메뉴 건너뛰기




Volumn 4, Issue 4, 2004, Pages 527-574

On inclusion-driven learning of Bayesian networks

Author keywords

Bayesian networks; Graphical Markov model inclusion; Inclusion boundary; Structure learning

Indexed keywords

ALGORITHMS; GRAPH THEORY; MARKOV PROCESSES; PROBABILITY; SET THEORY;

EID: 2542465947     PISSN: 15324435     EISSN: None     Source Type: Journal    
DOI: 10.1162/153244304773936045     Document Type: Conference Paper
Times cited : (58)

References (54)
  • 1
    • 0031531764 scopus 로고    scopus 로고
    • A characterization of Markov equivalence classes for acyclic digraphs
    • S. Andersson, D. Madigan, and M. Perlman. A characterization of Markov equivalence classes for acyclic digraphs. Annals of Statistics, 25:505-541, 1997a.
    • (1997) Annals of Statistics , vol.25 , pp. 505-541
    • Andersson, S.1    Madigan, D.2    Perlman, M.3
  • 2
    • 0031477121 scopus 로고    scopus 로고
    • On the Markov equivalence of chain graphs, undirected graphs, and acyclic digraphs
    • S. Andersson, D. Madigan, and M. Perlman. On the Markov equivalence of chain graphs, undirected graphs, and acyclic digraphs. Scandinavian Journal of Statistics, 24:81-102, 1997b.
    • (1997) Scandinavian Journal of Statistics , vol.24 , pp. 81-102
    • Andersson, S.1    Madigan, D.2    Perlman, M.3
  • 3
    • 0002420578 scopus 로고
    • On the relation between conditional independence models determined by finite distributive lattices and by directed acyclic graphs
    • S. Andersson, D. Madigan, M. Perlman, and C. Triggs. On the relation between conditional independence models determined by finite distributive lattices and by directed acyclic graphs. Journal of Statistical Planning and Inference, 48:25-46, 1995.
    • (1995) Journal of Statistical Planning and Inference , vol.48 , pp. 25-46
    • Andersson, S.1    Madigan, D.2    Perlman, M.3    Triggs, C.4
  • 5
    • 0008543956 scopus 로고
    • Optimizing causal orderings for generating dags from data
    • D. Dubois, M.P. Wellman, B. D'Ambrosio, and P. Smets, editors. Morgan Kaufmann
    • R. Bouckaert. Optimizing causal orderings for generating dags from data. In D. Dubois, M.P. Wellman, B. D'Ambrosio, and P. Smets, editors, Proc. of the Conf. on Uncertainty in Artificial Intelligence, pages 9-16. Morgan Kaufmann, 1992.
    • (1992) Proc. of the Conf. on Uncertainty in Artificial Intelligence , pp. 9-16
    • Bouckaert, R.1
  • 6
    • 0002051628 scopus 로고    scopus 로고
    • Empirical analysis of predictive algorithms for collaborative filtering
    • G.F. Cooper and S. Moral, editors. Morgan Kaufmann
    • J.S. Breese, D. Heckerman, and C. Kadie. Empirical analysis of predictive algorithms for collaborative filtering. In G.F. Cooper and S. Moral, editors, Proc. of the Conf. on Uncertainty in Artificial Intelligence, pages 43-52. Morgan Kaufmann, 1998.
    • (1998) Proc. of the Conf. on Uncertainty in Artificial Intelligence , pp. 43-52
    • Breese, J.S.1    Heckerman, D.2    Kadie, C.3
  • 7
    • 0001926525 scopus 로고
    • Theory refinement on Bayesian networks
    • P. Smets B. D'Ambrosio and P.P. Bonissone, editors. Morgan Kaufmann
    • W. Buntine. Theory refinement on Bayesian networks. In P. Smets B. D'Ambrosio and P.P. Bonissone, editors, Proc. of the Conf. on Uncertainty in Artificial Intelligence, pages 52-60. Morgan Kaufmann, 1991.
    • (1991) Proc. of the Conf. on Uncertainty in Artificial Intelligence , pp. 52-60
    • Buntine, W.1
  • 9
    • 2542432738 scopus 로고    scopus 로고
    • Learning essential graph Markov models from data
    • J.A. Gámez and A. Salmerón, editors, November
    • R. Castelo and M.D. Perlman. Learning essential graph Markov models from data. In J.A. Gámez and A. Salmerón, editors, First European Workshop on Probabilistic Graphical Models, pages 17-24, November 2002.
    • (2002) First European Workshop on Probabilistic Graphical Models , pp. 17-24
    • Castelo, R.1    Perlman, M.D.2
  • 10
    • 32344446687 scopus 로고
    • Understanding the Metropolis-Hastings algorithm
    • S. Chib and E. Greenberg. Understanding the Metropolis-Hastings algorithm. American Statistician, 49(4):327-335, 1995.
    • (1995) American Statistician , vol.49 , Issue.4 , pp. 327-335
    • Chib, S.1    Greenberg, E.2
  • 11
    • 0002013121 scopus 로고
    • A transformational characterization of equivalent Bayesian networks
    • P. Besnard and S. Hanks, editors. Morgan Kaufmann
    • D.M. Chickering. A transformational characterization of equivalent Bayesian networks. In P. Besnard and S. Hanks, editors, Proc. of the Conf. on Uncertainty in Artificial Intelligence, pages 87-98. Morgan Kaufmann, 1995.
    • (1995) Proc. of the Conf. on Uncertainty in Artificial Intelligence , pp. 87-98
    • Chickering, D.M.1
  • 12
    • 0002332440 scopus 로고    scopus 로고
    • Learning equivalence classes of Bayesian network structures
    • E. Horvitz and F. Jensen, editors. Morgan Kaufmann
    • D.M. Chickering. Learning equivalence classes of Bayesian network structures. In E. Horvitz and F. Jensen, editors, Proc. of the Conf. on Uncertainty in Artificial Intelligence, pages 150-157. Morgan Kaufmann, 1996.
    • (1996) Proc. of the Conf. on Uncertainty in Artificial Intelligence , pp. 150-157
    • Chickering, D.M.1
  • 13
    • 0042496103 scopus 로고    scopus 로고
    • Learning equivalence classes of Bayesian-network structures
    • D.M. Chickering. Learning equivalence classes of Bayesian-network structures. Journal of Machine Learning Research, 2:445-498, 2002a.
    • (2002) Journal of Machine Learning Research , vol.2 , pp. 445-498
    • Chickering, D.M.1
  • 14
    • 0042967741 scopus 로고    scopus 로고
    • Optimal structure identification with greedy search
    • D.M. Chickering. Optimal structure identification with greedy search. Journal of Machine Learning Research, 3:507-554, 2002b.
    • (2002) Journal of Machine Learning Research , vol.3 , pp. 507-554
    • Chickering, D.M.1
  • 17
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • G. Cooper and E.H. Herskovits. A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9:309-405, 1992.
    • (1992) Machine Learning , vol.9 , pp. 309-405
    • Cooper, G.1    Herskovits, E.H.2
  • 18
    • 0002384709 scopus 로고
    • Conditional independence in statistical theory
    • A.P. Dawid. Conditional independence in statistical theory (with discussion). Journal of the Royal Statistical Society B, 41(1):1-31, 1979.
    • (1979) Journal of the Royal Statistical Society B , vol.41 , Issue.1 , pp. 1-31
    • Dawid, A.P.1
  • 20
    • 0000130823 scopus 로고
    • A fast procedure for model search in multidimensional contingency tables
    • D. Edwards and T. Havránek. A fast procedure for model search in multidimensional contingency tables. Biometrika, 72(2):339-351, 1985.
    • (1985) Biometrika , vol.72 , Issue.2 , pp. 339-351
    • Edwards, D.1    Havránek, T.2
  • 22
    • 0000498409 scopus 로고    scopus 로고
    • Being Bayesian about network structure
    • C. Boutilier and M. Goldszmidt, editors. Morgan Kaufmann
    • N. Friedman and D. Koller. Being Bayesian about network structure. In C. Boutilier and M. Goldszmidt, editors, Proc. of the Conf. on Uncertainty in Artificial Intelligence, pages 201-210. Morgan Kaufmann, 2000.
    • (2000) Proc. of the Conf. on Uncertainty in Artificial Intelligence , pp. 201-210
    • Friedman, N.1    Koller, D.2
  • 24
    • 0003385441 scopus 로고    scopus 로고
    • Enumerating Markov equivalence classes of acyclic digraph models
    • J. Breese and D. Koller, editors. Morgan Kaufmann
    • S. Gillispie and M. Perlman. Enumerating Markov equivalence classes of acyclic digraph models. In J. Breese and D. Koller, editors, Proc. of the Conf. on Uncertainty in Artificial Intelligence, pages 171-177. Morgan Kaufmann, 2001.
    • (2001) Proc. of the Conf. on Uncertainty in Artificial Intelligence , pp. 171-177
    • Gillispie, S.1    Perlman, M.2
  • 26
    • 0037266163 scopus 로고    scopus 로고
    • Improving Markov chain Monte Carlo model search for data mining
    • P. Giudici and R. Castelo. Improving Markov Chain Monte Carlo model search for Data Mining. Machine Learning, 50(1/2):127-158, 2003.
    • (2003) Machine Learning , vol.50 , Issue.1-2 , pp. 127-158
    • Giudici, P.1    Castelo, R.2
  • 27
    • 0001099335 scopus 로고    scopus 로고
    • Decomposable graphical gaussian model determination
    • P. Giudici and P.J. Green. Decomposable graphical gaussian model determination. Biometrika, 86(4):785-801, 1999.
    • (1999) Biometrika , vol.86 , Issue.4 , pp. 785-801
    • Giudici, P.1    Green, P.J.2
  • 28
    • 77956890234 scopus 로고
    • Monte Carlo sampling methods using Markov chains and their applications
    • W.K. Hastings. Monte carlo sampling methods using Markov chains and their applications. Biometrika, 57(1):97-109, 1970.
    • (1970) Biometrika , vol.57 , Issue.1 , pp. 97-109
    • Hastings, W.K.1
  • 29
    • 0021605578 scopus 로고
    • A procedure for model search in multidimensional contingency tables
    • T. Havránek. A procedure for model search in multidimensional contingency tables. Biometrics, 40:95-100, 1984.
    • (1984) Biometrics , vol.40 , pp. 95-100
    • Havránek, T.1
  • 30
    • 34249761849 scopus 로고
    • Learning Bayesian networks: The combination of knowledge and statistical data
    • D. Heckerman, D. Geiger, and D.M. Chickering. Learning Bayesian networks: The combination of knowledge and statistical data. Machine Learning, 20:194-243, 1995.
    • (1995) Machine Learning , vol.20 , pp. 194-243
    • Heckerman, D.1    Geiger, D.2    Chickering, D.M.3
  • 36
  • 39
  • 41
  • 43
    • 0004631981 scopus 로고    scopus 로고
    • Random generation of DAGs for graphs drawing
    • Centrum voor Wiskunde en Informatica, February
    • G. Melançon, I. Dutour, and M. Bousquet-Melou. Random generation of DAGs for graphs drawing. Technical report, Centrum voor Wiskunde en Informatica, February 2000.
    • (2000) Technical Report
    • Melançon, G.1    Dutour, I.2    Bousquet-Melou, M.3
  • 47
    • 0001457227 scopus 로고
    • Counting labeled acyclic digraphs
    • F. Harary, editor, Academic Press, New York
    • R.W. Robinson. Counting labeled acyclic digraphs. In F. Harary, editor, New Directions in the Theory of Graphs, pages 239-273. Academic Press, New York, 1973.
    • (1973) New Directions in the Theory of Graphs , pp. 239-273
    • Robinson, R.W.1
  • 48
    • 0042456371 scopus 로고
    • An algorithm for the construction of Bayesian network structures from data
    • D. Heckerman and A. Mamdani, editors. Morgan Kaufmann
    • M. Singh and M. Valtorta. An algorithm for the construction of Bayesian network structures from data. In D. Heckerman and A. Mamdani, editors, Proc. of the Conf. on Uncertainty in Artificial Intelligence, pages 259-265. Morgan Kaufmann, 1993.
    • (1993) Proc. of the Conf. on Uncertainty in Artificial Intelligence , pp. 259-265
    • Singh, M.1    Valtorta, M.2
  • 49
    • 0003053548 scopus 로고
    • Bayesian computation via the gibbs sampler and related Markov Chain Monte Carlo methods
    • A.F.M. Smith and G.O. Roberts. Bayesian computation via the gibbs sampler and related Markov Chain Monte Carlo methods. Journal of the Royal Statistical Society B, 55(1): 3-23, 1993.
    • (1993) Journal of the Royal Statistical Society B , vol.55 , Issue.1 , pp. 3-23
    • Smith, A.F.M.1    Roberts, G.O.2
  • 51
    • 84915827212 scopus 로고
    • Learning Bayesian networks with discrete variables from data
    • U.M. Fayyad and R. Uthurusamy, editors. AAAI Press
    • P. Spirtes and C. Meek. Learning Bayesian networks with discrete variables from data. In U.M. Fayyad and R. Uthurusamy, editors, Proc. of the Intl. Conf. on Knowledge Discovery and Data Mining, pages 294-299. AAAI Press, 1995.
    • (1995) Proc. of the Intl. Conf. on Knowledge Discovery and Data Mining , pp. 294-299
    • Spirtes, P.1    Meek, C.2
  • 52
    • 2542489906 scopus 로고
    • Influence diagrams and d-separation
    • Cognitive Systems Laboratory, UCLA, March
    • T.S. Verma and J. Pearl. Influence diagrams and d-separation. Technical report, Cognitive Systems Laboratory, UCLA, March 1988.
    • (1988) Technical Report
    • Verma, T.S.1    Pearl, J.2
  • 53
    • 0002095306 scopus 로고
    • Equivalence and synthesis of causal models
    • P.P. Bonissone, M. Henrion, L.N. Kanal, and J.F. Lemmer, editors. Morgan Kaufmann
    • T.S. Verma and J. Pearl. Equivalence and synthesis of causal models. In P.P. Bonissone, M. Henrion, L.N. Kanal, and J.F. Lemmer, editors, Proc. of the Conf. on Uncertainty in Artificial Intelligence, pages 255-268. Morgan Kaufmann, 1990.
    • (1990) Proc. of the Conf. on Uncertainty in Artificial Intelligence , pp. 255-268
    • Verma, T.S.1    Pearl, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.