메뉴 건너뛰기




Volumn 42, Issue 6, 2014, Pages 2526-2556

CAM: Causal additive models, high-dimensional order search and penalized regression

Author keywords

Graphical modeling; Intervention calculus; Nonparametric regression; Regularized estimation; Sparsity; Structural equation model

Indexed keywords


EID: 84987997394     PISSN: 00905364     EISSN: None     Source Type: Journal    
DOI: 10.1214/14-AOS1260     Document Type: Article
Times cited : (320)

References (48)
  • 1
    • 84950771789 scopus 로고
    • Estimating optimal transformations for multiple regression and correlation
    • With discussion and with a reply by the authors. MR0803258
    • BREIMAN, L. and FRIEDMAN, J. H. (1985). Estimating optimal transformations for multiple regression and correlation. J. Amer. Statist. Assoc. 80 580-619. With discussion and with a reply by the authors. MR0803258
    • (1985) J. Amer. Statist. Assoc. , vol.80 , pp. 580-619
    • Breiman, L.1    Friedman, J.H.2
  • 2
    • 41549141939 scopus 로고    scopus 로고
    • Boosting algorithms: Regularization, prediction and model fitting
    • MR2420454
    • BÜHLMANN, P. and HOTHORN, T. (2007). Boosting algorithms: Regularization, prediction and model fitting. Statist. Sci. 22 477-505. MR2420454
    • (2007) Statist. Sci. , vol.22 , pp. 477-505
    • Bühlmann, P.1    Hothorn, T.2
  • 5
    • 0043245810 scopus 로고    scopus 로고
    • 2 loss: Regression and classification
    • MR1995709
    • 2 loss: Regression and classification. J. Amer. Statist. Assoc. 98 324-339. MR1995709
    • (2003) J. Amer. Statist. Assoc. , vol.98 , pp. 324-339
    • Bühlmann, P.1    Yu, B.2
  • 6
    • 0042967741 scopus 로고    scopus 로고
    • Optimal structure identification with greedy search
    • MR1991085
    • CHICKERING, D. M. (2002). Optimal structure identification with greedy search. J. Mach. Learn. Res. 3 507-554. MR1991085
    • (2002) J. Mach. Learn. Res. , vol.3 , pp. 507-554
    • Chickering, D.M.1
  • 7
    • 84867677322 scopus 로고    scopus 로고
    • Learning high-dimensional directed acyclic graphs with latent and selection variables
    • MR3014308
    • COLOMBO, D., MAATHUIS, M. H., KALISCH, M. and RICHARDSON, T. S. (2012). Learning high-dimensional directed acyclic graphs with latent and selection variables. Ann. Statist. 40 294-321. MR3014308
    • (2012) Ann. Statist. , vol.40 , pp. 294-321
    • Colombo, D.1    Maathuis, M.H.2    Kalisch, M.3    Richardson, T.S.4
  • 10
    • 0036372453 scopus 로고    scopus 로고
    • Estimation of genetic networks and functional structures between genes by using Bayesian network and nonparametric regression
    • Lihue, HI
    • IMOTO, S., GOTO, T. and MIYANO, S. (2002). Estimation of genetic networks and functional structures between genes by using Bayesian network and nonparametric regression. In Proceedings of the Pacific Symposium on Biocomputing (PSB) 175-186. Lihue, HI.
    • (2002) Proceedings of the Pacific Symposium on Biocomputing (PSB) , pp. 175-186
    • Imoto, S.1    Goto, T.2    Miyano, S.3
  • 12
    • 0004047518 scopus 로고    scopus 로고
    • Oxford Univ. Press, New York. MR1419991
    • LAURITZEN, S. L. (1996). Graphical Models. Oxford Univ. Press, New York. MR1419991
    • (1996) Graphical Models
    • Lauritzen, S.L.1
  • 13
    • 85094263695 scopus 로고    scopus 로고
    • High-dimensional learning of linear causal networks via inverse covariance estimation
    • Available at arXiv:1311.3492
    • LOH, P. and BÜHLMANN, P. (2013). High-dimensional learning of linear causal networks via inverse covariance estimation. J. Mach. Learn. Res. To appear. Available at arXiv:1311.3492.
    • (2013) J. Mach. Learn. Res.
    • Loh, P.1    Bühlmann, P.2
  • 14
    • 33847401927 scopus 로고    scopus 로고
    • A simple smooth backfitting method for additive models
    • MR2291499
    • MAMMEN, E. and PARK, B. U. (2006). A simple smooth backfitting method for additive models. Ann. Statist. 34 2252-2271. MR2291499
    • (2006) Ann. Statist. , vol.34 , pp. 2252-2271
    • Mammen, E.1    Park, B.U.2
  • 15
    • 79953654016 scopus 로고    scopus 로고
    • Practical variable selection for generalized additive models
    • MR2786996
    • MARRA, G. and WOOD, S. N. (2011). Practical variable selection for generalized additive models. Comput. Statist. Data Anal. 55 2372-2387. MR2786996
    • (2011) Comput. Statist. Data Anal. , vol.55 , pp. 2372-2387
    • Marra, G.1    Wood, S.N.2
  • 16
    • 73949083829 scopus 로고    scopus 로고
    • High-dimensional additive modeling
    • MR2572443
    • MEIER, L., VAN DE GEER, S. and BÜHLMANN, P. (2009). High-dimensional additive modeling. Ann. Statist. 37 3779-3821. MR2572443
    • (2009) Ann. Statist. , vol.37 , pp. 3779-3821
    • Meier, L.1    Van De Geer, S.2    Bühlmann, P.3
  • 17
    • 33747163541 scopus 로고    scopus 로고
    • High-dimensional graphs and variable selection with the lasso
    • MR2278363
    • MEINSHAUSEN, N. and BÜHLMANN, P. (2006). High-dimensional graphs and variable selection with the lasso. Ann. Statist. 34 1436-1462. MR2278363
    • (2006) Ann. Statist. , vol.34 , pp. 1436-1462
    • Meinshausen, N.1    Bühlmann, P.2
  • 24
    • 84987946876 scopus 로고    scopus 로고
    • Structural intervention distance (SID) for evaluating causal graphs
    • Available at arXiv:1306.1043
    • PETERS, J. and BÜHLMANN, P. (2013). Structural intervention distance (SID) for evaluating causal graphs. Neural Comput. To appear. Available at arXiv:1306.1043.
    • (2013) Neural Comput.
    • Peters, J.1    Bühlmann, P.2
  • 25
    • 84897585225 scopus 로고    scopus 로고
    • Identifiability of Gaussian structural equation models with equal error variances
    • MR3180667
    • PETERS, J. and BÜHLMANN, P. (2014). Identifiability of Gaussian structural equation models with equal error variances. Biometrika 101 219-228. MR3180667
    • (2014) Biometrika , vol.101 , pp. 219-228
    • Peters, J.1    Bühlmann, P.2
  • 26
  • 29
    • 0005472817 scopus 로고
    • On measures of dependence
    • (unbound insert). MR0115203
    • RÉNYI, A. (1959). On measures of dependence. Acta Math. Acad. Sci. Hung. 10 441-451 (unbound insert). MR0115203
    • (1959) Acta Math. Acad. Sci. Hung. , vol.10 , pp. 441-451
    • Rényi, A.1
  • 30
    • 0040630191 scopus 로고    scopus 로고
    • A discovery algorithm for directed cyclic graphs
    • Morgan Kaufmann, San Francisco, CA. MR1617227
    • RICHARDSON, T. (1996). A discovery algorithm for directed cyclic graphs. In Uncertainty in Artificial Intelligence (Portland, OR, 1996) 454-461. Morgan Kaufmann, San Francisco, CA. MR1617227
    • (1996) Uncertainty in Artificial Intelligence (Portland, OR, 1996) , pp. 454-461
    • Richardson, T.1
  • 32
    • 33749326177 scopus 로고    scopus 로고
    • A linear non-Gaussian acyclic model for causal discovery
    • MR2274431
    • SHIMIZU, S., HOYER, P. O., HYVÄRINEN, A. and KERMINEN, A. (2006). A linear non-Gaussian acyclic model for causal discovery. J. Mach. Learn. Res. 7 2003-2030. MR2274431
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 2003-2030
    • Shimizu, S.1    Hoyer, P.O.2    Hyvärinen, A.3    Kerminen, A.4
  • 36
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • MR1379242
    • TIBSHIRANI, R. (1996). Regression shrinkage and selection via the lasso. J. Roy. Statist. Soc. Ser. B 58 267-288. MR1379242
    • (1996) J. Roy. Statist. Soc. Ser. B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 37
    • 84902481901 scopus 로고    scopus 로고
    • On the uniform convergence of empirical norms and inner products, with application to causal inference
    • MR3211024
    • VAN DE GEER, S. (2014). On the uniform convergence of empirical norms and inner products, with application to causal inference. Electron. J. Stat. 8 543-574. MR3211024
    • (2014) Electron. J. Stat. , vol.8 , pp. 543-574
    • Van De Geer, S.1
  • 38
    • 84879140981 scopus 로고    scopus 로고
    • 0-penalized maximum likelihood for sparse directed acyclic graphs
    • MR3099113
    • 0-penalized maximum likelihood for sparse directed acyclic graphs. Ann. Statist. 41 536-567. MR3099113
    • (2013) Ann. Statist. , vol.41 , pp. 536-567
    • Van De Geer, S.1    Bühlmann, P.2
  • 39
    • 79960978269 scopus 로고    scopus 로고
    • The adaptive and the thresholded Lasso for potentially misspecified models (and a lower bound for the Lasso)
    • MR2820636
    • VAN DE GEER, S., BÜHLMANN, P. and ZHOU, S. (2011). The adaptive and the thresholded Lasso for potentially misspecified models (and a lower bound for the Lasso). Electron. J. Stat. 5 688-749. MR2820636
    • (2011) Electron. J. Stat. , vol.5 , pp. 688-749
    • Van De Geer, S.1    Bühlmann, P.2    Zhou, S.3
  • 40
    • 84897776138 scopus 로고    scopus 로고
    • Graph estimation with joint additive models
    • MR3180659
    • VOORMAN, A., SHOJAIE, A. and WITTEN, D. (2014). Graph estimation with joint additive models. Biometrika 101 85-101. MR3180659
    • (2014) Biometrika , vol.101 , pp. 85-101
    • Voorman, A.1    Shojaie, A.2    Witten, D.3
  • 41
    • 65749083666 scopus 로고    scopus 로고
    • 1-constrained quadratic programming (Lasso)
    • MR2729873
    • 1-constrained quadratic programming (Lasso). IEEE Trans. Inform. Theory 55 2183-2202. MR2729873
    • (2009) IEEE Trans. Inform. Theory , vol.55 , pp. 2183-2202
    • Wainwright, M.J.1
  • 44
    • 33645035051 scopus 로고    scopus 로고
    • Model selection and estimation in regression with grouped variables
    • MR2212574
    • YUAN, M. and LIN, Y. (2006). Model selection and estimation in regression with grouped variables. J. R. Stat. Soc. Ser. BStat. Methodol. 68 49-67. MR2212574
    • (2006) J. R. Stat. Soc. Ser. BStat. Methodol. , vol.68 , pp. 49-67
    • Yuan, M.1    Lin, Y.2
  • 45
    • 50949096321 scopus 로고    scopus 로고
    • The sparsity and bias of the Lasso selection in high-dimensional linear regression
    • MR2435448
    • ZHANG, C.-H. and HUANG, J. (2008). The sparsity and bias of the Lasso selection in high-dimensional linear regression. Ann. Statist. 36 1567-1594. MR2435448
    • (2008) Ann. Statist. , vol.36 , pp. 1567-1594
    • Zhang, C.-H.1    Huang, J.2
  • 47
    • 33845263263 scopus 로고    scopus 로고
    • On model selection consistency of Lasso
    • MR2274449
    • ZHAO, P. and YU, B. (2006). On model selection consistency of Lasso. J. Mach. Learn. Res. 7 2541-2563. MR2274449
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 2541-2563
    • Zhao, P.1    Yu, B.2
  • 48
    • 33846114377 scopus 로고    scopus 로고
    • The adaptive lasso and its oracle properties
    • MR2279469
    • ZOU, H. (2006). The adaptive lasso and its oracle properties. J. Amer. Statist. Assoc. 101 1418-1429. MR2279469
    • (2006) J. Amer. Statist. Assoc. , vol.101 , pp. 1418-1429
    • Zou, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.