-
1
-
-
0031531764
-
A characterization of Markov equivalence classes for acyclic digraphs
-
S. Andersson, D. Madigan, and M. Perlman. A characterization of Markov equivalence classes for acyclic digraphs. Annals of Statistics, 25:505-541, 1997a.
-
(1997)
Annals of Statistics
, vol.25
, pp. 505-541
-
-
Andersson, S.1
Madigan, D.2
Perlman, M.3
-
2
-
-
0031477121
-
On the Markov equivalence of chain graphs, undirected graphs, and acyclic digraphs
-
S. Andersson, D. Madigan, and M. Perlman. On the Markov equivalence of chain graphs, undirected graphs, and acyclic digraphs. Scandinavian Journal of Statistics, 24:81-102, 1997b.
-
(1997)
Scandinavian Journal of Statistics
, vol.24
, pp. 81-102
-
-
Andersson, S.1
Madigan, D.2
Perlman, M.3
-
3
-
-
0002420578
-
On the relation between conditional independence models determined by finite distributive lattices and by directed acyclic graphs
-
S. Andersson, D. Madigan, M. Perlman, and C. Triggs. On the relation between conditional independence models determined by finite distributive lattices and by directed acyclic graphs. Journal of Statistical Planning and Inference, 48:25-46, 1995.
-
(1995)
Journal of Statistical Planning and Inference
, vol.48
, pp. 25-46
-
-
Andersson, S.1
Madigan, D.2
Perlman, M.3
Triggs, C.4
-
4
-
-
0002460150
-
The alarm monitoring system: A case study with two probabilistic inference techniques for belief networks
-
J. Hunter, editor. Springer-Verlag
-
I. Beinlich, H. Suermondt, R. Chavez, and G. Cooper. The alarm monitoring system: A case study with two probabilistic inference techniques for belief networks. In J. Hunter, editor, Proc. of the Second European Conference on Artificial Intelligence in Medicine, pages 247-256. Springer-Verlag, 1989.
-
(1989)
Proc. of the Second European Conference on Artificial Intelligence in Medicine
, pp. 247-256
-
-
Beinlich, I.1
Suermondt, H.2
Chavez, R.3
Cooper, G.4
-
5
-
-
0008543956
-
Optimizing causal orderings for generating dags from data
-
D. Dubois, M.P. Wellman, B. D'Ambrosio, and P. Smets, editors. Morgan Kaufmann
-
R. Bouckaert. Optimizing causal orderings for generating dags from data. In D. Dubois, M.P. Wellman, B. D'Ambrosio, and P. Smets, editors, Proc. of the Conf. on Uncertainty in Artificial Intelligence, pages 9-16. Morgan Kaufmann, 1992.
-
(1992)
Proc. of the Conf. on Uncertainty in Artificial Intelligence
, pp. 9-16
-
-
Bouckaert, R.1
-
6
-
-
0002051628
-
Empirical analysis of predictive algorithms for collaborative filtering
-
G.F. Cooper and S. Moral, editors. Morgan Kaufmann
-
J.S. Breese, D. Heckerman, and C. Kadie. Empirical analysis of predictive algorithms for collaborative filtering. In G.F. Cooper and S. Moral, editors, Proc. of the Conf. on Uncertainty in Artificial Intelligence, pages 43-52. Morgan Kaufmann, 1998.
-
(1998)
Proc. of the Conf. on Uncertainty in Artificial Intelligence
, pp. 43-52
-
-
Breese, J.S.1
Heckerman, D.2
Kadie, C.3
-
7
-
-
0001926525
-
Theory refinement on Bayesian networks
-
P. Smets B. D'Ambrosio and P.P. Bonissone, editors. Morgan Kaufmann
-
W. Buntine. Theory refinement on Bayesian networks. In P. Smets B. D'Ambrosio and P.P. Bonissone, editors, Proc. of the Conf. on Uncertainty in Artificial Intelligence, pages 52-60. Morgan Kaufmann, 1991.
-
(1991)
Proc. of the Conf. on Uncertainty in Artificial Intelligence
, pp. 52-60
-
-
Buntine, W.1
-
8
-
-
84948160344
-
Mambo: Discovering association rules based on conditional independencies
-
F. Hoffmann, D.J. Hand, N.M. Adams, D. Fisher, and G. Guimarães, editors. Springer
-
R. Castelo, A. Feelders, and A. Siebes. Mambo: Discovering association rules based on conditional independencies. In F. Hoffmann, D.J. Hand, N.M. Adams, D. Fisher, and G. Guimarães, editors, Proceedings 4th Symposium on Intelligent Data Analysis, volume 2189 of Lecture Notes in Computer Science, pages 289-298. Springer, 2001.
-
(2001)
Proceedings 4th Symposium on Intelligent Data Analysis, Volume 2189 of Lecture Notes in Computer Science
, pp. 289-298
-
-
Castelo, R.1
Feelders, A.2
Siebes, A.3
-
9
-
-
2542432738
-
Learning essential graph Markov models from data
-
J.A. Gámez and A. Salmerón, editors, November
-
R. Castelo and M.D. Perlman. Learning essential graph Markov models from data. In J.A. Gámez and A. Salmerón, editors, First European Workshop on Probabilistic Graphical Models, pages 17-24, November 2002.
-
(2002)
First European Workshop on Probabilistic Graphical Models
, pp. 17-24
-
-
Castelo, R.1
Perlman, M.D.2
-
10
-
-
32344446687
-
Understanding the Metropolis-Hastings algorithm
-
S. Chib and E. Greenberg. Understanding the Metropolis-Hastings algorithm. American Statistician, 49(4):327-335, 1995.
-
(1995)
American Statistician
, vol.49
, Issue.4
, pp. 327-335
-
-
Chib, S.1
Greenberg, E.2
-
11
-
-
0002013121
-
A transformational characterization of equivalent Bayesian networks
-
P. Besnard and S. Hanks, editors. Morgan Kaufmann
-
D.M. Chickering. A transformational characterization of equivalent Bayesian networks. In P. Besnard and S. Hanks, editors, Proc. of the Conf. on Uncertainty in Artificial Intelligence, pages 87-98. Morgan Kaufmann, 1995.
-
(1995)
Proc. of the Conf. on Uncertainty in Artificial Intelligence
, pp. 87-98
-
-
Chickering, D.M.1
-
12
-
-
0002332440
-
Learning equivalence classes of Bayesian network structures
-
E. Horvitz and F. Jensen, editors. Morgan Kaufmann
-
D.M. Chickering. Learning equivalence classes of Bayesian network structures. In E. Horvitz and F. Jensen, editors, Proc. of the Conf. on Uncertainty in Artificial Intelligence, pages 150-157. Morgan Kaufmann, 1996.
-
(1996)
Proc. of the Conf. on Uncertainty in Artificial Intelligence
, pp. 150-157
-
-
Chickering, D.M.1
-
13
-
-
0042496103
-
Learning equivalence classes of Bayesian-network structures
-
D.M. Chickering. Learning equivalence classes of Bayesian-network structures. Journal of Machine Learning Research, 2:445-498, 2002a.
-
(2002)
Journal of Machine Learning Research
, vol.2
, pp. 445-498
-
-
Chickering, D.M.1
-
14
-
-
0042967741
-
Optimal structure identification with greedy search
-
D.M. Chickering. Optimal structure identification with greedy search. Journal of Machine Learning Research, 3:507-554, 2002b.
-
(2002)
Journal of Machine Learning Research
, vol.3
, pp. 507-554
-
-
Chickering, D.M.1
-
15
-
-
0002157592
-
Learning Bayesian networks: Search methods and experimental results
-
D. Fisher and H-J. Lenz, editors
-
D.M. Chickering, D. Geiger, and D. Heckerman. Learning Bayesian networks: Search methods and experimental results. In D. Fisher and H-J. Lenz, editors, Proc. of the Intl. Workshop on Artificial Intelligence and Statistics, pages 112-128, 1995.
-
(1995)
Proc. of the Intl. Workshop on Artificial Intelligence and Statistics
, pp. 112-128
-
-
Chickering, D.M.1
Geiger, D.2
Heckerman, D.3
-
17
-
-
34249832377
-
A Bayesian method for the induction of probabilistic networks from data
-
G. Cooper and E.H. Herskovits. A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9:309-405, 1992.
-
(1992)
Machine Learning
, vol.9
, pp. 309-405
-
-
Cooper, G.1
Herskovits, E.H.2
-
18
-
-
0002384709
-
Conditional independence in statistical theory
-
A.P. Dawid. Conditional independence in statistical theory (with discussion). Journal of the Royal Statistical Society B, 41(1):1-31, 1979.
-
(1979)
Journal of the Royal Statistical Society B
, vol.41
, Issue.1
, pp. 1-31
-
-
Dawid, A.P.1
-
20
-
-
0000130823
-
A fast procedure for model search in multidimensional contingency tables
-
D. Edwards and T. Havránek. A fast procedure for model search in multidimensional contingency tables. Biometrika, 72(2):339-351, 1985.
-
(1985)
Biometrika
, vol.72
, Issue.2
, pp. 339-351
-
-
Edwards, D.1
Havránek, T.2
-
22
-
-
0000498409
-
Being Bayesian about network structure
-
C. Boutilier and M. Goldszmidt, editors. Morgan Kaufmann
-
N. Friedman and D. Koller. Being Bayesian about network structure. In C. Boutilier and M. Goldszmidt, editors, Proc. of the Conf. on Uncertainty in Artificial Intelligence, pages 201-210. Morgan Kaufmann, 2000.
-
(2000)
Proc. of the Conf. on Uncertainty in Artificial Intelligence
, pp. 201-210
-
-
Friedman, N.1
Koller, D.2
-
24
-
-
0003385441
-
Enumerating Markov equivalence classes of acyclic digraph models
-
J. Breese and D. Koller, editors. Morgan Kaufmann
-
S. Gillispie and M. Perlman. Enumerating Markov equivalence classes of acyclic digraph models. In J. Breese and D. Koller, editors, Proc. of the Conf. on Uncertainty in Artificial Intelligence, pages 171-177. Morgan Kaufmann, 2001.
-
(2001)
Proc. of the Conf. on Uncertainty in Artificial Intelligence
, pp. 171-177
-
-
Gillispie, S.1
Perlman, M.2
-
26
-
-
0037266163
-
Improving Markov chain Monte Carlo model search for data mining
-
P. Giudici and R. Castelo. Improving Markov Chain Monte Carlo model search for Data Mining. Machine Learning, 50(1/2):127-158, 2003.
-
(2003)
Machine Learning
, vol.50
, Issue.1-2
, pp. 127-158
-
-
Giudici, P.1
Castelo, R.2
-
27
-
-
0001099335
-
Decomposable graphical gaussian model determination
-
P. Giudici and P.J. Green. Decomposable graphical gaussian model determination. Biometrika, 86(4):785-801, 1999.
-
(1999)
Biometrika
, vol.86
, Issue.4
, pp. 785-801
-
-
Giudici, P.1
Green, P.J.2
-
28
-
-
77956890234
-
Monte Carlo sampling methods using Markov chains and their applications
-
W.K. Hastings. Monte carlo sampling methods using Markov chains and their applications. Biometrika, 57(1):97-109, 1970.
-
(1970)
Biometrika
, vol.57
, Issue.1
, pp. 97-109
-
-
Hastings, W.K.1
-
29
-
-
0021605578
-
A procedure for model search in multidimensional contingency tables
-
T. Havránek. A procedure for model search in multidimensional contingency tables. Biometrics, 40:95-100, 1984.
-
(1984)
Biometrics
, vol.40
, pp. 95-100
-
-
Havránek, T.1
-
30
-
-
34249761849
-
Learning Bayesian networks: The combination of knowledge and statistical data
-
D. Heckerman, D. Geiger, and D.M. Chickering. Learning Bayesian networks: The combination of knowledge and statistical data. Machine Learning, 20:194-243, 1995.
-
(1995)
Machine Learning
, vol.20
, pp. 194-243
-
-
Heckerman, D.1
Geiger, D.2
Chickering, D.M.3
-
35
-
-
0038477844
-
On characterizing inclusion of Bayesian networks
-
J. Breese and D. Koller, editors. Morgan Kaufmann
-
T. Kočka, R. Bouckaert, and M. Studený. On characterizing inclusion of Bayesian networks, In J. Breese and D. Koller, editors, Proc. of the Conf. on Uncertainty in Artificial Intelligence, pages 261-268. Morgan Kaufmann, 2001.
-
(2001)
Proc. of the Conf. on Uncertainty in Artificial Intelligence
, pp. 261-268
-
-
Kočka, T.1
Bouckaert, R.2
Studený, M.3
-
37
-
-
0030192667
-
Learning Bayesian network structures by searching for the best ordering with genetic algorithms
-
P. Larrañaga, C. Kuijpers, R. Murga, and Y. Yurramendi. Learning Bayesian network structures by searching for the best ordering with genetic algorithms. IEEE Transactions on Systems, Man and Cybernetics, 26(4):487-493, 1996.
-
(1996)
IEEE Transactions on Systems, Man and Cybernetics
, vol.26
, Issue.4
, pp. 487-493
-
-
Larrañaga, P.1
Kuijpers, C.2
Murga, R.3
Yurramendi, Y.4
-
39
-
-
84987049628
-
Independence properties of directed Markov fields
-
S.L. Lauritzen, A.P. Dawid, B.N. Larsen, and H.G. Leimer. Independence properties of directed Markov fields. Networks, 20:491-505, 1990.
-
(1990)
Networks
, vol.20
, pp. 491-505
-
-
Lauritzen, S.L.1
Dawid, A.P.2
Larsen, B.N.3
Leimer, H.G.4
-
40
-
-
0000220791
-
Bayesian model averaging and model selection for Markov equivalence classes of acyclic digraphs
-
D. Madigan, S.A. Andersson, M. Perlman, and C.T. Volinsky. Bayesian model averaging and model selection for Markov equivalence classes of acyclic digraphs. Communications in Statistics (theory and methods), 25(11):2493-2512, 1996.
-
(1996)
Communications in Statistics (Theory and Methods)
, vol.25
, Issue.11
, pp. 2493-2512
-
-
Madigan, D.1
Andersson, S.A.2
Perlman, M.3
Volinsky, C.T.4
-
43
-
-
0004631981
-
Random generation of DAGs for graphs drawing
-
Centrum voor Wiskunde en Informatica, February
-
G. Melançon, I. Dutour, and M. Bousquet-Melou. Random generation of DAGs for graphs drawing. Technical report, Centrum voor Wiskunde en Informatica, February 2000.
-
(2000)
Technical Report
-
-
Melançon, G.1
Dutour, I.2
Bousquet-Melou, M.3
-
44
-
-
5744249209
-
Equations of state calculations by fast computing machines
-
N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller. Equations of state calculations by fast computing machines. Journal of Chemical Physics, 21:1087-1092, 1953.
-
(1953)
Journal of Chemical Physics
, vol.21
, pp. 1087-1092
-
-
Metropolis, N.1
Rosenbluth, A.W.2
Rosenbluth, M.N.3
Teller, A.H.4
Teller, E.5
-
47
-
-
0001457227
-
Counting labeled acyclic digraphs
-
F. Harary, editor, Academic Press, New York
-
R.W. Robinson. Counting labeled acyclic digraphs. In F. Harary, editor, New Directions in the Theory of Graphs, pages 239-273. Academic Press, New York, 1973.
-
(1973)
New Directions in the Theory of Graphs
, pp. 239-273
-
-
Robinson, R.W.1
-
48
-
-
0042456371
-
An algorithm for the construction of Bayesian network structures from data
-
D. Heckerman and A. Mamdani, editors. Morgan Kaufmann
-
M. Singh and M. Valtorta. An algorithm for the construction of Bayesian network structures from data. In D. Heckerman and A. Mamdani, editors, Proc. of the Conf. on Uncertainty in Artificial Intelligence, pages 259-265. Morgan Kaufmann, 1993.
-
(1993)
Proc. of the Conf. on Uncertainty in Artificial Intelligence
, pp. 259-265
-
-
Singh, M.1
Valtorta, M.2
-
49
-
-
0003053548
-
Bayesian computation via the gibbs sampler and related Markov Chain Monte Carlo methods
-
A.F.M. Smith and G.O. Roberts. Bayesian computation via the gibbs sampler and related Markov Chain Monte Carlo methods. Journal of the Royal Statistical Society B, 55(1): 3-23, 1993.
-
(1993)
Journal of the Royal Statistical Society B
, vol.55
, Issue.1
, pp. 3-23
-
-
Smith, A.F.M.1
Roberts, G.O.2
-
50
-
-
0003614273
-
-
Springer-Verlag, New York
-
P. Spirtes, C. Glymour, and R. Scheimes. Causation, Prediction and Search. Springer-Verlag, New York, 1993.
-
(1993)
Causation, Prediction and Search
-
-
Spirtes, P.1
Glymour, C.2
Scheimes, R.3
-
51
-
-
84915827212
-
Learning Bayesian networks with discrete variables from data
-
U.M. Fayyad and R. Uthurusamy, editors. AAAI Press
-
P. Spirtes and C. Meek. Learning Bayesian networks with discrete variables from data. In U.M. Fayyad and R. Uthurusamy, editors, Proc. of the Intl. Conf. on Knowledge Discovery and Data Mining, pages 294-299. AAAI Press, 1995.
-
(1995)
Proc. of the Intl. Conf. on Knowledge Discovery and Data Mining
, pp. 294-299
-
-
Spirtes, P.1
Meek, C.2
-
52
-
-
2542489906
-
Influence diagrams and d-separation
-
Cognitive Systems Laboratory, UCLA, March
-
T.S. Verma and J. Pearl. Influence diagrams and d-separation. Technical report, Cognitive Systems Laboratory, UCLA, March 1988.
-
(1988)
Technical Report
-
-
Verma, T.S.1
Pearl, J.2
-
53
-
-
0002095306
-
Equivalence and synthesis of causal models
-
P.P. Bonissone, M. Henrion, L.N. Kanal, and J.F. Lemmer, editors. Morgan Kaufmann
-
T.S. Verma and J. Pearl. Equivalence and synthesis of causal models. In P.P. Bonissone, M. Henrion, L.N. Kanal, and J.F. Lemmer, editors, Proc. of the Conf. on Uncertainty in Artificial Intelligence, pages 255-268. Morgan Kaufmann, 1990.
-
(1990)
Proc. of the Conf. on Uncertainty in Artificial Intelligence
, pp. 255-268
-
-
Verma, T.S.1
Pearl, J.2
|