linsley, P. S. (2003) Expression profiling reveals off-target gene regulation by RNAi. Nat. Biotechnol., 21, 635–637.
-
(2003)
Nat. Biotechnol.
, vol.21
, pp. 635-637
-
-
Jackson, A.L.1
Bartz, S.R.2
Schelter, J.3
Kobayashi, S.V.4
Burchard, J.5
Mao, M.6
Li, B.7
Cavet, G.8
Linsley, P.S.9
-
39
-
-
84857129458
-
Information-geometric approach to inferring causal directions
-
Janzing, D., Mooij, J. M., Zhang, K., Lemeire, J., Zscheischler, J., Daniusis, P., Steudel, B. and Schölkopf, B. (2012) Information-geometric approach to inferring causal directions. Artif. Intell., 182–183, 1–31.
-
(2012)
Artif. Intell.
, vol.182-183
, pp. 1-31
-
-
Janzing, D.1
Mooij, J.M.2
Zhang, K.3
Lemeire, J.4
Zscheischler, J.5
Daniusis, P.6
Steudel, B.7
Schölkopf, B.8
-
40
-
-
33947524259
-
Estimating high-dimensional directed acyclic graphs with the PC-algorithm
-
Kalisch, M. and Bühlmann, P. (2007) Estimating high-dimensional directed acyclic graphs with the PC-algorithm. J. Mach. Learn. Res., 8, 613–636.
-
(2007)
J. Mach. Learn. Res.
, vol.8
, pp. 613-636
-
-
Kalisch, M.1
Bühlmann, P.2
-
41
-
-
84946954072
-
Instrumental variables estimation with some invalid instruments and its application to mendelian randomization
-
to be published
-
Kang, H., Zhang, A., Cai, T. and Small, D.S. (2015) Instrumental variables estimation with some invalid instruments and its application to mendelian randomization. J. Am. Statist. Ass., to be published.
-
(2015)
J. Am. Statist. Ass.
-
-
Kang, H.1
Zhang, A.2
Cai, T.3
Small, D.S.4
-
42
-
-
84899514789
-
Large-scale genetic perturbations reveal regulatory networks and an abundance of gene-specific repressors
-
Kemmeren, P., Sameith, K., van de Pasch, L. A., Benschop, J. J., Lenstra, T. L., Margaritis, T., O'Duibhir, E., Apweiler, E., van Wageningen, S., Ko, C. W., van Heesch, S., Kashani, M. M., Ampatziadis-Michailidis, G., Brok, M. O., Brabers, N. A., Miles, A. J., Bouwmeester, D., van Hooff, S. R., van Bakel, H., Sluiters, E., Bakker, L. V., Snel, B., Lijnzaad, P., van Leenen, D., Groot Koerkamp, M. J. and Holstege, F. C. (2014) Large-scale genetic perturbations reveal regulatory networks and an abundance of gene-specific repressors. Cell, 157, 740–752.
-
(2014)
Cell
, vol.157
, pp. 740-752
-
-
Kemmeren, P.1
Sameith, K.2
van de Pasch, L.A.3
Benschop, J.J.4
Lenstra, T.L.5
Margaritis, T.6
O'Duibhir, E.7
Apweiler, E.8
van Wageningen, S.9
Ko, C.W.10
van Heesch, S.11
Kashani, M.M.12
Ampatziadis-Michailidis, G.13
Brok, M.O.14
Brabers, N.A.15
Miles, A.J.16
Bouwmeester, D.17
van Hooff, S.R.18
van Bakel, H.19
Sluiters, E.20
Bakker, L.V.21
Snel, B.22
Lijnzaad, P.23
van Leenen, D.24
Groot Koerkamp, M.J.25
Holstege, F.C.26
more..
-
43
-
-
33748994797
-
Evidence of off-target effects associated with long dsrnas in drosophila melanogaster cell-based assays
-
Kulkarni, M. M., Booker, M., Silver, S. J., Friedman, A., Hong, P., Perrimon, N. and Mathey-Prevot, B. (2006) Evidence of off-target effects associated with long dsrnas in drosophila melanogaster cell-based assays. Nat. Meth., 3, 833–838.
-
(2006)
Nat. Meth.
, vol.3
, pp. 833-838
-
-
Kulkarni, M.M.1
Booker, M.2
Silver, S.J.3
Friedman, A.4
Hong, P.5
Perrimon, N.6
Mathey-Prevot, B.7
-
44
-
-
0004047518
-
-
New York, Oxford University Press
-
Lauritzen, S. L. (1996) Graphical Models. New York: Oxford University Press.
-
(1996)
Graphical Models
-
-
Lauritzen, S.L.1
-
45
-
-
0036420729
-
Chain graph models and their causal interpretations
-
Lauritzen, S. L. and Richardson, T. S. (2002) Chain graph models and their causal interpretations. J. R. Statist. Soc. B, 64, 321–348.
-
(2002)
J. R. Statist. Soc. B
, vol.64
, pp. 321-348
-
-
Lauritzen, S.L.1
Richardson, T.S.2
-
46
-
-
0001006209
-
Local computations with probabilities on graphical structures and their application to expert systems (with discussion)
-
Lauritzen, S. L. and Spiegelhalter, D. J. (1988) Local computations with probabilities on graphical structures and their application to expert systems (with discussion). J. R. Statist. Soc. B, 50, 157–224.
-
(1988)
J. R. Statist. Soc. B
, vol.50
, pp. 157-224
-
-
Lauritzen, S.L.1
Spiegelhalter, D.J.2
-
47
-
-
69949166983
-
Estimating high-dimensional intervention effects from observational data
-
Maathuis, M., Kalisch, M. and Bühlmann, P. (2009) Estimating high-dimensional intervention effects from observational data. Ann. Statist., 37, 3133–3164.
-
(2009)
Ann. Statist.
, vol.37
, pp. 3133-3164
-
-
Maathuis, M.1
Kalisch, M.2
Bühlmann, P.3
-
48
-
-
85162312543
-
On causal discovery with cyclic additive noise models
-
In
-
Mooij, J. M., Janzing, D., Heskes, T. and Schölkopf, B. (2011) On causal discovery with cyclic additive noise models. In Advances in Neural Information Processing Systems, vol, pp. 639–647.
-
(2011)
Advances in Neural Information Processing Systems
, pp. 639-647
-
-
Mooij, J.M.1
Janzing, D.2
Heskes, T.3
Schölkopf, B.4
-
50
-
-
84897585225
-
Identifiability of Gaussian structural equation models with equal error variances
-
Peters, J. and Bühlmann, P. (2014) Identifiability of Gaussian structural equation models with equal error variances. Biometrika, 101, 219–228.
-
(2014)
Biometrika
, vol.101
, pp. 219-228
-
-
Peters, J.1
Bühlmann, P.2
-
51
-
-
84904201625
-
Causal discovery with continuous additive noise models
-
Peters, J., Mooij, J. M., Janzing, D. and Schölkopf, B. (2014) Causal discovery with continuous additive noise models. J. Mach. Learn. Res., 15, 2009–2053.
-
(2014)
J. Mach. Learn. Res.
, vol.15
, pp. 2009-2053
-
-
Peters, J.1
Mooij, J.M.2
Janzing, D.3
Schölkopf, B.4
-
54
-
-
0036392228
-
Ancestral graph markov models
-
Richardson, T. and Spirtes, P. (2002) Ancestral graph markov models. Ann. Statist., 30, 962–1030.
-
(2002)
Ann. Statist.
, vol.30
, pp. 962-1030
-
-
Richardson, T.1
Spirtes, P.2
-
55
-
-
46149139403
-
A new approach to causal inference in mortality studies with a sustained exposure period—application to control of the healthy worker survivor effect
-
Robins, J. M. (1986) A new approach to causal inference in mortality studies with a sustained exposure period—application to control of the healthy worker survivor effect. Math. Modllng, 7, 1393–1512.
-
(1986)
Math. Modllng
, vol.7
, pp. 1393-1512
-
-
Robins, J.M.1
-
56
-
-
0033847784
-
Marginal structural models and causal inference in epidemiology
-
Robins, J. M., Hernan, M. A. and Brumback, B. (2000) Marginal structural models and causal inference in epidemiology. Epidemiology, 11, 550–560.
-
(2000)
Epidemiology
, vol.11
, pp. 550-560
-
-
Robins, J.M.1
Hernan, M.A.2
Brumback, B.3
-
57
-
-
84965107424
-
backShift: learning causal cyclic graphs from unknown shift interventions
-
In, Red Hook Curran Associates
-
Rothenhäusler, D., Heinze, C., Peters, J. and Meinshausen, N. (2015) backShift: learning causal cyclic graphs from unknown shift interventions. In Advances in Neural Information Processing Systems, vol. 28. Red Hook: Curran Associates.
-
(2015)
Advances in Neural Information Processing Systems
, vol.28
-
-
Rothenhäusler, D.1
Heinze, C.2
Peters, J.3
Meinshausen, N.4
-
58
-
-
21844508577
-
Democratization or diversion?: The effect of community colleges on educational attainment
-
Rouse, C. E. (1995) Democratization or diversion?: The effect of community colleges on educational attainment. J. Bus. Econ. Statist., 13, 217–224.
-
(1995)
J. Bus. Econ. Statist.
, vol.13
, pp. 217-224
-
-
Rouse, C.E.1
-
59
-
-
14944344423
-
Causal inference using potential outcomes
-
Rubin, D. B. (2005) Causal inference using potential outcomes. J. Am. Statist. Ass., 100, 322–331.
-
(2005)
J. Am. Statist. Ass.
, vol.100
, pp. 322-331
-
-
Rubin, D.B.1
-
60
-
-
0032280519
-
Boosting the margin: a new explanation for the effectiveness of voting methods
-
Schapire, R. E., Freund, Y., Bartlett, P. and Lee, W. S. (1998) Boosting the margin: a new explanation for the effectiveness of voting methods. Ann. Statist., 26, 1651–1686.
-
(1998)
Ann. Statist.
, vol.26
, pp. 1651-1686
-
-
Schapire, R.E.1
Freund, Y.2
Bartlett, P.3
Lee, W.S.4
-
61
-
-
84867113617
-
On causal and anticausal learning
-
In
-
Schölkopf, B., Janzing, D., Peters, J., Sgouritsa, E., Zhang, K. and Mooij, J. (2012) On causal and anticausal learning. In Proc. 29th Int. Conf. Machine Learning, pp. 1255–1262.
-
(2012)
Proc. 29th Int. Conf. Machine Learning
, pp. 1255-1262
-
-
Schölkopf, B.1
Janzing, D.2
Peters, J.3
Sgouritsa, E.4
Zhang, K.5
Mooij, J.6
-
62
-
-
33749326177
-
A linear non-Gaussian acyclic model for causal discovery
-
Shimizu, S., Hoyer, P. O., Hyvärinen, A. and Kerminen, A. J. (2006) A linear non-Gaussian acyclic model for causal discovery. J. Mach. Learn. Res., 7, 2003–2030.
-
(2006)
J. Mach. Learn. Res.
, vol.7
, pp. 2003-2030
-
-
Shimizu, S.1
Hoyer, P.O.2
Hyvärinen, A.3
Kerminen, A.J.4
-
63
-
-
79955829373
-
DirectLiNGAM: a direct method for learning a linear non-Gaussian structural equation model
-
Shimizu, S., Inazumi, T., Sogawa, Y., Hyvärinen, A., Kawahara, Y., Washio, T., Hoyer, P. O. and Bollen, K. (2011) DirectLiNGAM: a direct method for learning a linear non-Gaussian structural equation model. J. Mach. Learn. Res., 12, 1225–1248.
-
(2011)
J. Mach. Learn. Res.
, vol.12
, pp. 1225-1248
-
-
Shimizu, S.1
Inazumi, T.2
Sogawa, Y.3
Hyvärinen, A.4
Kawahara, Y.5
Washio, T.6
Hoyer, P.O.7
Bollen, K.8
-
64
-
-
84975246659
-
-
2nd edn., Cambridge, MIT Press
-
Spirtes, P., Glymour, C. and Scheines, R. (2000) Causation, Prediction, and Search, 2nd edn. Cambridge: MIT Press.
-
(2000)
Causation, Prediction, and Search
-
-
Spirtes, P.1
Glymour, C.2
Scheines, R.3
-
66
-
-
43549116852
-
Two-stage residual inclusion estimation: addressing endogeneity in health econometric modeling
-
Terza, J., Basu, A. and Rathouz, P. (2008) Two-stage residual inclusion estimation: addressing endogeneity in health econometric modeling. J. Hlth Econ., 27, 531–543.
-
(2008)
J. Hlth Econ.
, vol.27
, pp. 531-543
-
-
Terza, J.1
Basu, A.2
Rathouz, P.3
-
68
-
-
85194972808
-
Regression shrinkage and selection via the lasso
-
Tibshirani, R. (1996) Regression shrinkage and selection via the lasso. J. R. Statist. Soc. B, 58, 267–288.
-
(1996)
J. R. Statist. Soc. B
, vol.58
, pp. 267-288
-
-
Tibshirani, R.1
-
69
-
-
74049158300
-
Signed directed acyclic graphs for causal inference
-
VanderWeele, T. J. and Robins, J. M. (2010) Signed directed acyclic graphs for causal inference. J. R. Statist. Soc. B, 72, 111–127.
-
(2010)
J. R. Statist. Soc. B
, vol.72
, pp. 111-127
-
-
VanderWeele, T.J.1
Robins, J.M.2
-
72
-
-
0001589778
-
Correlation and causation
-
Wright, S. (1921) Correlation and causation. J. Agric. Res., 20, 557–585.
-
(1921)
J. Agric. Res.
, vol.20
, pp. 557-585
-
-
Wright, S.1
-
75
-
-
0002501316
-
An algorithm for finding minimum d-seperating sets in belief networks
-
In, eds, F. V. Jensen, E. Horvitz, San Francisco, Morgan Kaufmann
-
AcidS.de CamposL. M. 1996An algorithm for finding minimum d-seperating sets in belief networks In Proc. 12th A. Conf. Uncertainty in Artificial Intelligence eds F. V. JensenE. Horvitz pp 310San FranciscoMorgan Kaufmann
-
(1996)
Proc. 12th A. Conf. Uncertainty in Artificial Intelligence
, pp. 3-10
-
-
Acid, S.1
de Campos, L.M.2
-
77
-
-
69949186291
-
Identifiability of parameters in latent structure models with many observed variables
-
Allman E. Matias C. Rhodes J. 2009 Identifiability of parameters in latent structure models with many observed variables Ann. Statist. 6 3009 3132
-
(2009)
Ann. Statist.
, vol.6
, pp. 3009-3132
-
-
Allman, E.1
Matias, C.2
Rhodes, J.3
-
79
-
-
84862236788
-
Local characterizations of causal Bayesian networks
-
(eds M. Croituru, S. Rudolph, N. Wilson, J. Howse and O. Corby) pp, Berlin Springer
-
BareinboimE.BritoC.PearlJ. 2012Local characterizations of causal Bayesian networks In Graph Structures for Knowledge Representation and Reasoning (eds M. Croituru, S. Rudolph, N. Wilson, J. Howse and O. Corby) pp 117 Berlin: Springer
-
(2012)
Graph Structures for Knowledge Representation and Reasoning
, pp. 1-17
-
-
Bareinboim, E.1
Brito, C.2
Pearl, J.3
-
80
-
-
84977267946
-
Causal inference and the data-fusion problem
-
Bareinboim E. Pearl J. 2016 Causal inference and the data-fusion problem Proc. Natn. Acad. Sci. USA 113 7345 7352
-
(2016)
Proc. Natn. Acad. Sci. USA
, vol.113
, pp. 7345-7352
-
-
Bareinboim, E.1
Pearl, J.2
-
82
-
-
0000245743
-
Statistical modeling: the two cultures (with comments)
-
Breiman L. 2001 Statistical modeling: the two cultures (with comments) Statist. Sci. 16 199 231
-
(2001)
Statist. Sci.
, vol.16
, pp. 199-231
-
-
Breiman, L.1
-
84
-
-
84867677322
-
Learning high-dimensional directed acyclic graphs with latent and selection variables
-
Colombo D. Maathuis M. H. Kalisch M. Richardson T. S. 2012 Learning high-dimensional directed acyclic graphs with latent and selection variables Ann. Statist. 40 294 321
-
(2012)
Ann. Statist.
, vol.40
, pp. 294-321
-
-
Colombo, D.1
Maathuis, M.H.2
Kalisch, M.3
Richardson, T.S.4
-
86
-
-
21944436304
-
A simple constraint-based algorithm for efficiently mining observational databases for causal relationships
-
Cooper G. F. 1997 A simple constraint-based algorithm for efficiently mining observational databases for causal relationships Data Minng Knowl. Discov. 1 203 224
-
(1997)
Data Minng Knowl. Discov.
, vol.1
, pp. 203-224
-
-
Cooper, G.F.1
-
88
-
-
1542742382
-
Causal inference without counterfactuals (with discussion)
-
Dawid A. P. 2000 Causal inference without counterfactuals (with discussion) J. Am. Statist. Ass. 95 407 448
-
(2000)
J. Am. Statist. Ass.
, vol.95
, pp. 407-448
-
-
Dawid, A.P.1
-
89
-
-
0036679398
-
Influence diagrams for causal modelling and inference
-
Dawid A. P. 2002 Influence diagrams for causal modelling and inference Int. Statist. Rev. 70 161 189
-
(2002)
Int. Statist. Rev.
, vol.70
, pp. 161-189
-
-
Dawid, A.P.1
-
90
-
-
84928163239
-
Statistical causality from a decision-theoretic perspective
-
Dawid A. P. 2015 Statistical causality from a decision-theoretic perspective A. Rev. Statist. Appl. 2 273 303
-
(2015)
A. Rev. Statist. Appl.
, vol.2
, pp. 273-303
-
-
Dawid, A.P.1
-
91
-
-
78751616989
-
Identifying the consequences of dynamic treatment strategies: a decision-theoretic overview
-
Dawid A. P. Didelez V. 2010 Identifying the consequences of dynamic treatment strategies: a decision-theoretic overview Statist. Surv. 4 184 231
-
(2010)
Statist. Surv.
, vol.4
, pp. 184-231
-
-
Dawid, A.P.1
Didelez, V.2
-
92
-
-
0004018816
-
-
2nd edn, p., Cincinnati, South Western
-
DieboldF. X. 2001Elements of Forecasting, 2nd edn, p. 254CincinnatiSouth Western
-
(2001)
Elements of Forecasting
, pp. 254
-
-
Diebold, F.X.1
-
93
-
-
84862969866
-
Identifiability and estimation of causal effects by principal stratification with outcomes truncated by death
-
Ding P. Geng Z. Yan W. Zhou X. 2011 Identifiability and estimation of causal effects by principal stratification with outcomes truncated by death J. Am. Statist. Ass. 106 1578 159l
-
(2011)
J. Am. Statist. Ass.
, vol.106
, pp. 1578-1591
-
-
Ding, P.1
Geng, Z.2
Yan, W.3
Zhou, X.4
-
95
-
-
49549100459
-
Learning causal Bayesian network structures from experimental data
-
Ellis B. Wong W. H. 2008 Learning causal Bayesian network structures from experimental data J. Am. Statist. Ass. 103 778 789
-
(2008)
J. Am. Statist. Ass.
, vol.103
, pp. 778-789
-
-
Ellis, B.1
Wong, W.H.2
-
96
-
-
84991019291
-
Causal inference
-
In, Encyclopedia Britannica
-
Encyclopedia Britannica 2014Causal inference In Encyclopedia Britannica. Encyclopedia Britannica.
-
(2014)
Encyclopedia Britannica
-
-
-
97
-
-
1542784498
-
Variable selection via nonconcave penalized likelihood and its oracle properties
-
Fan J. Li R. 2001 Variable selection via nonconcave penalized likelihood and its oracle properties J. Am. Statist. Ass. 96 1348 1360
-
(2001)
J. Am. Statist. Ass.
, vol.96
, pp. 1348-1360
-
-
Fan, J.1
Li, R.2
-
98
-
-
53849086824
-
Sure independence screening for ultrahigh dimensional feature space (with discussion)
-
FanJ.LvJ. 2008Sure independence screening for ultrahigh dimensional feature space (with discussion)J. R. Statist. Soc. B 70849911
-
(2008)
J. R. Statist. Soc. B
, vol.70
, pp. 849-911
-
-
Fan, J.1
Lv, J.2
-
101
-
-
17044423540
-
Are there algorithms that discover causal structure
-
Freedman D. Humphreys P. 1999 Are there algorithms that discover causal structure Synthese 121 29 54
-
(1999)
Synthese
, vol.121
, pp. 29-54
-
-
Freedman, D.1
Humphreys, P.2
-
102
-
-
84988001472
-
On asymptotically optimal confidence regions and tests for high-dimensional models
-
van de Geer S. Bühlmann P. Ritov Y. Dezeure R. 2014 On asymptotically optimal confidence regions and tests for high-dimensional models Ann. Statist. 42 1166 1202
-
(2014)
Ann. Statist.
, vol.42
, pp. 1166-1202
-
-
van de Geer, S.1
Bühlmann, P.2
Ritov, Y.3
Dezeure, R.4
-
103
-
-
0000351727
-
Investigating causal relations by econometric models and cross-spectral methods
-
Granger C. W. J. 1969 Investigating causal relations by econometric models and cross-spectral methods Econometrica 137 424 438
-
(1969)
Econometrica
, vol.137
, pp. 424-438
-
-
Granger, C.W.J.1
-
104
-
-
84907479914
-
-
eds, D. F. Hendry, M. S. Morgan, Cambridge, Cambridge University Press
-
HaavelmoT. 1995The Foundations of Econometric Analysis eds D. F. HendryM. S. Morgan pp 440453CambridgeCambridge University Press
-
(1995)
The Foundations of Econometric Analysis
, pp. 440-453
-
-
Haavelmo, T.1
-
106
-
-
84978621488
-
Inferring causal molecular networks: empirical assessment through a community-based effort
-
Hill S. M. Heiser L. M. Cokelaer T. Unger M. Nesser N. K. Carlin D. E. Zhang Y. Sokolov A. Paull E. O. Wong C. K. Graim K. Bivol A. Wang H. Zhu F. Afsari B. Danilova L. V. Favorov A. V. Lee W. S. Taylor D. Hu C. W. Long B. L. Noren D. P. Bisberg A. J. HPN-DREAM Consortium Mills G. B. Gray J. W. Kellen M. Norman T. Friend S. Qutub A. A. Fertig E. J. Guan Y. Song M. Stuart J. M. Spellman P. T. Koeppl H. Stolovitzky G. Saez-Rodriguez J. Mukherjee S. 2016 Inferring causal molecular networks: empirical assessment through a community-based effort Nat. Meth 13 310 318
-
(2016)
Nat. Meth
, vol.13
, pp. 310-318
-
-
Hill, S.M.1
Heiser, L.M.2
Cokelaer, T.3
Unger, M.4
Nesser, N.K.5
Carlin, D.E.6
Zhang, Y.7
Sokolov, A.8
Paull, E.O.9
Wong, C.K.10
Graim, K.11
Bivol, A.12
Wang, H.13
Zhu, F.14
Afsari, B.15
Danilova, L.V.16
Favorov, A.V.17
Lee, W.S.18
Taylor, D.19
Hu, C.W.20
Long, B.L.21
Noren, D.P.22
Bisberg, A.J.23
Hpn-Dream, C.24
Mills, G.B.25
Gray, J.W.26
Kellen, M.27
Norman, T.28
Friend, S.29
Qutub, A.A.30
Fertig, E.J.31
Guan, Y.32
Song, M.33
Stuart, J.M.34
Spellman, P.T.35
Koeppl, H.36
Stolovitzky, G.37
Saez-Rodriguez, J.38
Mukherjee, S.39
more..
-
108
-
-
21644434287
-
Fiducial theory and invariant prediction
-
Hora R. B. Buehler R. J. 1967 Fiducial theory and invariant prediction Ann. Math. Statist. 38 795 801
-
(1967)
Ann. Math. Statist.
, vol.38
, pp. 795-801
-
-
Hora, R.B.1
Buehler, R.J.2
-
109
-
-
84858789485
-
Nonlinear causal discovery with additive noise models
-
In, Vancouver Curran Associates
-
HoyerP. O.JanzingD.MooijJ. M.PetersJ.SchölkopfB. 2009Nonlinear causal discovery with additive noise models In Advances in Neural information Processing Systems, vol. 21, pp. 689696 Vancouver: Curran Associates
-
(2009)
Advances in Neural information Processing Systems
, vol.21
, pp. 689-696
-
-
Hoyer, P.O.1
Janzing, D.2
Mooij, J.M.3
Peters, J.4
Schölkopf, B.5
-
110
-
-
84959499555
-
Analysis of air quality time series of Hong Kong with graphical modeling
-
Hu F. Lu Z. Wong H. Yuen T. P. 2016 Analysis of air quality time series of Hong Kong with graphical modeling Environmetrics 27 169 181
-
(2016)
Environmetrics
, vol.27
, pp. 169-181
-
-
Hu, F.1
Lu, Z.2
Wong, H.3
Yuen, T.P.4
-
112
-
-
0002416976
-
Normal multivariate analysis and the orthogonal group
-
James A. T. 1954 Normal multivariate analysis and the orthogonal group Ann. Math. Statist. 25 40 75
-
(1954)
Ann. Math. Statist.
, vol.25
, pp. 40-75
-
-
James, A.T.1
-
113
-
-
84947998178
-
Principal causal effect identification and principal surrogate end point evaluation by multiple trials
-
JiangZ.DingP.GengZ. 2016Principal causal effect identification and principal surrogate end point evaluation by multiple trialsJ. R. Statist. Soc. B 79829848
-
(2016)
J. R. Statist. Soc. B
, vol.79
, pp. 829-848
-
-
Jiang, Z.1
Ding, P.2
Geng, Z.3
-
114
-
-
0036960228
-
Estimation of intervention effects with noncompliance: alternative model specifications
-
Jo B. 2002 Estimation of intervention effects with noncompliance: alternative model specifications J. Educ. Behav. Statist. 27 385 409
-
(2002)
J. Educ. Behav. Statist.
, vol.27
, pp. 385-409
-
-
Jo, B.1
-
115
-
-
0000955861
-
Exponential dispersion models (with discussion)
-
JørgensenB. 1987Exponential dispersion models (with discussion)J. R. Statist. Soc. B 49127162
-
(1987)
J. R. Statist. Soc. B
, vol.49
, pp. 127-162
-
-
Jørgensen, B.1
-
116
-
-
33947524259
-
Estimating high-dimensional directed acyclic graphs with the PC-algorithm
-
Kalisch M. Bühlmann P. 2007 Estimating high-dimensional directed acyclic graphs with the PC-algorithm J. Mach. Learn. Res. 8 613 636
-
(2007)
J. Mach. Learn. Res.
, vol.8
, pp. 613-636
-
-
Kalisch, M.1
Bühlmann, P.2
-
117
-
-
84899514789
-
Large-scale genetic perturbations reveal regulatory networks and an abundance of gene-specific repressors
-
Kemmeren P. Sameith K. van de Pasch L. A. Benschop J. J. Lenstra T. L. Margaritis T. O'Duibhir E. Apweiler E. van Wageningen S. Ko C. W. van Heesch S. Kashani M. M. Ampatziadis-Michailidis G. Brok M. O. Brabers N. A. Miles A. J. Bouwmeester D. van Hooff S. R. van Bakel H. Sluiters E. Bakker L. V. Snel B. Lijnzaad P. van Leenen D. Groot Koerkamp M. J. Holstege F. C. 2014 Large-scale genetic perturbations reveal regulatory networks and an abundance of gene-specific repressors Cell 157 740 752
-
(2014)
Cell
, vol.157
, pp. 740-752
-
-
Kemmeren, P.1
Sameith, K.2
van de Pasch, L.A.3
Benschop, J.J.4
Lenstra, T.L.5
Margaritis, T.6
O'Duibhir, E.7
Apweiler, E.8
van Wageningen, S.9
Ko, C.W.10
van Heesch, S.11
Kashani, M.M.12
Ampatziadis-Michailidis, G.13
Brok, M.O.14
Brabers, N.A.15
Miles, A.J.16
Bouwmeester, D.17
van Hooff, S.R.18
van Bakel, H.19
Sluiters, E.20
Bakker, L.V.21
Snel, B.22
Lijnzaad, P.23
van Leenen, D.24
Groot25
Koerkamp, M.J.26
Holstege, F.C.27
more..
-
118
-
-
33846651400
-
Experimental analysis of neighborhood effects
-
Kling J. R. Liebman J. B. Katz L. F. 2007 Experimental analysis of neighborhood effects Econometrica 75 83 119
-
(2007)
Econometrica
, vol.75
, pp. 83-119
-
-
Kling, J.R.1
Liebman, J.B.2
Katz, L.F.3
-
119
-
-
0001926461
-
Causal inference from graphical models
-
In, eds, O. E. Barndorff-Nielsen, D. R. Cox and C. Kl, ppelberg, Boca Raton, Chapman and Hall–CRC
-
LauritzenS. L. 2001Causal inference from graphical models In Complex Stochastic Systems eds O. E. Barndorff-Nielsen D. R. Cox and C. Klu¨ ppelberg Boca RatonChapman and Hall–CRC
-
(2001)
Complex Stochastic Systems
-
-
Lauritzen, S.L.1
-
120
-
-
0035466786
-
Representing and solving decision problems with limited information
-
Lauritzen S. L. Nilsson D. 2001 Representing and solving decision problems with limited information Mangmnt Sci. 47 1235 1251
-
(2001)
Mangmnt Sci.
, vol.47
, pp. 1235-1251
-
-
Lauritzen, S.L.1
Nilsson, D.2
-
121
-
-
84871997442
-
Functional causal mediation analysis with an application to brain connectivity
-
Lindquist M. A. 2012 Functional causal mediation analysis with an application to brain connectivity J. Am. Statist. Ass. 107 1297 1309
-
(2012)
J. Am. Statist. Ass.
, vol.107
, pp. 1297-1309
-
-
Lindquist, M.A.1
-
122
-
-
84866688958
-
Bayesian hierarchical modeling for signaling pathway inference from single cell interventional data
-
Luo R. Zhao H. 2011 Bayesian hierarchical modeling for signaling pathway inference from single cell interventional data Ann. Appl. Statist. 5 725 745
-
(2011)
Ann. Appl. Statist.
, vol.5
, pp. 725-745
-
-
Luo, R.1
Zhao, H.2
-
123
-
-
33747163541
-
High-dimensional graphs and variable selection with the lasso
-
Meinshausen N. Bühlmann P. 2006 High-dimensional graphs and variable selection with the lasso Ann. Statist. 34 1436 1462
-
(2006)
Ann. Statist.
, vol.34
, pp. 1436-1462
-
-
Meinshausen, N.1
Bühlmann, P.2
-
126
-
-
0002324387
-
Semiparametric efficiency bounds
-
Newey W. K. 1990 Semiparametric efficiency bounds J. Appl. Econmetr. 5 99 135
-
(1990)
J. Appl. Econmetr.
, vol.5
, pp. 99-135
-
-
Newey, W.K.1
-
130
-
-
84866463900
-
Network inference and biological dynamics
-
Oates C. J. Mukherjee S. 2012 Network inference and biological dynamics Ann. Appl. Statist. 6 1209 1235
-
(2012)
Ann. Appl. Statist.
, vol.6
, pp. 1209-1235
-
-
Oates, C.J.1
Mukherjee, S.2
-
131
-
-
65349149590
-
Multivariate procedures invariant under linear transformations
-
Obenchein R. L. 1971 Multivariate procedures invariant under linear transformations Ann. Math. Statist. 42 1569 1578
-
(1971)
Ann. Math. Statist.
, vol.42
, pp. 1569-1578
-
-
Obenchein, R.L.1
-
133
-
-
77649325496
-
Causal inference in statistics: an overview
-
Pearl J. 2009 Causal inference in statistics: an overview Statist. Surv. 3 96 146
-
(2009)
Statist. Surv.
, vol.3
, pp. 96-146
-
-
Pearl, J.1
-
135
-
-
84921464994
-
External validity: from do-calculus to transportability across populations
-
Pearl J. Bareinboim E. 2014 External validity: from do-calculus to transportability across populations Statist. Sci. 29 579 595
-
(2014)
Statist. Sci.
, vol.29
, pp. 579-595
-
-
Pearl, J.1
Bareinboim, E.2
-
137
-
-
84959105170
-
A two-sample distribution-free test for functional data with application to a diffusion tensor imaging study of multiple sclerosis
-
Pomann G.-M. Staicu A.-M. Ghosh S. 2016 A two-sample distribution-free test for functional data with application to a diffusion tensor imaging study of multiple sclerosis Appl. Statist. 65 395 414
-
(2016)
Appl. Statist.
, vol.65
, pp. 395-414
-
-
Pomann, G.-M.1
Staicu, A.-M.2
Ghosh, S.3
-
138
-
-
84883028224
-
Under what assumptions do site-by-treatment instruments identify average causal effects?
-
Reardon S. F. Raudenbush S. W. 2013 Under what assumptions do site-by-treatment instruments identify average causal effects? Sociol. Meth. Res. 42 143 163
-
(2013)
Sociol. Meth. Res.
, vol.42
, pp. 143-163
-
-
Reardon, S.F.1
Raudenbush, S.W.2
-
139
-
-
0040630191
-
A discovery algorithm for directed cyclic graphs
-
In, eds, F. V. Jensen, E. Horvitz, San Francisco, Morgan Kaufmann
-
RichardsonT. S. 1996A discovery algorithm for directed cyclic graphs In Proc. 12th A. Conf. Uncertainty in Artificial Intelligenceeds F. V. JensenE. Horvitz pp 454461San FranciscoMorgan Kaufmann
-
(1996)
Proc. 12th A. Conf. Uncertainty in Artificial Intelligence
, pp. 454-461
-
-
Richardson, T.S.1
-
140
-
-
0036392228
-
Ancestral graph Markov models
-
Richardson T. Spirtes P. 2002 Ancestral graph Markov models Ann. Statist. 30 962 1030
-
(2002)
Ann. Statist.
, vol.30
, pp. 962-1030
-
-
Richardson, T.1
Spirtes, P.2
-
141
-
-
0001015983
-
Correcting for non-compliance in randomized trials using rank preserving structural failure time models
-
Robins J. M. Tsiatis A. A. 1991 Correcting for non-compliance in randomized trials using rank preserving structural failure time models Communs Statist. Theor. Meth. 20 2609 2631
-
(1991)
Communs Statist. Theor. Meth.
, vol.20
, pp. 2609-2631
-
-
Robins, J.M.1
Tsiatis, A.A.2
-
143
-
-
84908280913
-
Counterfactual, analyses with graphical models based on local independence
-
Røysland K. 2012 Counterfactual, analyses with graphical models based on local independence Ann. Statist. 40 2162 2194
-
(2012)
Ann. Statist.
, vol.40
, pp. 2162-2194
-
-
Røysland, K.1
-
144
-
-
0002531157
-
Bayesian inference for causal effects: the role of randomization
-
Rubin D. B. 1978 Bayesian inference for causal effects: the role of randomization Ann. Statist. 6 34 58
-
(1978)
Ann. Statist.
, vol.6
, pp. 34-58
-
-
Rubin, D.B.1
-
145
-
-
17644427718
-
Causal protein-signaling networks derived from multiparameter single-cell data
-
Sachs K. Perez O. Pe'er D. Lauffenburger D. A. Nolan G. P. 2005 Causal protein-signaling networks derived from multiparameter single-cell data Science 308 523 529
-
(2005)
Science
, vol.308
, pp. 523-529
-
-
Sachs, K.1
Perez, O.2
Pe'er, D.3
Lauffenburger, D.A.4
Nolan, G.P.5
-
151
-
-
84908285303
-
Causal interpretation of stochastic differential equations
-
Sokol A. Hansen N. R. 2011 Causal interpretation of stochastic differential equations Electron. J. Probab. 19 1 24
-
(2011)
Electron. J. Probab.
, vol.19
, pp. 1-24
-
-
Sokol, A.1
Hansen, N.R.2
-
152
-
-
0000600340
-
General intelligence,” objectively determined and measured
-
Spearman C. 1904 “General intelligence,” objectively determined and measured Am. J. Psychol. 15 210 293
-
(1904)
Am. J. Psychol.
, vol.15
, pp. 210-293
-
-
Spearman, C.1
-
155
-
-
84884906891
-
Causal identifiability via chain event graphs
-
Thwaites P. A. 2013 Causal identifiability via chain event graphs Artif. Intell. 195 291 315
-
(2013)
Artif. Intell.
, vol.195
, pp. 291-315
-
-
Thwaites, P.A.1
-
158
-
-
84891502322
-
Causal inference under multiple versions of treatment
-
VanderWeele T. Hernan M. 2013 Causal inference under multiple versions of treatment J. Causl Inf. 1 1 20
-
(2013)
J. Causl Inf.
, vol.1
, pp. 1-20
-
-
VanderWeele, T.1
Hernan, M.2
-
159
-
-
84991000367
-
Granger causality
-
In, (Available from
-
Wikipedia 2016Granger causality In Wikipedia. (Available from https://en.wikipedia.org/wiki/Granger__causality.)
-
(2016)
Wikipedia
-
-
-
160
-
-
7244261743
-
Causal linkages among Shanghai, Shenzhen, and Hong Kong stock markets
-
Zhu H. Lu Z. Wang S. Soofi A. S. 2004 Causal linkages among Shanghai, Shenzhen, and Hong Kong stock markets Int. J. Theoret. Appl. Finan. 7 135 149
-
(2004)
Int. J. Theoret. Appl. Finan.
, vol.7
, pp. 135-149
-
-
Zhu, H.1
Lu, Z.2
Wang, S.3
Soofi, A.S.4
|