-
1
-
-
84950771789
-
Estimating optimal transformations for multiple regression and correlation
-
With discussion and with a reply by the authors. MR0803258
-
BREIMAN, L. and FRIEDMAN, J. H. (1985). Estimating optimal transformations for multiple regression and correlation. J. Amer. Statist. Assoc. 80 580-619. With discussion and with a reply by the authors. MR0803258
-
(1985)
J. Amer. Statist. Assoc.
, vol.80
, pp. 580-619
-
-
Breiman, L.1
Friedman, J.H.2
-
2
-
-
41549141939
-
Boosting algorithms: Regularization, prediction and model fitting
-
MR2420454
-
BÜHLMANN, P. and HOTHORN, T. (2007). Boosting algorithms: Regularization, prediction and model fitting. Statist. Sci. 22 477-505. MR2420454
-
(2007)
Statist. Sci.
, vol.22
, pp. 477-505
-
-
Bühlmann, P.1
Hothorn, T.2
-
5
-
-
0043245810
-
2 loss: Regression and classification
-
MR1995709
-
2 loss: Regression and classification. J. Amer. Statist. Assoc. 98 324-339. MR1995709
-
(2003)
J. Amer. Statist. Assoc.
, vol.98
, pp. 324-339
-
-
Bühlmann, P.1
Yu, B.2
-
6
-
-
0042967741
-
Optimal structure identification with greedy search
-
MR1991085
-
CHICKERING, D. M. (2002). Optimal structure identification with greedy search. J. Mach. Learn. Res. 3 507-554. MR1991085
-
(2002)
J. Mach. Learn. Res.
, vol.3
, pp. 507-554
-
-
Chickering, D.M.1
-
7
-
-
84867677322
-
Learning high-dimensional directed acyclic graphs with latent and selection variables
-
MR3014308
-
COLOMBO, D., MAATHUIS, M. H., KALISCH, M. and RICHARDSON, T. S. (2012). Learning high-dimensional directed acyclic graphs with latent and selection variables. Ann. Statist. 40 294-321. MR3014308
-
(2012)
Ann. Statist.
, vol.40
, pp. 294-321
-
-
Colombo, D.1
Maathuis, M.H.2
Kalisch, M.3
Richardson, T.S.4
-
8
-
-
0003684449
-
-
2nd ed. Springer, New York. MR2722294
-
HASTIE, T., TIBSHIRANI, R. and FRIEDMAN, J. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed. Springer, New York. MR2722294
-
(2009)
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
9
-
-
77956921559
-
Model-based boosting 2.0
-
MR2719848
-
HOTHORN, T., BÜHLMANN, P., KNEIB, T., SCHMID, M. and HOFNER, B. (2010). Model-based boosting 2.0. J. Mach. Learn. Res. 11 2109-2113. MR2719848
-
(2010)
J. Mach. Learn. Res.
, vol.11
, pp. 2109-2113
-
-
Hothorn, T.1
Bühlmann, P.2
Kneib, T.3
Schmid, M.4
Hofner, B.5
-
10
-
-
0036372453
-
Estimation of genetic networks and functional structures between genes by using Bayesian network and nonparametric regression
-
Lihue, HI
-
IMOTO, S., GOTO, T. and MIYANO, S. (2002). Estimation of genetic networks and functional structures between genes by using Bayesian network and nonparametric regression. In Proceedings of the Pacific Symposium on Biocomputing (PSB) 175-186. Lihue, HI.
-
(2002)
Proceedings of the Pacific Symposium on Biocomputing (PSB)
, pp. 175-186
-
-
Imoto, S.1
Goto, T.2
Miyano, S.3
-
11
-
-
80053150077
-
Identifying confounders using additive noise models
-
AUAI Press, Corvallis, OR
-
JANZING, D., PETERS, J., MOOIJ, J. M. and SCHÖLKOPF, B. (2009). Identifying confounders using additive noise models. In Proceedings of the 25th Annual Conference on Uncertainty in Artificial Intelligence (UAI) 249-257. AUAI Press, Corvallis, OR.
-
(2009)
Proceedings of the 25th Annual Conference on Uncertainty in Artificial Intelligence (UAI)
, pp. 249-257
-
-
Janzing, D.1
Peters, J.2
Mooij, J.M.3
Schölkopf, B.4
-
12
-
-
0004047518
-
-
Oxford Univ. Press, New York. MR1419991
-
LAURITZEN, S. L. (1996). Graphical Models. Oxford Univ. Press, New York. MR1419991
-
(1996)
Graphical Models
-
-
Lauritzen, S.L.1
-
13
-
-
85094263695
-
High-dimensional learning of linear causal networks via inverse covariance estimation
-
Available at arXiv:1311.3492
-
LOH, P. and BÜHLMANN, P. (2013). High-dimensional learning of linear causal networks via inverse covariance estimation. J. Mach. Learn. Res. To appear. Available at arXiv:1311.3492.
-
(2013)
J. Mach. Learn. Res.
-
-
Loh, P.1
Bühlmann, P.2
-
14
-
-
33847401927
-
A simple smooth backfitting method for additive models
-
MR2291499
-
MAMMEN, E. and PARK, B. U. (2006). A simple smooth backfitting method for additive models. Ann. Statist. 34 2252-2271. MR2291499
-
(2006)
Ann. Statist.
, vol.34
, pp. 2252-2271
-
-
Mammen, E.1
Park, B.U.2
-
15
-
-
79953654016
-
Practical variable selection for generalized additive models
-
MR2786996
-
MARRA, G. and WOOD, S. N. (2011). Practical variable selection for generalized additive models. Comput. Statist. Data Anal. 55 2372-2387. MR2786996
-
(2011)
Comput. Statist. Data Anal.
, vol.55
, pp. 2372-2387
-
-
Marra, G.1
Wood, S.N.2
-
16
-
-
73949083829
-
High-dimensional additive modeling
-
MR2572443
-
MEIER, L., VAN DE GEER, S. and BÜHLMANN, P. (2009). High-dimensional additive modeling. Ann. Statist. 37 3779-3821. MR2572443
-
(2009)
Ann. Statist.
, vol.37
, pp. 3779-3821
-
-
Meier, L.1
Van De Geer, S.2
Bühlmann, P.3
-
17
-
-
33747163541
-
High-dimensional graphs and variable selection with the lasso
-
MR2278363
-
MEINSHAUSEN, N. and BÜHLMANN, P. (2006). High-dimensional graphs and variable selection with the lasso. Ann. Statist. 34 1436-1462. MR2278363
-
(2006)
Ann. Statist.
, vol.34
, pp. 1436-1462
-
-
Meinshausen, N.1
Bühlmann, P.2
-
20
-
-
85162312543
-
On causal discovery with cyclic additive noise models
-
Curran, Red Hook, NY
-
MOOIJ, J., JANZING, D., HESKES, T. and SCHÖLKOPF, B. (2011). On causal discovery with cyclic additive noise models. In Advances in Neural Information Processing Systems 24 (NIPS) 639-647. Curran, Red Hook, NY.
-
(2011)
Advances in Neural Information Processing Systems 24 (NIPS)
, pp. 639-647
-
-
Mooij, J.1
Janzing, D.2
Heskes, T.3
Schölkopf, B.4
-
21
-
-
71149096052
-
Regression by dependence minimization and its application to causal inference
-
ACM, New York
-
MOOIJ, J., JANZING, D., PETERS, J. and SCHÖLKOPF, B. (2009). Regression by dependence minimization and its application to causal inference. In Proceedings of the 26th International Conference on Machine Learning (ICML) 745-752. ACM, New York.
-
(2009)
Proceedings of the 26th International Conference on Machine Learning (ICML)
, pp. 745-752
-
-
Mooij, J.1
Janzing, D.2
Peters, J.3
Schölkopf, B.4
-
24
-
-
84987946876
-
Structural intervention distance (SID) for evaluating causal graphs
-
Available at arXiv:1306.1043
-
PETERS, J. and BÜHLMANN, P. (2013). Structural intervention distance (SID) for evaluating causal graphs. Neural Comput. To appear. Available at arXiv:1306.1043.
-
(2013)
Neural Comput.
-
-
Peters, J.1
Bühlmann, P.2
-
25
-
-
84897585225
-
Identifiability of Gaussian structural equation models with equal error variances
-
MR3180667
-
PETERS, J. and BÜHLMANN, P. (2014). Identifiability of Gaussian structural equation models with equal error variances. Biometrika 101 219-228. MR3180667
-
(2014)
Biometrika
, vol.101
, pp. 219-228
-
-
Peters, J.1
Bühlmann, P.2
-
26
-
-
84904201625
-
Causal discovery with continuous additive noise models
-
PETERS, J., MOOIJ, J., JANZING, D. and SCHÖLKOPF, B. (2014). Causal discovery with continuous additive noise models. J. Mach. Learn. Res. 15 2009-2053.
-
(2014)
J. Mach. Learn. Res.
, vol.15
, pp. 2009-2053
-
-
Peters, J.1
Mooij, J.2
Janzing, D.3
Schölkopf, B.4
-
27
-
-
80053209343
-
Adjacency-faithfulness and conservative causal inference
-
AUAI Press, Corvallis, OR
-
RAMSEY, J., ZHANG, J. and SPIRTES, P. (2006). Adjacency-faithfulness and conservative causal inference. In Proceedings of the 22nd Annual Conference on Uncertainty in Artificial Intelligence (UAI) 401-408. AUAI Press, Corvallis, OR.
-
(2006)
Proceedings of the 22nd Annual Conference on Uncertainty in Artificial Intelligence (UAI)
, pp. 401-408
-
-
Ramsey, J.1
Zhang, J.2
Spirtes, P.3
-
28
-
-
70350092487
-
Sparse additive models
-
MR2750255
-
RAVIKUMAR, P., LAFFERTY, J., LIU, H. and WASSERMAN, L. (2009). Sparse additive models. J. R. Stat. Soc. Ser. BStat. Methodol. 71 1009-1030. MR2750255
-
(2009)
J. R. Stat. Soc. Ser. BStat. Methodol.
, vol.71
, pp. 1009-1030
-
-
Ravikumar, P.1
Lafferty, J.2
Liu, H.3
Wasserman, L.4
-
29
-
-
0005472817
-
On measures of dependence
-
(unbound insert). MR0115203
-
RÉNYI, A. (1959). On measures of dependence. Acta Math. Acad. Sci. Hung. 10 441-451 (unbound insert). MR0115203
-
(1959)
Acta Math. Acad. Sci. Hung.
, vol.10
, pp. 441-451
-
-
Rényi, A.1
-
30
-
-
0040630191
-
A discovery algorithm for directed cyclic graphs
-
Morgan Kaufmann, San Francisco, CA. MR1617227
-
RICHARDSON, T. (1996). A discovery algorithm for directed cyclic graphs. In Uncertainty in Artificial Intelligence (Portland, OR, 1996) 454-461. Morgan Kaufmann, San Francisco, CA. MR1617227
-
(1996)
Uncertainty in Artificial Intelligence (Portland, OR, 1996)
, pp. 454-461
-
-
Richardson, T.1
-
31
-
-
36348990694
-
Learning graphical model structure using L1-regularization paths
-
AAAI Press, Menlo Park, CA
-
SCHMIDT, M., NICULESCU-MIZIL, A. and MURPHY, K. (2007). Learning graphical model structure using L1-regularization paths. In Proceedings of the National Conference on Artificial Intelligence 22 1278. AAAI Press, Menlo Park, CA.
-
(2007)
Proceedings of the National Conference on Artificial Intelligence
, vol.22
, pp. 1278
-
-
Schmidt, M.1
Niculescu-Mizil, A.2
Murphy, K.3
-
32
-
-
33749326177
-
A linear non-Gaussian acyclic model for causal discovery
-
MR2274431
-
SHIMIZU, S., HOYER, P. O., HYVÄRINEN, A. and KERMINEN, A. (2006). A linear non-Gaussian acyclic model for causal discovery. J. Mach. Learn. Res. 7 2003-2030. MR2274431
-
(2006)
J. Mach. Learn. Res.
, vol.7
, pp. 2003-2030
-
-
Shimizu, S.1
Hoyer, P.O.2
Hyvärinen, A.3
Kerminen, A.4
-
34
-
-
84975246659
-
-
2nd ed. MIT Press, Cambridge, MA. MR1815675
-
SPIRTES, P., GLYMOUR, C. and SCHEINES, R. (2000). Causation, Prediction, and Search, 2nd ed. MIT Press, Cambridge, MA. MR1815675
-
(2000)
Causation, Prediction, and Search
-
-
Spirtes, P.1
Glymour, C.2
Scheines, R.3
-
36
-
-
85194972808
-
Regression shrinkage and selection via the lasso
-
MR1379242
-
TIBSHIRANI, R. (1996). Regression shrinkage and selection via the lasso. J. Roy. Statist. Soc. Ser. B 58 267-288. MR1379242
-
(1996)
J. Roy. Statist. Soc. Ser. B
, vol.58
, pp. 267-288
-
-
Tibshirani, R.1
-
37
-
-
84902481901
-
On the uniform convergence of empirical norms and inner products, with application to causal inference
-
MR3211024
-
VAN DE GEER, S. (2014). On the uniform convergence of empirical norms and inner products, with application to causal inference. Electron. J. Stat. 8 543-574. MR3211024
-
(2014)
Electron. J. Stat.
, vol.8
, pp. 543-574
-
-
Van De Geer, S.1
-
38
-
-
84879140981
-
0-penalized maximum likelihood for sparse directed acyclic graphs
-
MR3099113
-
0-penalized maximum likelihood for sparse directed acyclic graphs. Ann. Statist. 41 536-567. MR3099113
-
(2013)
Ann. Statist.
, vol.41
, pp. 536-567
-
-
Van De Geer, S.1
Bühlmann, P.2
-
39
-
-
79960978269
-
The adaptive and the thresholded Lasso for potentially misspecified models (and a lower bound for the Lasso)
-
MR2820636
-
VAN DE GEER, S., BÜHLMANN, P. and ZHOU, S. (2011). The adaptive and the thresholded Lasso for potentially misspecified models (and a lower bound for the Lasso). Electron. J. Stat. 5 688-749. MR2820636
-
(2011)
Electron. J. Stat.
, vol.5
, pp. 688-749
-
-
Van De Geer, S.1
Bühlmann, P.2
Zhou, S.3
-
40
-
-
84897776138
-
Graph estimation with joint additive models
-
MR3180659
-
VOORMAN, A., SHOJAIE, A. and WITTEN, D. (2014). Graph estimation with joint additive models. Biometrika 101 85-101. MR3180659
-
(2014)
Biometrika
, vol.101
, pp. 85-101
-
-
Voorman, A.1
Shojaie, A.2
Witten, D.3
-
41
-
-
65749083666
-
1-constrained quadratic programming (Lasso)
-
MR2729873
-
1-constrained quadratic programming (Lasso). IEEE Trans. Inform. Theory 55 2183-2202. MR2729873
-
(2009)
IEEE Trans. Inform. Theory
, vol.55
, pp. 2183-2202
-
-
Wainwright, M.J.1
-
42
-
-
22044448669
-
Sparse graphical Gaussian modeling of the isoprenoid gene network in Arabidopsis thaliana
-
WILLE, A., ZIMMERMANN, P., VRANOVÁ, E., FÜRHOLZ, A., LAULE, O., BLEULER, S., HENNIG, L., PRELIC, A., VON ROHR, P., THIELE, L., ZITZLER, E., GRUISSEM, W. and BÜHLMANN, P. (2004). Sparse graphical Gaussian modeling of the isoprenoid gene network in Arabidopsis thaliana. Genome Biol. 5 R92.
-
(2004)
Genome Biol.
, vol.5
, pp. R92
-
-
Wille, A.1
Zimmermann, P.2
Vranová, E.3
Fürholz, A.4
Laule, O.5
Bleuler, S.6
Hennig, L.7
Prelic, A.8
Von Rohr, P.9
Thiele, L.10
Zitzler, E.11
Gruissem, W.12
Bühlmann, P.13
-
44
-
-
33645035051
-
Model selection and estimation in regression with grouped variables
-
MR2212574
-
YUAN, M. and LIN, Y. (2006). Model selection and estimation in regression with grouped variables. J. R. Stat. Soc. Ser. BStat. Methodol. 68 49-67. MR2212574
-
(2006)
J. R. Stat. Soc. Ser. BStat. Methodol.
, vol.68
, pp. 49-67
-
-
Yuan, M.1
Lin, Y.2
-
45
-
-
50949096321
-
The sparsity and bias of the Lasso selection in high-dimensional linear regression
-
MR2435448
-
ZHANG, C.-H. and HUANG, J. (2008). The sparsity and bias of the Lasso selection in high-dimensional linear regression. Ann. Statist. 36 1567-1594. MR2435448
-
(2008)
Ann. Statist.
, vol.36
, pp. 1567-1594
-
-
Zhang, C.-H.1
Huang, J.2
-
47
-
-
33845263263
-
On model selection consistency of Lasso
-
MR2274449
-
ZHAO, P. and YU, B. (2006). On model selection consistency of Lasso. J. Mach. Learn. Res. 7 2541-2563. MR2274449
-
(2006)
J. Mach. Learn. Res.
, vol.7
, pp. 2541-2563
-
-
Zhao, P.1
Yu, B.2
-
48
-
-
33846114377
-
The adaptive lasso and its oracle properties
-
MR2279469
-
ZOU, H. (2006). The adaptive lasso and its oracle properties. J. Amer. Statist. Assoc. 101 1418-1429. MR2279469
-
(2006)
J. Amer. Statist. Assoc.
, vol.101
, pp. 1418-1429
-
-
Zou, H.1
|